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Abstract

The atmosphere is often cited as an archetypal example of a chaotic system, where

prediction is limited by the models sensitivity to initial conditions (Lorenz, 1963;

Pool, 1989). Experiments have indeed shown that forecast errors, as measured in

500 hPa heights, can double in 1.5 days or less. Recent work, however, has shown

that, when errors are measured in total energy, model error is the primary contributor

to forecast inaccuracy (Orrell et al., 2001). In this paper we attempt to reconcile

these apparently conflicting sets of results by examining the role of the chosen metric.

Using a simple medium-dimensional model for illustration, it is found that the metric

has a strong effect, not just on apparent error growth, but on the perceived causes of

error. If an insufficiently global metric is used, then it may appear that error is due

to sensitivity to initial condition, when in fact it is caused by sensitivity to error in

the other variables. If the goal is to diagnose the causes of error, a sufficiently global

metric must be used. The simple model is used to predict the internal rate of growth

of the ECMWF operational model, and preliminary results compared. It is found that

both the 500 hPa and total energy results are consistent with high model error and a

relatively low internal rate of growth. Experiments are suggested to further verify the

results for weather models.
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1 Introduction

Error in weather forecast models arises from both the initial condition and the model (Bjerknes,

1911). Since weather models are thought to be chaotic, and therefore sensitive to initial condition,

it follows that a small perturbation to the initial condition may grow rapidly. This hypothesis has

been tested for weather models in a number of experiments, by launching model forecasts from

perturbed initial conditions and measuring the doubling time of error growth. Early estimates of

doubling times were for 5 or more days (Mintz 1965; Smagorinsky 1963), but more recent results,

based on the lagged forecast method discussed below, have indicated a much more rapid doubling

time in the 500 hPa metric of 1.5 days or less (Simmons et al., 1995), which implies that most

forecast error is a result of chaos.

On the other hand, results in the total energy metric have shown that model error plays a signif-

icant role. In fact, the error attributable to the model accounts for the majority of forecast error out

to three days (Orrell et al., 2001).

Of course, it is well known that different metrics give different error growth (Mullen and Buizza,

2001; Rabier et al., 2000); it is easier, for example, to predict the 500 hPa height than it is to predict

the wind at ground level. However, the 500 hPa results seem to imply that model error is relatively

low, so most error is due to initial condition, while the total energy results indicate that most error

is due to the model. It is not possible for both of these scenarios to be true at the same time, because

any model error in the wind and temperature variables that make up the total energy metric will

affect the 500 hPa height after a period of time.

The question of whether forecast error is caused predominately by sensitivity to initial condition

or model errors is of more than theoretical importance. The weather’s initial state can never be

perfectly known, so the model’s sensitivity to initial condition essentially places an upper limit

on the atmosphere’s predictability, and to some extent the potential economic benefit of weather

forecasts (Ehrendorfer, 1997). It also serves as a guide to whether resources should be allocated

to improving the initial condition or the model.

In this paper we attempt to reconcile the 500 hPa and total energy results by examining the role

of the metric. It is shown that error growth can appear very different when viewed in a non-global,

rather than a global, metric; and that errors in a non-global metric can be misattributed to initial

condition when in fact they are due to the model. We begin by examining typical patterns of error

growth in the 500 hPa and total energy metrics. A medium-dimensional system, based on the

Lorenz ’96 system, is then constructed which manages to simulate weather model error growth.
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The likely impact of the metric on experimental results is determined, and the model used to pre-

dict the internal rate of growth of an operational model. The possible effects of errors transferring

from small scale to large scale is discussed. Finally, preliminary results for the operational model

are presented, and further experiments proposed.

2 Patterns of error growth

In nonlinear systems, errors due to initial condition typically grow in an exponentially-on-average

fashion (Smith et al., 1999). If models were highly sensitive to initial condition, were a good ap-

proximation to the real weather, and also grew in a reasonably exponential manner, then doubling

times could be determined simply by looking at the error growth relative to the analysis of the

observations. In practice, however, errors do not grow exponentially. The upper panel of Figure 1

shows root-mean-square 500 hPa errors (+ symbols) for a General Circulation Model (GCM), in

this case the ECMWF operational model. Error growth is fairly linear, instead of exponential. The

situation is even more pronounced in the lower panel showing errors in the total energy metric,

which is more global and includes wind and temperature errors over all model levels (Buizza and

Palmer, 1995). The error actually has negative curvature.

