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Abstract

Genetic networks are often affected by stochastisen due to the low number of
molecules taking part in certain reactions. In clempegulatory networks, noise in any
one chemical species may induce noise in the fékesystem. In this paper, we analyse
the sources of stochastic noise in the yeast galaattilization pathway at the level of

the complete system, by using both computer sinaust and experimental comparisons



between wild-type yeast and a modified strain. Apater model was first used to
determine the sources of network noise, as wetieshanisms by which noise is
controlled. Results from an estimation tool, canfad by detailed stochastic simulations,
show that noise is caused primarily by fluctuationsmRNA concentrations due to their
stochastic creation and decay. The noise is cdedirbly feedback loops which regulate
transcription of certain genes. To test the eftét¢he feedback loops on the rest of the
system, a modified strain of yeast was preparachich regulation of two key genes is
eliminated. As predicted by the model, the muténaiis is induced by galactose in a

manner similar to the wild type, but with a higlieigree of stochastic noise.
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1. Introduction

Genetic networks often contain low copy numbemnahy species, including regulatory
molecules and DNA. Network simulations using Mo@i@do techniques, coupled with
experimental results [1, 2] have shown that thaltieg) stochastic effects can lead to

significant fluctuations (noise) in network respenSince noise plays a key role in
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genetic networks [3], it is interesting to ask wiegtsystems have evolved to control it.
For example, negative auto-regulation has beenmshoweduce stochastic noise in the
production of individual proteins [2]. In this papwe use estimation techniques to
analyse noise, on the scale of the complete regylattwork rather than individual
proteins, for galactose utilization in the ye8atcharomyces cerevisiae

The galactose network has been studied extensivelya number of decades [4-7].
As illustrated in Figure 1, galactose is first sparted into the cell through a process
which depends on the protein Gal2p. It is then eot@d into glucose 1-phosphate
through the Leloir pathway, which is controlledthg products Gallp, Gal7p and
GallOp [8, 9]. These proteins are in turn inducgd lbegulatory apparatus which
contains (at least) three additional proteins: @a3al4p and Gal80p [7, 10, 11].

The regulatory apparatus operates by a doublesgipremechanism. The Gal4p
protein promotes transcription of the otl@kL genes by homo-dimerizing and binding
with theircis-regulatory regions, while the Gal80p protein intsittranscription by
binding with DNA-bound Gal4p. When activated byraatellular galactose, Gal3p
restores transcription of tl@AL genes by binding with Gal80p, sequestering ihan t
cytoplasm, and thus relieving its repressive ace can therefore say that Gal3p is a
positive regulator for the network as a whole, @lt#al80p is a negative regulator or
inhibitor. An interesting feature of the galactgsghway is that, during activation, both
Gal3p and Gal80p are upregulated [12, 13]. Othiegthbeing equal, an increase in
Gal3p will give a stronger response for a set arhofigalactose (i.e. an increase in the
level of galactose metabolism, see [14]); butdttis the aim, then why is Gal80p

concentration also increased in response to gakto



In this paper, we analyze sources of noise in glaagpse network, and propose
reasons for its complex structure, using both cdempmodels and experiments with wild
type and modified strains of yeast. We argue twmrmaints: that the major source of
noise in the galactose pathway is transcriptiomBNA, in particular that for Gal3p and
Gal80p; and that noise is controlled by regulategdback mechanisms for Gal3p and
Gal80p. Section 2 explores the role of the feedib@ajzs by comparing two computer
models of the galactose pathway. The first is thé type model of the regulatory and
metabolic systems (see also the works of: [14)1thle second is an unregulated version,
which is exactly the same in every respect, exttegitthe proteins Gal3p and Gal80p are
not upregulated during induction, but are maintdiaetheir low, non-induced levels.

The two models appear similar both in equilibriumd aransient behavior; however a
detailed stochastic simulation shows that the uredgd system is substantially noisier.

A noise estimation tool is used in Section 3 taidg both the sources of noise, and
mechanisms within the network which help contr@ thajor noise sources. It is seen that
effectively all system noise can be viewed as paese to MRNA fluctuations caused by
the creation and decay of those species. The rg®wn to be controlled by feedback
loops which regulate production of MRNA for Gal3mla5al80p. Section 4 describes
experiments using a mutant strain in which feedragklation of Gal3p and Gal80p has
been omitted. A comparison of the mutant and wifgetbehaviors is found to be
consistent with the theoretical model simulatidfisally, the results are discussed in

Section 5.