In (Orrell et al., 2001) it is argued that the reason for the negative curvature is because the

equations create model errors which grow in a square-root fashion. To see this, suppose the target

orbit (in this case the analysis) is
�������� , and we write the model equations in the form

� �	�
���
� � � � �
�	�
���
��� (1)

where � is ��� and � is the state space vector. The forecast error is

������� � �	�
����� ��	������� (2)

and the tendency error (Klinker and Sardeshmukh, 1992; Schubert and Schang, 1996), is the

difference between the model tendency and that of the target:

��� � ��������
� � � � ������������
����	�����
� � � (3)

The time dependence of the forecast error is then
� �������
� � �

� �������
� � � �	��������

� �
� � � ����
�������������
� � � � ����
���
��� � � � ��	�������
! " � ��������
�#�������$� � � � ��������
� � (4)
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A first order solution to this equation is

����� � ! ��� � " � ��������
��� � �������$� ��� � ������������ � (5)

which is essentially the model of shadow behaviour used in (Orrell et al, 2001), with � � " � ��	�
���
���
replaced by the linear propagator (Strang, 1986), and � � � ��	�
���
��� replaced by the drift vector

� ��� � �
�
	
� ��� � ��������
� � � �

�
�
� � � ��������
� � � � ��	��� ��� ��	����� � (6)

The drift is equal to the average tendency error multiplied by time, while the propagator term

accounts for the average effect of the gradient. The approximation is valid for short times � , and

particularly for shadow orbits, where the shadow time is limited by the shadow radius.

A more exact solution to Eq. 4 (Palmer, 1999; Vannitsem and Toth, 2002) is given by

����� � ! � ��� �����#������� � ��� ��� � (7)

where the propagated drift vector is

��� ��� � �
� 	
� � ��� �
��� � � � ���������� � � � (8)

and � ��� ����� is the model linear propagator evaluated along the target orbit from time � to time
� . The propagated drift can be viewed as a version of the drift that also incorporates higher order

terms.

For weather models, the propagated drift is not easily calculated. An attempt to estimate its

effect was made in (Orrell et al, 2001), by considering the exponential growth of the forecast

errors in the drift computation. We will see below, though, that if the action of the propagator is

on average to expand propagations, then we can usually assume that

� �
����� � � � �
����� � (9)

so the drift is an underestimate of the propagated drift, and approaches the propagated value for

short times.

Because the linear propagator increases exponentially, the propagated drift includes higher order

terms, which tend to blow up at large times. The drift, by contrast, is numerically stable, and easy

to calculate. It is therefore a useful measure of model error, which will be zero if the model agrees

with the target orbit. When the drift is calculated numerically for a finite step size, the integral is

performed by summing a series of short forecast errors. For example, suppose the target point at
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time ��� � ��� ����� is
��	�
��� � , and let �	� �
��� for ��
 ��� be the model trajectory initiated at the target

point
������ � � . The forward difference approximation to the model tendency at this point is

�
� �
����� � � �
�������� �

� (10)

and to the system tendency is
��
� �
� ��� � � �

������ � �
� � (11)

The tendency error is the difference between these two:

�
� �
� ��� � � �
��	� ��� ��� � �� � (12)

The drift at time ��� is the numerical integral of the tendency error over the target orbit, which is a

sum of short forecast errors:

� �
��� � � �
��� ��
��� � � �
� �
����� � � �

���������� � �
��� � (13)

The timestep � should be chosen sufficiently small that the calculation converges. If the forecast

errors have little correlation, as tends to be the case with weather models, the drift increases like a

random walk (Chatfield, 1989), which lends the error curve a square-root shape. Figure 1 shows

the drift measured in both 500 hPa and total energy. Also shown is the forecast error ���
��� for a

model forecast initiated on the target orbit, so ������� � � in Eq. 7.

Judging from the drift in Figure 1, it appears that the impact of model error is metric-dependent,

and accounts for much of the total energy error, but rather less of the 500 hPa error. However,

interpretation is complicated by the fact that 500 hPa fields, being a non-global metric, are affected

by errors in other variables as time progresses. For example, miscalculations of winds at sea level

(or near-surface temperature, as discussed in (Viterbo et al., 1999)) may not immediately influence

the 500 hPa height, but after a time the error may propagate through the entire system. Therefore

the true impact of model error on 500 hPa height is not clear.

In fact, the choice of metric always has an effect, not just on perceived error growth, but per-

ceived causes of error growth, even for simple systems. We will here try to quantify this effect

for weather models. Before proceeding further, it may first be worth discussing an alternative ex-

planation for the negative curvature of the growth curve, which is that it is caused, not by model

error, but by a growth rate which varies with scale. It is known that, in weather models, small-scale

errors tend to saturate more quickly than large-scale errors (Simmons et al., 1995; Savijarvi, 1995;

Toth and Kalnay, 1993). Suppose that the initial error growth is very fast, but then saturates, to be
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replaced by a slower growth rate, which again saturates, and so on, so that the net effect is an error

curve which grows with decreasing slope. This picture might be plausible, and would produce a

negative curvature slope, but the fact that the drift varies with the square root of time (rather than

simply having negative curvature) would have to be considered a fluke. Also, if the growth rate

varied with time as described, then one would expect the drift calculation to be sensitive to the step

size used in the calculation, as demonstrated for simple models in (Orrell, 2001). In fact, the 6

hour and 24 hour time steps give a similar result (i.e. the drift calculation has converged). Finally,

while error growth may vary with physical scale, there does not appear to be experimental evi-

dence to suggest that it varies with time in such a drastic fashion. Nevertheless, it is worth bearing

in mind that internal error growth will not be perfectly exponential and there is undoubtedly some

variation in growth rate. For example, the growth eventually saturates after a couple of weeks

when errors reach a certain limit.

Another possible explanation is that the error is an artefact of analysis error, which is itself a

complex combination of observation error and model error. Again, though, this would not explain

the scaling behaviour of the drift, nor the fact that the sum of short forecast errors in the drift

equals the total error up to 2 days.

Our aim here, however, is not primarily to demonstrate the importance of model error (see also

(Orrell et al., 2001) for a discussion of this subject), but to examine the effect of the metric on fore-

cast error growth, point out some of the experimental dangers, and show that the 500 hPa and total

energy results are consistent with each other. Since experiments on weather models are expensive

and sometimes difficult to interpret, we begin by looking at a simple medium-dimensional system,

which is capable of simulating many properties of weather model error growth. The results are

then verified against a weather model, and further tests proposed.

3 The two-level system

The two-level system used to simulate weather errors is a variant of the Lorenz ’96 system, which

was previously used to model forecast error growth in (Lorenz, 1996). There are 8 large-scale vari-

ables ��� and 32 coupled small-scale variables ����� � , which can be viewed as atmospheric variables

around a circle as shown in Figure 2. The equations, which are given in the Appendix, simulate

properties such as advection, damping, and forcing. Model error is provided by stochastic forcing

terms which are present in the system, but absent in the model. In addition, the stochastic compo-

nent of analysis errors is simulated by adding a random noise component to each observation of
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the system.

Because the � variables are large-scale and slow-varying, while the � variables are small-scale

and fast-varying, the former resemble variables such as 500 hPa height, while the latter resemble

more energetic variables like wind and temperature. By using an appropriate choice of scaling, the

errors can be brought to match their weather model counterparts. The results are shown in Figure

1: the forecast errors and drift of the large-scale � (solid line, upper panel) agree reasonably well

with the GCM 500 hPa errors, while the small-scale � errors (lower panel) match the GCM total

energy errors.

The stochastic forcing terms in the model were chosen to give the correct drift (dotted lines in

the figure), and as a result are larger for the small-scale � variables than for the large-scale � . They

are simply a convenient method to produce the required square-root shape drift, and are not meant

to imply that actual forecast errors are stochastic. The observation errors were added to reflect

the stochastic component of analysis errors. The real analysis errors are unknown: furthermore,

estimates of their magnitude will be affected by model error, due to use of the model in the analysis

procedure. Therefore the observation error terms might be of the wrong size, or the wrong sort. In

general, though, the observation error has surprisingly little effect on the drift calculation. This can

be seen in Figure 3, which shows the forecast error and drift calculated with a 6 hour step length.

If the noise term is increased by a factor 3, then the drift changes a relatively small amount.

It might seem counter-intuitive that observation errors have little effect on a chaotic model. It is

often thought that any small perturbation will grow rapidly. However, in a dissipative system such

as this, the reality is that small perturbations are at least as likely to shrink as expand over the short

term. Errors only grow exponentially over the longer term. Therefore the drift calculation, which

is a summed series of short forecasts, is not strongly affected. Even the total forecast error is little

changed; we return to discuss this point below.

The propagated drift for the two-level model is also shown in Fig. 1. As in Eq. 13, it can again

be calculated as a sum of short forecast errors, each of which is this time multiplied by a linear

propagator term:

� ��� ��� � � � � �
��� ��
��� � � �
� � �
� ��� � � � �
� ��� ��� � � �

������ ��� � �
��� � (14)

The effect of the linear propagator � �
� � ��� ��� � � in the integral will be to rotate each short error

term, and stretch it a small amount. Since the direction of the model error is assumed to be random,

the rotation has little effect on the total magnitude of the sum; but the stretching will mean that the

drift underestimates the true magnitude of the propagated drift, as stated in Eq. 9.
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In the � variables, the propagated drift is a slightly better estimate of the forecast error than the

drift for times up to 4 days. However it rapidly blows up for larger times due to the presence of

the higher order terms (this could perhaps be corrected by accounting for saturation effects). It

is interesting to note, though, that the propagated drift does a much better job of predicting the �

errors. It appears that, for the two-level model, the proportion of � error not due to drift in the � ’s

can be understood as model error rotating in from the � variables through the action of the linear

propagator.