2. Regulated vs unregulated



We previously presented [16] a computer modelHergalactose network which
represents the wild-type yeast in which Gal3p aatB@ are regulated. The model
simulates 55 different reaction channels betwegrskecies in the galactose network,
including regulatory and structural proteins, mRMAd DNA. The reaction parameters
were set to be consistent with existing experimatdta from the literature. The
equations and details of the model are presentddtail in the above reference, and are
summarized briefly in Appendix B herein. To detammthe role of Gal3p/Gal80p
regulation, we here compare the behavior of thatehwith an unregulated version, in
which the rate of production of mMRNA for Gal3p aBdl80p is maintained at the low,
non-induced levels. Apart from this change, thedtre and parameters of the two
models are the same. The difference between thenetels therefore illustrates the
effect of regulation of these proteins.

The two models were first simulated using an ondiréfferential equation (ODE)
approach. Figure 2 shows the equilibrium conceiotratas a function of external
galactose, found by running the ODE simulationluh& models achieved steady-state.
In either model, the activated form of Gal3p bimdth Gal80p after induction to form a
complex, and this lowers the quantity of free GalB@modimer that is available to
inhibit transcription. In the unregulated modeg thRNA for Gal3p and Gal80p are
maintained at constant levels, while in the regulahodel both are increased after
induction. Apart from this difference, however, th@ versions show similar behavior.
As illustrated in Figure 2, the magnitude and spefaésponse to galactose availability

when both Gal3p and Gal80p are upregulated arasibethe same as in the



unregulated model. Note that this is not the cisaly one is upregulated; for example,
if Gal3p is upregulated, but Gal80p is not, themgiistem becomes far more sensitive to
external galactose. We note a recent study [14¢kvliemonstrated that positive
feedback through Gal3p is responsible for bistigbilf the system, and that negative
feedback through Gal80p is partially responsibletlie fluctuations which govern the
transition time from the uninduced to induced statkeir work, based on strains in
which the GAL3 and GAL80 feedback loops are deleted at a time, emphasized the
separate roles of the Gal80p and Gal3p feedbagslmocontrolling noise.

There is also little difference in the transienthéeor of our two models, for
example in the response to induction. The red dbkhes in Figure 3 show an ODE
simulation of the two models, initiated in the noduced state, and run forward in time
with external galactose set to a level correspantbil0% induction, as measured by the
concentration of Gallp (the other structural prigeshow a similar induction). This level,
marked with a triangle on the horizontal axis igute 2, is 0.5 mM for the model with
regulation, and is reduced to 0.32 mM for the mad#éi no regulation to give the same
mean protein levels. (Another possibility is to ioha the rate for the activation of Gal3p
by internal galactose in the unregulated model;dv@rwwe found this had no significant
effect on the model properties.) The two models espond in very similar ways to
other environmental perturbations, such as a ghise of external galactose (D.O.
unpublished data).

The ODE approach gives an idea of the cell-averagstem behavior, but is only
accurate when the number of molecules taking pati ireactions is very high, which is

certainly not the case for the galactose model.oéamealistic approach is the ensemble



of 30 stochastic simulations shown by the greesslin Figure 3. These were performed

using the open-source program Dizzy (http://magystemsbiology.net/dizzywhich

incorporates a number of different solvers [17]e Tillespie solver [18] used here
employs a Monte Carlo technique to generate t@jiest consistent with the Chemical
Master Equation [19]. The green lines can be vieagdorresponding to the behavior of
individual cells. The mean of the ensemble of 3udations is indicated in the figure by
the blue lines. There is considerable variabilityusmd the mean, which indicates the
range of responses between different cells. Howéneemean is close to the ODE
simulation, so one could say that for this systeen@DE adequately captures the
average behavior of a large number of cells.