Although the two-level parameters were chosen to give realistic error growth, the equations also

simulate a number of properties of GCM behaviour. For example, Figure 4 compares errors for the

two-level system � � � � variable (top) with the average 230 hPa temperature over Europe for a 6 day

period (bottom). A model trajectory is initiated each 24 hours; the resulting errors are indicated

by the dashed lines. The plots have a similar nature in terms of their variability and relative error

magnitude. Figure 5 shows ensemble errors in the large-scale � variables (upper panel) and small-

scale � (lower panel). The upper panel can be compared with any 500 hPa GCM ensemble. The

total energy ensemble is similar, but has a relatively smaller spread due to the larger model error

(as for weather models, the spread will also depend to an extent on the initial perturbations).

4 Calculating doubling times

To assess the internal doubling times of error growth due to a small change in initial condition,

one must compare, not the model trajectory with the true weather, but a model trajectory with

another from a perturbed initial condition. A question is how to choose the perturbation in a phys-

ically realistic manner. Suppose for example that errors are measured in 500 hPa heights - how

should the other variables be perturbed? One approach is the Monte-Carlo technique, where ran-

dom perturbations, with magnitude consistent with the observation errors, are added to the initial

condition. A potential disadvantage to the Monte-Carlo approach is that the exact characteristics

of the analysis error can never be known.

Another widely adopted approach is to let the perturbed initial condition be the one-day forecast

generated a day earlier (Lorenz, 1982; Dalcher and Kalnay, 1987). The difference between this

perturbed initial condition and the unperturbed control is then just the one-day forecast error. An

advantage of this lagged forecast method is that the initial perturbation has a degree of physical

relevance: it may not approximate the analysis error, but it does reflect the forecast error after the

lag time, and therefore is relevant to the errors experienced as the forecast progresses with time.
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Figure 6 shows the lagged forecast technique for the two-level model. Two forecasts are run,

initiated a day apart. The difference between the two is the lagged forecast error. This process is

repeated over 500 initial conditions. The root-mean-square errors are shown by the dotted lines

starting at time one day. When applied to the large-scale � variables of the two-level model (upper

panel), it appears that errors double in slightly less than 2 days. When applied to the small-scale �

variables (lower panel), however, the growth rate is much slower, and the error takes more than 3

days to double. There is clearly a metric-dependent effect.

The problem is that, in a non-global metric, the concept of a doubling time is not well-defined.

If the metric only measures errors in certain variables, then the apparent growth rate will depend

on errors in the other, unseen variables. For example, from Figure 6 the � variables appear to

grow in a more exponential fashion than the � variables, so it could seem that the model is more

sensitive to perturbations in the � ’s than the � ’s. In fact, the oppposite is true. This is demonstrated

in Figure 7, which shows the result of a Monte-Carlo experiment when applied to the two-level

system. The upper panel shows error growth in � when perturbations are made to all variables (+

symbol), and to � variables only (dotted line). Similarly the lower panel shows error growth in

� when perturbations are made to all variables, and to � variables only. Perturbations in � were

chosen for convenience to be consistent with the 24 hour forecast errors, while perturbations in �

were chosen to be consistent with the 6 hour forecast error. Also shown for comparison are the

lagged forecasts, rebased so they begin at � � � .

In the upper panel, when perturbations are made only to � variables, the error growth is essen-

tially flat. In other words, the model is insensitive to changes in � . When perturbations are made

to the � variables, the apparent growth rate in � increases. The lagged forecast, however, gives the

fastest growth rate. The reason is that, in the lagged forecast experiment, the initial perturbation

to the � variables is determined by the one-day error. Because the one-day error is large in those

variables (due to model error), but relatively small in the � variables, the initial perturbation ap-

pears smaller than it would in a more global metric, and the resulting error growth faster. In fact,

if model error is significant, the lagged forecast technique is almost unique in its ability to inject a

large amount of error into the unseen variables, and create a rapid but apparently plausible rate of

growth.

This variability of growth rate may explain why estimates of 500 hPa doubling times depend on

the method. For example, some Monte-Carlo tests in 500 hPa showed no systematic growth at all

(Leith, 1964). The apparent growth rate will be a function of what perturbations are made to the

unseen variables.
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So what is the actual internal doubling time of the two-level model, and what is a realistic value

for weather model doubling times? For a representative picture of error growth, the metric must be

reasonably global, and it must contain those variables which introduce the largest errors into the

system. This latter is especially relevant if certain variables experience large model errors. In the

case of the two-level system, the small-scale � variables are responsible for most of the error, due

to the large model error component. The lagged forecast in these variables gave a doubling time

of slightly over 3 days. As shown in the lower panel of Figure 7, the Monte-Carlo approach gives

the same result, regardless of whether perturbations are made to the � variables only, or both � and

� . Because the lagged forecast and Monte-Carlo techniques give the same answer, the doubling

time represents a robust measure of the model’s internal rate of growth.

It is now clear that the reason why the forecast error in Figure 3 was unaffected by noise in the

observations of the target orbit is that, with such a slow doubling time, error growth is dominated

by model error. The noise term in the � observations has standard deviation 0.5 units. Such an

error in the initial condition grows by about a factor
����

to 1.6 units after 5 days. The total error,

meanwhile, is 12.8 units. Assuming that the initial condition term is orthogonal to the total error

(a safe assumption in a high dimension space) then a rough idea of the likely combined error is

given by the orthogonal sum
� �

���	� �
� � ��
	� �

� � ��� , a negligible difference of 0.7 percent.

Since the two-level model agrees in other aspects of error growth with GCM’s, it seems reason-

able to expect that they would have a similar internal rate of growth. Figure 6 shows the result

of a total energy lagged forecast experiment performed at ECMWF using the operational model

(circle symbols). Apart from the fact that the two-level model saturates earlier, the growth curves

are quite similar, and the weather model has a doubling time of about 3 days.

Viewed naively, the lagged forecast in Figure 6 could be interpreted as indicating that most of

the GCM forecast error is a result, not of model error, but simply the growth of the one day error.

However, this is no more true of the GCM than it is of the two-level model. In a high-dimension

system, error due to initial condition is expected to be orthogonal to error due to the model, so

that only a portion contributes to the total error. Furthermore, saturation effects mean that the

contributions from different sources are not additive even in an orthogonal sense. In general, the

convolution of model error and initial condition error is complex, and it is difficult to infer the

contribution of each from the forecast error curve alone.

While the lagged experiment is identical, apart from metric, to that used for the 500 hPa lagged

forecast experiments, it should still only be considered a preliminary result. We discuss in the

conclusions further tests that can be carried out.

10



5 Other systems

The two-level system has a special structure that combines large-scale � parameters with small-

scale � parameters, which is useful because it aids comparison with the 500 hPa and total energy

metrics. However it leads to questions about the transfer of error from small-scale to large-scale,

which as mentioned in Section 2 is known to occur with weather models. Is the difference that we

see between � and � forecast error growth due to a similar effect?

In fact, the difference betwen � and � error growth is due primarily to the disparity in their

stochastic model error terms. This can be seen by looking at simpler systems. For example, the

one-level system is similar to the two-level system but has only � variables. The equations, which

are given in the Appendix, are similar to the large-scale equations, with the difference that the

forcing � �
� � is a constant function of time. The model is the same as the system, but the

forcing term for variables � � through ��� is � �
� �

, an error of twenty percent, while � � has the

same forcing as the system. Therefore � � is now the low-error variable, but there is no difference

in scale between it and the other variables.

The model’s tendency error is equal to the constant forcing error. When measured over all

variables, seven of which have forcing error 2, the magnitude of the tendency error is equal to
� � �

. If measured over the first variable � � only, the forcing error for that variable is zero, so

the tendency error is zero. The drift, which is the integral of the tendency error over the target

orbit, will then be equal to
� � � � over all variables (i.e. linear), but zero over � � . The effect of

the drift can be seen in the forecast errors in the left panels of Figure 8. The � � error (solid line,

top left panel) has an initial slope of zero, because tendency error and drift in that variable is zero.

The error over all variables (lower left) grows linearly for small � , with a slope equal to
� � �

as

expected.