These simulations again show no great differenetsden the regulated and
unregulated models. However, one expected propéttye galactose network [20], and
indeed other such networks, is that the strucpnateins Gallp, Gal2p, Gal7p and
Gall0p have slow decay times, so perturbationdaseochastic effects lead to low-
frequency fluctuations. Therefore while Figure @eg an impression of how individual
cells react to induction, the time scale is nofisigintly long to accurately measure the
noise properties. To get reliable results, thehsstic effects must either be computed for
many cells, or alternatively for a single cell oedong simulation time (we established
empirically that 10000 minutes was adequate for¢iselts to converge). Figure 4
compares long simulations, using Dizzy’s implemgateof the Tau-Leap algorithm
[21-23], for the two versions of the model in tH@#4 induction state. The models have
the same mean concentrations (except for inteadattpse, denoted GAl), but the

unregulated model in the right panels appearsemwithis is confirmed by the top panel



of Figure 5, which shows the dimensionless ratistahdard deviation to mean for the
range of species. Noise is higher for the unregdlatodel almost across the board.
Simulations were performed at partial inductiorcsithe impact of noise is greater at
low species concentrations [24, 25], and the coatut time is also faster.

Of particular interest is the metabolic intermegigalactose 1-phosphate (denoted
GA1P). Regulation of Gal3p and Gal80p affects namgust in the regulatory network,
but also in the downstream metabolic products. @a¢® 1-phosphate is thought to be
toxic to the cell at high concentrations [26-29k shown in the simulation results in
Figure 4, greater noise in the unregulated modefkesault in ‘spikes’ of GALP more than
twice the physiological concentration. Regulatibm@ise could improve the viability of
the organism, by controlling the maximum concerdrabf GALP experienced, and the
magnitude of peak-to-peak fluctuations. From treswilations, it therefore appears that
the regulatory feedback loops are not necessaipdaoiction, but reduce system noise.
The next section looks more closely at the spesdtigrces of noise, and how the

feedback loops function to reduce it.

3. Sourcesof noise

Since GALP is part of an interconnected systemfuktions in its concentration depend
on variations in all the other species in the nekwim order to understand how noise in
GA1P arises, and how the network might contrat i§ necessary to identify the sources
of noise at a system level. For example, one reaati the network might be extremely

noisy, but have little effect on the rest of theteyn; while another might generate less



noise, but have a magnified effect downstream hi®dnd, we used the noise estimation
tool in Dizzy [30], which estimates the total varig as a weighted sum of the reaction
rates. For a system witlh species ant¥l reactions, the expression for the total variance

in the different species is tiedimensional vector:
1 M

V=2 sw, 1)
244

where thes; are reaction rates, and thg are weighting factors, which are derived from

the system equations. The derivation is given @j,[8nd a detailed definition of the
terms is given in Appendix A.

Eg. (1) provides a general framework for the anslgénoise in biochemical
networks. The equation is obtained by considelfiregstochastic noise as a perturbation
to the steady state solution of the ODEs, akingtoahastic model error. The deviation
of the stochastic trajectory from the ODE steadyestan then be estimated using error
growth methods [31, 32]. The varianceepresents a balance between two effects. The
first is the size of the stochastic perturbationthe various reactions, which depends on

the reaction rates; . The second is the system stability as measuredebyegative real
part of the eigenvalues of the system Jacobiarciwdgppear in the weighting factons, .

The w; have units of time, and are analogous to decagstifor the perturbations arising

from the different reactions.
The resulting estimates for system noise are shiowmre lower panel of Figure 5.

The estimation tool captures the differences betviiee two models, and takes only
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seconds, instead of days, to compute. Its mainrddga is that it can be used to
determine the primary causes of stochasticity énsystem. Each term in the summation
Eg. (1) corresponds to the variability which isatluced by a particular reaction channel.
Referring to that equation, if th&h reaction were somehow made non-stochastic, the

total variance in GA1P would decrease by an amabatit equal to the corresponding
term %sjwj in the sum. (There is also a secondary effechemweighting factors for the

other terms, as evident from the equations in AdpeA, but it is quite small. See for
example the discussion of Figure 6, panel C below.)
Panels A and B of Figure 6 show the largest coutigins to GA1P noise in the

regulated and unregulated models respectively. Bhegxpressed in terms of the ratio

of standard deviation to the meagil—P %siwj , whereGAILP is the mean GA1P

concentration. In either model, the reactions wisightribute the most are those which
create (or destroy) mRNA. In fact, these reactermount for about 98% of the total
estimated noise, while all other reactions contélanly about 2%. This makes sense
since the mRNA only exist in low copy numbers, témtbe highly stochastic, and drive
the formation of protein. Because the reactionsre@tion and destruction are in
equilibrium, the two contribute an equal amount.

Since mRNA creation/decay reactions account fortrobthe system noise, it
follows that fluctuations in downstream proteins primarily a reaction to changing
MRNA levels. This is graphically demonstrated igufe 7, which compares a simulation
of the full model (blue line, compare left panel$-mure 4), with a simulation in which

the time course mMRNA concentrations from the stettbaimulation were a fixed input,
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but the concentrations of all other species weterdened from that using ODEs (red
lines). Any change in protein levels is therefoue dot to protein reactions themselves
(which are simulated with ODES) but are reactianthe changes in mMRNA. The close
agreement implies that protein fluctuations areosinentirely a result of mMRNA noise.

Another way to look at this is that, if fluctuat®m mRNA levels could be
removed completely, then the rest of the systemdavexperience hardly any noise.
Reactions such as translation of proteins, oracténs between proteins, would result in
only mild stochasticity. As an illustration, theegn lines in Figure 7 show a stochastic
simulation in which all MRNAs are kept artificialfixed at their equilibrium levels, but
the other reactions proceed in a stochastic fasksdmefore. It therefore indicates the
noise which would result in the rest of the sysiftime creation and decay of mRNA
were somehow to be completely noise-free. The ewhe low noise level confirms that
system noise is due primarily to mRNA creation/geca

Using the estimation tool, we can go further angiaeine the dependence of
system noise on particular creation/decay reactiosexample, the second highest
contribution in the unregulated model is from thRMA for Gal80p. If the mRNA for
Gal80p only is kept at a fixed level without fornast or decay, then the noise due to its
formation and decay reactions will be muted. Asvgho Figure 6, panel C, the
contribution from those reactions drops out andaite variability is lowered; however
the contributions to variability from the other céians are little changed.

It is of course impossible to completely eliminegaction noise in this way. It can
be reduced through negative autoregulation or fagd[83, 34], and in the regulated

model the protein Gal80p does reduce its own faonah this way. At partial induction,
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however, there is also positive feedback, througl8f Increasing Gal3p tends to
increase the level of activation and so produceen@al3p, which in turn increases
Gal80p. Just as negative feedback reduces noigesstive feedback increases it; and
the total system includes both.

In fact, the noise reduction comes about becausedheffect of the feedback loops
is to increase the rate of production of both Gal&0d Gal3p. The amount of these
proteins, in monomer and dimer form, as well asviim@us complexes they form, all
increase, so the entire control network growse.ssince the degree of stochastic
variability tends to decrease with the number ofetwles, the network is less noisy. This
mechanism was demonstrated by estimating the fmisaother variant of the model in
which Gal3p and Gal80p are again not regulated;gvewrather than being maintained
at the non-induced level, they are maintainedabifher level of 10% induction. The
estimated noise for this unregulated model, shawranel D, is close to that of the full
regulated model. The result was confirmed by rugiriull stochastic simulation; the
ratio of standard deviation to noise for GA1P w&20in near agreement with the
regulated model at 0.23.

If this unregulated model succeeds in reprodudiegipise characteristics of the
regulated model, one might then ask why the orgawulisesn’t simply maintain a higher
concentration of Gal3p and Gal80p at all times. @ag to do this is to slow the decay
rates for the regulatory mRNA, which in the modetaly relatively rapidly compared to
structural mMRNA [20]. (Another way is to simply gokproduction, but this might be
metabolically constrained.) The results are showpeinel E of Figure 6 for a tenfold

decrease in the decay rate of the regulatory mRMN#ch brings the protein
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concentrations up to the levels of panel B. Themow a much larger contribution to
noise from the formation of regulatory mRNA. Thagen is that, with a slower decay
time, the number of proteins produced per mRNA mud&is increased. As discussed,
and demonstrated experimentally [2], this leadsdoe noise being transmitted to the
regulatory proteins, and, it follows, the restloé hetwork.

What counts is therefore not just the level of fatpuy proteins, but the rate at
which the mRNAs are degraded. But if the regulatoBRNA must be degraded quickly
to avoid the transmission of noise, it means thetymmust be produced to maintain a
given level, which is metabolically expensive. Tdadl therefore appears to adopt a “just-
in-time” approach, ramping up the control netwolken necessary, but maintaining it at
a low level when used only in a sensing capacitys $tructure is consistent with the
aims of reducing noise, while avoiding the metabobst of producing excess mRNA
and protein. Indeed, if the metabolic cost wereansignificant constraint, then
presumably noise would rarely be an issue in gemetiworks, since all regulatory
species and mRNA would be maintained at high lefealsept where randomizing noise
was desired).