Since the forecast error in � � grows in a quasi-exponential fashion, it is possible to try to fit it

with one of the standard error growth formulas from the literature. An example from (Leith, 1978)

is
��� �����
� � � �

� �
���$� � (15)

where
� ����� denotes the error variance, � is a (constant) model error term, and � specifies the

internal growth rate due to initial condition error. The dashed line shows this fit with � � � � � � �	�
and a doubling time of 0.082 time units. One would therefore conclude from this fit that model

error was small, and the doubling time was fast. This conclusion would be backed up by the � �
lagged forecast, made with a lag of 0.1 time units, which is shown by the dotted line.
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In the right panels, the lagged forecasts are compared with error growth from a Monte-Carlo

experiment where perturbations are made to all variables. The actual doubling time over all vari-

ables, using either the lagged technique or the Monte-Carlo method, is about 0.27. The reason

for the difference in estimated doubling time is again that the � � error is due, not to sensitivity to

initial condition, but to error in other variables; one can think of the model error as advecting in

from the other � � (or drift rotating in due to the action of the linear propagator).

Curve fits such as Eq. 15 should be applied only with extreme caution. While the model error

here was a constant, in general it is not (an example is the two-level system, where the model

error terms are stochastic). Also the convolution of model error with initial condition error will be

complex. For the case considered here, use of the formula with a non-global metric led to a factor

3.3 error in estimated doubling time.

This example shows that the difference in error growth between high-error and low-error pa-

rameters is not a unique property of the two-level system, or due to the disparity in scale between

variables. Rather, it is a fairly generic property of model/system pairs where model error is dis-

tributed unevenly among the variables. It is easy to come up with versions of even simpler systems,

such as Lorenz ’63, which behave similarly.

6 Conclusions and future work

In this paper we have aimed to show that experimental results in 500 hPa and total energy, which

appear to have conflicting error patterns, are in fact consistent with one another. A medium-

dimensional system was constructed which managed to simulate both types of error, with the

result depending only on the chosen metric. The internal doubling time of the model was about 3

days. It was shown that error growth can only be accurately diagnosed if the metric is sufficiently

global, and in particular contains the high-error variables. This requirement is common to all

dynamical systems, from the Lorenz ’63 system up to full weather models. Experiments with

the simpler one-level system showed that the difference in error growth was due to the uneven

distribution of model error, rather than the disparity in scale of the variables.

In weather models, the total energy metric is better suited for the purposes of error diagnosis

than the 500 hPa metric. By integrating wind and temperature errors over the entire space, it offers

the most global, complete and physically relevant description of the atmospheric state (after all,

you can’t feel the 500 hPa height on your face, especially if you are standing at sea level). Most

importantly, these variables are also responsible for the majority of the error. The 500 hPa height,
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by contrast, is too strongly affected by unseen error in other variables to be a reliable measure

of error growth. For example, it tends to reflect the average temperature below the layer, so is

intrinsically smoother and less variable than the actual temperature measurements, and tends to

mask the causes of error. Apparent rapid error growth indicates, not sensitivity to initial condition,

but sensitivity to errors in the unseen variables. In particular, experiments with 500 hPa lagged

forecasts, on which many current estimates of doubling time are based, give misleadingly fast

results.

This is not to say that the 500 hPa field is not a useful metric for forecasting. A forecaster

may well prefer to use the 500 hPa height, which by its nature will smooth out some of the short-

term errors in for example temperature. However, the aims on the one hand of making a forecast,

and on the other of diagnosing the cause of forecast error in a numerical model, are completely

different. For the former, a model output which experiences low error in the near term is obviously

preferable; but one cannot determine the cause of forecast error by ignoring the contribution of

high-error variables as time unfolds.

Preliminary tests using a lagged forecast in total energy indicate a doubling time of about 3

days, as for the two-level model. This result is not particularly unusual: historically it is in the

intermediate range of doubling time estimates, and if results based on 500 hPa lagged forecasts are

discounted it is even on the faster end of the scale. Compared, though, to a doubling time of 1.5

days, it represents an order of magnitude difference in the amount of error attributable to initial

condition over a ten-day forecast. This finding is also consistent with other localised studies where

sensitivity to initial condition was seen to be small (Shukla, 1998).

Because an accurate estimate of internal doubling times is useful for allocating resources and

estimating the potential economic worth of forecasts, more experiments should be carried out

using a global metric such as total energy. The lagged forecast test can be performed with a

variety of lag times to determine whether the internal growth rate changes with time. Monte-

Carlo experiments provide an independent test of growth rates, and can also be used to determine

the dependence of growth rate on the size of the initial perturbation. Together, lagged forecasts

and Monte-Carlo experiments should give a robust and complete picture of a weather model’s

sensitivity to initial condition.