We therefore conclude from the theoretical reshli$ most noise is due to
transcription of mMRNA,; it is controlled by Gal3pdGal80p feedback mechanisms; and
while the feedbacks reduce noise, they do not afpdre necessary otherwise. In the
next section, we demonstrate experimentally the obthe feedback loops, by omitting

them from a mutant strain of yeast.

4. Experimental results
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In order to test the effect of regulation on netwooise, a mutant strain of yeast was
prepared in which Gal3p and Gal80p were expressiegvaconstant levels. The wild-
type promoters of GAL3 and GAL8O0 were replaced whia minimal promoter of the
cytochrome-c isoform 1 (CYCL1) gene, with no upstieectivating sites. The green
fluorescent protein gene (GAL1:GFP) was also ieskirtto the yeast genome to act as a
reporter [35, 36]. This strain therefore corresmotudthe unregulated version of the
model, with the reporter protein indicating thedeof system activation. Its behavior
was compared with a second strain which was witek-gyxcept for the addition of the
GFP reporter.

Using flow cytometry, we measured the fluorescesfaells in the mutant and
wild-type at low concentrations of galactose. Fittvn histogram of fluorescences, we
calculated the cell-to-cell variation in the fluscence intensity. The results for 0.05%
galactose are shown in Figure 8. This correspamdpproximately 50% induction. The
noise coefficients, defined as the ratio of staddmviation to mean, are 0.066 for the
wild-type, and 0.126 for the mutant. (There isighgldifference in the mean, but by
whatever measure the unregulated case is noiSiemg of this noise will be due to
effects such as variation in cell size, stage énd#ll cycle, and so on. As discussed in
Appendix B, however, this additional noise is dasexl somewhat by the experimental
procedure, which sorts for cells of a similar siklke effect of removing the regulation is
to increase the system noise by a factor of ab@&it 1

The experimental results can be compared with Eiuihich was obtained by

running an ensemble of 100 stochastic simulatidhs.noise coefficients here are 0.113
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for the wild-type, and 0.224 for the mutant. Thaeein approximate agreement with
estimated values, from the noise estimation to@lizzy, of 0.105 and 0.266
respectively. See Table 1 for a summary of thehststic and experimental results. While
the noise is slightly higher in the computer sintioles than in the experimental results,
the model correctly predicts two things. Firsthye imutant strain can respond to
galactose. The mean level of induction in eitheeda quite similar. Thus, if one were
only to measure the average induction over a laugeber of cells, it would be hard to
understand the role of regulation. Secondly, th&antwstrain is considerably noisier than
the wild-type version. Again, this can only be deti@ed experimentally using
measurements of individual cells. The main efféecegulation therefore appears to be to

control system noise.

5. Discussion

The above computer and experimental results shawamalysis of the sources of noise
in the galactose network allows us to “reverse ey’ some of its features. If an
engineer were to design this system, they mighlyapp following logic. Effectively all
noise in the system is a response to fluctuatiomsRNA; so to control noise, the main
priority is to reduce the relative size of thesefliations, and reduce their transmission
to the rest of the system. The structural mMRNAshsas the GAL7 transcript, are major
contributors to system noise, but are already upaggd to high levels during induction.
The regulatory mRNAs are not required to produagelaumbers of proteins, but should

have both a reasonably short decay time, and adoigbentration after induction, to
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prevent noise. Since this combination is metabyiexpensive, the solution is to
regulate these mMRNA, so their rate of productianéseased when necessary, but kept
low when used only in a sensing capacity.

Of course, the system was not designed accordiagrtee logical plan; but through
understanding the sources of noise, we can gaie sosight into the role of features
which otherwise seem unnecessarily complicatechagtdbolically expensive. Up-
regulation of Gal3p and Gal80p requires the fororatif more mRNA and protein and
adds complexity. For this feature to have beercsaleby evolution, it is reasonable to
suppose that it confers some advantage, and theotohnoise is a likely contributor.

In any case, it is clear that, in analyzing theperties of a system, ODE
simulations of computer models, or experimentalltesaveraged over a large number of
cells, may disguise important properties of theesys The computer models with and
without regulation only reveal their differencesahigh detailed stochastic simulations.
Similarly, single-cell experimental analysis waguied to show that, while lack of
regulation has only a small effect on the averagellof induction, it does result in

greater stochastic noise.

Materials and M ethods

The model used is as described in our previout/488], except as indicated
here. For the mutant strain, we modified the foactl saturation foGAL3 andGALSO
to a fixed value of 0.04. This fractional saturativalue is consistent with the data in

Table 3 of [39], which shows the ratio of basgbression, to UAS-activated expression,
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of aCYCl-lacZreporter construct. We added a reporter gene iy the
GAL4GAL8QGAL3regulatory mechanism, with one binding site@#L4. The half-
life of the reporter product was defined to be ~&80utes, which is consistent wiith
vivo measurements of GFP degradation [40]. The maxiaalof initiation of
transcription, the maximal rate of initiation cétislation per transcript, and the half-life
of the transcript for the reporter gene were chasdre identical to the other structural
GAL genes in the model.

All simulations of theGAL model were performed using the Dizzy software
program [17] version 1.9.1, on a 46-node Intel ¢aracessor cluster computer (IBM)
running Linux kernel version 2.4.22 (Red Hat). Dlawa virtual machine used is the Java
2 Runtime Environment, version 1.4.2 (IBM).

The dynamics of the model was solved in two stépsst, the steady-state was
obtained by numerically solving, out to a long tisoale, the deterministic chemical
kinetics using ordinary differential equations (Of)EThe steady-state concentrations of
the species provided the initial conditions for sih@chastic simulations. Second, the
steady-state stochastic dynamics were solved asMgnte Carlo technique in which the
results were averaged over an ensemble of realimatif a Markov process representing
the stochastic kinetics. The initial conditionstiee first (ODE) step were the species
concentrations at steady-state in the uninduceceh({6&bo galactose, corresponding to
growth in nonGAL-repressing media).

Deterministic simulations were conducted usindfittie-order Dormand-Prince

ODE solver with a fourth-order error estimationnfieia and adaptive step-size control.
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The ODE solver used is tloeleToJava solver (Raymond Spiteri & Murray Patterson,
www. net | i b. or g/ odeToJava), available as the simulator option
odeToJava- dopr 54- adapt i ve within the Dizzy software program. The relative
and absolute error tolerances were set to 0.000&.initial step size was setto 0.4. The
stop time was set to 4000 minutes, which was safftdor the wild-type and mutant
models to reach steady-state, for the galactoseeodrations used.

Stochastic simulations were conducted using thiespie Tau-Leap
Algorithm [22] which is available within Dizzy asnsulator optiont aul eap-
conpl ex. A stop time of 1440 minutes was used, with 40@tsamples per
simulation. The Tau-Leap relative error thresholibwet to 0.0005. The number of
separate simulations conducted was 200 (for matashtvild-type models separately),
yielding an overall effective ensemble size of 40,0

A mutant strain was constructed contain®@§L80andGAL3behind theCYC1
minimal promoter, by replacing the endogenous ptersmf each gene with ti@yC1
minimal promoter. BrieflylJRA3was fused up stream of ti&'Clpromoter,
comprising nucleotides —138 to —1 (where +1 isAltd the CYCL start codon), by
sequential PCR with flanking oligomers containir@®-bp arms homologous to either
GAL30rGALS8O. This construct was integrated into BY4742 or BY4T41] replacing
nucleotides -1 to —899 GfAL3 or nucleotides —1 to —249 GIAL8Q respectively. The
individual CYC1:GAL3andCYC1:GAL80strains were crossed and diploids sporulated to
obtain haploid strains containing both modification

The reporter gene encoding GFP+ under the contttbedGAL1 promoter was

generated by PCR. To do this, the gene encoding-GP®wed by the
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Schizosaccharomyces pongeneHIS5, was amplified from pGFP+/HIS5, generated by
replacing EGFP in pGFP/HIS5 [42] with GFP+ [43]helGAL1 promoter consisting of
nucleotides -12 to —690 was amplified from genoBINA and the two PCR products
were fused by PCR using flanking oligomers contajrit60 bp sequences homologous
to HIS3 The gene fusion was integrated into BY4741 atam am isogenic strain
containing bottGAL3 andGAL80modifications, replacing +1 to +400 of this34 1
locus. Strains with galactose-dependent greemgio@nce were selected by
fluorescence microscopy.