As for the weather itself: by searching a five-year climate record for reasonably near analogs,

and extrapolating to small errors, Lorenz (1969) estimated an error doubling time in the region

of 2.5 days. However, the analogs were not very close. Van den Dool (1994) calculated that it

would take an observational record of order
� ��� � years before the atmospheric state repeated itself

13



to within the current observational error - so we will have to wait a long time for a more accurate

figure. In the meantime, if the models are anything to go by, it may be the case that the atmosphere

is more predictable, and the potential economic worth of forecasting higher, than some of the more

pessimistic estimates have indicated.

Appendix A The systems

The two-level system is a scaled version of the Lorenz ’96 system, which was used in (Lorenz,

1996) to simulate error growth, with stochastic terms added. The equations are
�
� �� � � � � � � � � � � � � � � � �

��� � � � � �
��

��� �
� ��� � ����� (A1)

�
� ��� �� � � � � � ��� ��� � � � ��� � � � � � ��� ��� �

� � � � ��� � � � � � � ��� (A2)

for � �
�

to 8, and � �
�

to 4. The indices are cyclic, so for example � � � � � � � and � ��� ��� � �
� � � � � � , and the variables can be viewed as atmospheric quantities around a circle. The parameter

� is set to 10. The � variables are scaled by a factor 900 to put in units of 	 for comparison

with GCM 500 hPa results, while the � variables are scaled by a factor 
 � � to put in units of

	
�
� � for comparison with total energy. Time is scaled by a factor 100 to put in days. � �

� �
is a constant forcing term, while � � and � � are random variables with variance 2.5 and 7.5

respectively, updated every hour. In addition, the � and � variables are observed each hour with a

stochastic error � � and � � , which have standard deviation
�
� � 	 and � � 
�	
� � � respectively. These

terms are meant to simulate the random component of the analysis errors.

The model has the same equations, but with no stochastic forcing, so � � � � � � � , and

no observation error so � � � � � � � . The difference between the model and the system is

therefore the stochastic forcing terms, and the observation error. Equations are solved using a

Runge-Kutta scheme with time step of one hour. A long transient of 100,000 hours is run before

making calculations.

The one-level system has only � variables. The equations are
�
���� � � � � � � � � � � � � � � � �

� � � � � � � (A3)

for � �
�

to 8. The indices are again cyclic, so � � � � � ��� . In the system, � � �
� � for all � . In

the model, � � �
� � , so there is no forcing error in the first variable, but � � �

� �
for ���

�
which

introduces model error. The variables are left unscaled, and there is no stochastic observation

error. Equations are solved using a Runge-Kutta scheme with time step of 0.005.
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Figure Captions

Fig. 1. Plot of rms forecast errors and drift. Upper panel shows GCM forecast error (+ symbol) and drift (O

symbol) in 500 hPa metric over Northern hemisphere for 10 days in October 1999. Lower panel shows total

energy error and drift integrated globally over a 15 day period in December 2000. All errors are relative

to the analysis. Solid and dotted lines show error and drift for the two-level system over the large-scale
� variables (upper) and small-scale � variables (lower), rms over 500 forecasts, as discussed in text. The

dashed lines show the propagated drift.

Fig. 2. The two level system variables. The � variables are large-scale and slow-varying, and can be

compared with 500 hPa fields. The � variables are more energetic, and can be compared with wind and

temperature fields. The forcing of each ��� variable depends in part on the adjoining � ����� variables.

Fig. 3. Plot showing the effect of noise on calculation of rms forecast errors (solid lines) and drift (dotted

lines) for the two-level system. Upper panel shows error in the large-scale � variables, lower panel shows

small-scale � variables, rms over 500 forecasts. When the observation noise term is increased by a factor 3,

the effect on either forecast error or drift is small. A 6 hour time step was used to calculate the drift.

Fig. 4. Figure comparing the model errors for the two-level system �	� � � variable (top) with the average

230 hPa temperature over Europe over a 6 day period from 15 Oct 1999 (bottom)in degrees K. A model

trajectory is initiated each 12 hours; the resulting errors are indicated by the dashed lines.

Fig. 5. Plot showing the two-level model ensemble behavior. Upper panel shows an ensemble of large-

scale � variables, which can be compared with any 500 hPa GCM ensemble. Lower panel shows a similar

ensemble in the small-scale � variables. Note the smaller spread of the � ensemble. The ensembles contain

500 points, perturbed in random directions with magnitude 
�� in � and 
������ � in � .

Fig. 6. Plot of rms forecast errors, normal and lagged. Upper panel shows GCM forecast error (+ symbol)

in 500 hPa metric, lower panel shows total energy. Solid line shows errors for the two-level system over

the large-scale � variables (upper) and small-scale � variables (lower), rms over 500 forecasts. Also shown

are the difference between consecutive model forecasts with a one day lag, which are used to measure

sensitivity to initial condition. The two-level results are shown by dotted lines, GCM results are indicated

in the lower panel by the O symbol.
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Fig. 7. Plot of internal error growth for the two-level model, as measured by a Monte-Carlo experiment.