All yeast strains were grown overnight in YEP (1&ast extract, 2% peptone)
supplemented with 2% glucose (YEPD), washed amsfeared to YEP containing 2%
raffinose (YEPR), and grown for 16 hours at 30 &&lls were collected and induced in
YEPR or YEP supplemented with galactose (YEP&)atcbncentrations indicated in
the main text, for 6 hours. Induced cells were sndpd at 1-10 x £l (approximately
0.6 ODyo) in the induction media and measured on a higledpa-lux cell sorter
(Cytopeia). Cells were analyzed based on scattased light and fluorescence from a
focused 488-nm argon ion laser operating at 300 ive.data for each event consisted
of an ordered tuple of the forward light scatte8(H, perpendicular (side) light scatter
(SSC), pulse width of the forward scattered ligimigl the integrated fluorescence from
510 nm to 550 nm to quantify the green fluorespeotein concentration. Data from a
single run of the flow cytometer was stored in @¥Cytometry Standard (FCS) version
3.0 format file incorporating 100,000 events. ildivisualization of the flow cytometry
data was performed using Summit Offline (DakoCytbom version 3.1. The

correlation between fluorescence and cell sizecwa®cted by fitting a linear function to
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the fluorescence vs. forward-scatter data. Thedirder term was subtracted from the
ordinate (fluorescence) values, and the ordinatdgigely rescaled so that the mean
adjusted fluorescence is the same as the mearnuasgdcence. This adjustment
removed the cell-size bias in the fluorescenceesllA subset of events within a
window of forward-scatter was used to generatditta fluorescence histogram. The
window had a width of 1 standard deviation (of #hevard scattering) and was centered
at the median forward scattering value. The pwrmdthis window selection was to
ensure approximate homogeneity of analyzed celimek, and to exclude multiple-cell

events.

Appendix A: Noise estimation formula

We present here the definition of the terms in (&) of the main text. See [37] for the

derivation. We assume a biochemical network congjstf N molecular species with

concentrations, molecules/cell, an¥ reactions.

r, is first defined to be thH-dimensional unit column vector which describes the
direction of the j'th reaction. If for example theaction isx, + x, O - x_, then

speciesx, and x, lose one molecule, and speciesgains one molecule, 9 is the

) -1 . 1 .
column vector with the value= in rowsa andb, and— in rowc.

e NE

s; is the reaction rate. For the above example,st is k; X, x, . This term appears

directly in the summation in Eq. (1).
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J is next defined as the Jacobian of the ODE systguations. If the system is at a stable

equilibrium, the eigenvalues, of J have negative real part.

Q is the matrixQ = PTP™* whereP is the matrix formed from the column eigenvectors

of J, andT is the diagonal matrix with entrieg(j, j) = =
- Rdu

j
w, is a vector with entries equal to the square o$¢ninQr; . These are the weighting

factors which reflect the system’s ability to damg internal fluctuations.

M
The column vector giving the variance of each g then given by = %Zsjwj ,
j=1

which is Eg. (1).

This algorithm has been tested against stochastidations, and incorporated into the

program Dizzy [17].
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FIGURES

= j‘ U

GAL2 GALLTI0 |

galactose glucose 1-phosphate

Figure 1. Schematic diagram of the regulatory partf the galactose network in yeast.
When galactose enters the cell, in a process im@@Bal2p, it causes Gal3p to bind with
Gal80p, thus activating the production of strudtprateins Gallp, Gal7p, and Gall0p.
These convert the galactose to glucose 1-phosphigitegalactose 1-phosphate (not

shown) as one intermediary in the process. Seddegtiscussion.
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Figure 2. Comparison of equilibrium behavior asiaction of external galactose (GAE),
for the galactose pathway model with regulatioft flanels), and a version in which
Gal3p and Gal80p are not upregulated (right pan8s)wn from top to bottom are
regulatory protein; structural protein; internalagaose GAl and galactose 1-phosphate
GA1P (see [16] for details). G80 refers to Gal8égqtgin, G80t is total Gal80p in
monomer or dimer form, and likewise for the othgnbols. The two models show

similar behavior for the structural proteins andabelic quantities. The triangle
indicates the 10% induction level.
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Figure 3. Comparison of the models with regulatieft panels) and without regulation
(right panels) during induction. Top panels showN#Ror Gal80p and Gal7p, denoted
R80 and R7; middle panels show protein dimers, #eh@80d and G7d; lower panels

show metabolic quantities. Red dashed lines ara &0 ODE simulation, green lines are

an ensemble of 30 stochastic simulations, blues lare the mean of the stochastic

simulations. The model is initiated in the non-ioed condition, then external galactose
is added corresponding to 10% induction (0.5 mMtli@ normal model, 0.32 for the
version without regulation). The two versions & thodel appear quite similar in

behavior, except for R80 which is held fixed in theegulated model.
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Figure 4. Comparison of the two versions of the et@uthe 10% induction state for a
long time scale (the statistics are equivalenhtwrter simulations over a number of
cells). The model without regulation (panels omtjdghas increased noise in regulatory

and structural proteins, as well as the intermgdB&1P (galactose 1-phosphate). See
also Figure 9 for GA1P results over many simulation
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(a) fluctuations obtained from stochasltic simulation
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(b} fluctuations oblained using noise estimation technique
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Figure 5. Comparison of stochastic variability tlee two versions of the model in the
10% induction state. Shown is the dimensionless dcdtstandard deviation to mean,
calculated both from the stochastic simulation giive Tau-Leap solver in Dizzy (upper
panel) and the estimation technique (lower paBa)h methods are in reasonable
agreement, and indicate that the system withowtla&ign has higher noise. Symbols for
species is as in previous figures, but G3i referthé activated form of Gal3p, and G3 to

the inactive form.
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Figure 6. The reactions which contribute most ts@i GALP, at the 10% induction
level, are the formation and destruction of the MRNthe horizontal axis of panel A
(both contribute an equal amount). Noise is highdhe unregulated model (panel B)
with Gal3p and Gal80p at low levels. If the mMRNA @al80p is kept at a fixed level (no
formation or decay reactions) in this unregulatextiat, then the contribution of those
reactions is zero, but the contributions of theeotieactions are little changed (panel C).
If the unregulated model is adjusted so that Gal3p Gal80p are kept at the high level
of 10% induction (panel D), then the noise reduct®almost the same as in the
regulated case. If the same effect is achieveddwwisg the decay rate of regulatory
MRNA, noise is enhanced (panel E).
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Figure 7. Plot illustrating that noise is due to N#Rfluctuations. Shown are the gal7p
dimer (upper) and galactose 1-phosphate (loweraumations. Red dashed line shows
an ODE simulation in which the stochastic mMRNA lewre used as input, so noise in
protein is solely a response to the changing mR&NA&Ik. It is almost identical to the full
simulation shown by the blue line (from Figureifjlicating that system noise arises
primarily from mRNA fluctuations. Green line shoastochastic simulation in which
MRNA levels are kept artificially fixed at their@tibrium values, thus eliminating their

contribution to noise; the noise in the rest ofslistem is now negligible.
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fluorescence histogram 0.05% galactose
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Figure 8. Histogram of adjusted fluorescence \&afuethe selected flow cytometry
events for the wild-type and mutant stains cultuned.05% galactose, which
corresponds to approximately 50% induction. Théolgimms are normalized to have unit
area, over the fluorescence range of the datagpsimwn. The data was acquired six
hours after the introduction of galactose. See AgdpeB for details. The noise
coefficients are 0.066 for the wild-type, and 0.1@6the mutant. The means are
393.1981 (wild-type) and 437.3525 (mutant).
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0.05%, stochastic simulation fluarescence histogram
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Figure 9. Histogram of the number of reporter moles, from stochastic simulations of
the two versions of the GAL model at steady-stéle noise coefficients are 0.113 for
the wild-type, and 0.224 for the mutant. These campvith estimated values, from the
noise estimation tool in Dizzy, of 0.105 and 0.2é8pectively. The means are 7.54E4
(wild-type) and 8.73E4 (mutant). Stochastic resaitesfrom a 100-member ensemble of
1440 minute simulations, with 400 samples takerspaulation, performed using the
Tau-Leap (“tauleap-complex”) simulator in Dizzy sen 2.1.1 with the relative error

tolerance set to 0.0005.
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Estimate | Stochastic Experimental
Wild-type 0.105 0.113 0.066
Mutant 0.266 0.224 0.126
Ratio 2.53 1.974 191

Table 1. Coefficients of variation, defined as $stendard deviation divided by the mean,

for wild-type and mutant strains of yeast. Stocieasdlculations were performed using

the estimation tool in Dizzy, and the Tau-Leap datar data of Figure 9. Experimental

values are from the fluorescence data of Figureh8.ratio between mutant and wild-

type shows the noise enhancement due to eliminafitme feedback loops.