Upper panel shows rms errors over 500 runs for the � variables, lower panel shows the � variables. Initial

perturbation in � was equal to the 24 hour forecast error, the perturbation in � was equal to the 6 hour error.

Shown are the � errors where � variables alone, or both � and � , are perturbed; and the � errors where �
variables alone, or both � and � , are perturbed. Also shown are the errors from lagged forecasts. The results

vary depending on method for the � error growth, with the lagged forecast giving the fastest growth. The

three methods give similar results when errors are measured in the � variables.

Fig. 8. Plot of error growth for the one-level model. Top panels show errors in the low-error variable � �
only, lower panels show errors over all variables. Left panels show RMS error growth and a lagged forecast

with a lag time of 0.1. The � � error (top left) is compared with a fit using Eq. 15 with doubling time

0.082. The right hand panels compare the lagged forecasts (rebased to start at time zero) with Monte-Carlo

experiments where errors are made to all variables. The actual internal doubling time is 0.27 time units.
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Fig. 1. Plot of rms forecast errors and drift. Upper panel shows GCM forecast error (+ symbol) and drift (O

symbol) in 500 hPa metric over Northern hemisphere for 10 days in October 1999. Lower panel shows total

energy error and drift integrated globally over a 15 day period in December 2000. All errors are relative

to the analysis. Solid and dotted lines show error and drift for the two-level system over the large-scale
� variables (upper) and small-scale � variables (lower), rms over 500 forecasts, as discussed in text. The

dashed lines show the propagated drift.
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Fig. 2. The two level system variables. The � variables are large-scale and slow-varying, and can be

compared with 500 hPa fields. The � variables are more energetic, and can be compared with wind and

temperature fields. The forcing of each ��� variable depends in part on the adjoining � ����� variables.
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Fig. 3. Plot showing the effect of noise on calculation of rms forecast errors (solid lines) and drift (dotted

lines) for the two-level system. Upper panel shows error in the large-scale � variables, lower panel shows

small-scale � variables, rms over 500 forecasts. When the observation noise term is increased by a factor 3,

the effect on either forecast error or drift is small. A 6 hour time step was used to calculate the drift.
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Fig. 4. Figure comparing the model errors for the two-level system �	� � � variable (top) with the average

230 hPa temperature over Europe over a 6 day period from 15 Oct 1999 (bottom)in degrees K. A model

trajectory is initiated each 12 hours; the resulting errors are indicated by the dashed lines.
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Fig. 5. Plot showing the two-level model ensemble behavior. Upper panel shows an ensemble of large-

scale � variables, which can be compared with any 500 hPa GCM ensemble. Lower panel shows a similar

ensemble in the small-scale � variables. Note the smaller spread of the � ensemble. The ensembles contain

500 points, perturbed in random directions with magnitude 
�� in � and 
������ � in � .
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Fig. 6. Plot of rms forecast errors, normal and lagged. Upper panel shows GCM forecast error (+ symbol)

in 500 hPa metric, lower panel shows total energy. Solid line shows errors for the two-level system over

the large-scale � variables (upper) and small-scale � variables (lower), rms over 500 forecasts. Also shown

are the difference between consecutive model forecasts with a one day lag, which are used to measure

sensitivity to initial condition. The two-level results are shown by dotted lines, GCM results are indicated

in the lower panel by the O symbol.
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Fig. 7. Plot of internal error growth for the two-level model, as measured by a Monte-Carlo experiment.

Upper panel shows rms errors over 500 runs for the � variables, lower panel shows the � variables. Initial

perturbation in � was equal to the 24 hour forecast error, the perturbation in � was equal to the 6 hour error.

Shown are the � errors where � variables alone, or both � and � , are perturbed; and the � errors where �
variables alone, or both � and � , are perturbed. Also shown are the errors from lagged forecasts. The results

vary depending on method for the � error growth, with the lagged forecast giving the fastest growth. The

three methods give similar results when errors are measured in the � variables.
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Fig. 8. Plot of error growth for the one-level model. Top panels show errors in the low-error variable � �
only, lower panels show errors over all variables. Left panels show RMS error growth and a lagged forecast

with a lag time of 0.1. The � � error (top left) is compared with a fit using Eq. 15 with doubling time

0.082. The right hand panels compare the lagged forecasts (rebased to start at time zero) with Monte-Carlo

experiments where errors are made to all variables. The actual internal doubling time is 0.27 time units.
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