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Abstract 

 

Genetic networks are often affected by stochastic noise, due to the low number of 

molecules taking part in certain reactions. In complex regulatory networks, noise in any 

one chemical species may induce noise in the rest of the system. In this paper, we analyse 

the sources of stochastic noise in the yeast galactose utilization pathway at the level of 

the complete system, by using both computer simulations, and experimental comparisons 
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between wild-type yeast and a modified strain. A computer model was first used to 

determine the sources of network noise, as well as mechanisms by which noise is 

controlled. Results from an estimation tool, confirmed by detailed stochastic simulations, 

show that noise is caused primarily by fluctuations in mRNA concentrations due to their 

stochastic creation and decay. The noise is controlled by feedback loops which regulate 

transcription of certain genes. To test the effect of the feedback loops on the rest of the 

system, a modified strain of yeast was prepared in which regulation of two key genes is 

eliminated. As predicted by the model, the mutant strain is induced by galactose in a 

manner similar to the wild type, but with a higher degree of stochastic noise. 
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1. Introduction 

 

Genetic networks often contain low copy numbers of many species, including regulatory 

molecules and DNA. Network simulations using Monte-Carlo techniques, coupled with 

experimental results [1, 2] have shown that the resulting stochastic effects can lead to 

significant fluctuations (noise) in network response. Since noise plays a key role in 
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genetic networks [3], it is interesting to ask whether systems have evolved to control it. 

For example, negative auto-regulation has been shown to reduce stochastic noise in the 

production of individual proteins [2]. In this paper, we use estimation techniques to 

analyse noise, on the scale of the complete regulatory network rather than individual 

proteins, for galactose utilization in the yeast Saccharomyces cerevisiae.  

The galactose network has been studied extensively over a number of decades [4-7]. 

As illustrated in Figure 1, galactose is first transported into the cell through a process 

which depends on the protein Gal2p. It is then converted into glucose 1-phosphate 

through the Leloir pathway, which is controlled by the products Gal1p, Gal7p and 

Gal10p [8, 9]. These proteins are in turn induced by a regulatory apparatus which 

contains (at least) three additional proteins: Gal3p, Gal4p and Gal80p [7, 10, 11]. 

The regulatory apparatus operates by a double repression mechanism. The Gal4p 

protein promotes transcription of the other GAL genes by homo-dimerizing and binding 

with their cis-regulatory regions, while the Gal80p protein inhibits transcription by 

binding with DNA-bound Gal4p. When activated by intra-cellular galactose, Gal3p 

restores transcription of the GAL genes by binding with Gal80p, sequestering it in the 

cytoplasm, and thus relieving its repressive action. We can therefore say that Gal3p is a 

positive regulator for the network as a whole, while Gal80p is a negative regulator or 

inhibitor. An interesting feature of the galactose pathway is that, during activation, both 

Gal3p and Gal80p are upregulated [12, 13]. Other things being equal, an increase in 

Gal3p will give a stronger response for a set amount of galactose (i.e. an increase in the 

level of galactose metabolism, see [14]); but if that is the aim, then why is Gal80p 

concentration also increased in response to galactose?  
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In this paper, we analyze sources of noise in the galactose network, and propose 

reasons for its complex structure, using both computer models and experiments with wild 

type and modified strains of yeast. We argue two main points: that the major source of 

noise in the galactose pathway is transcription of mRNA, in particular that for Gal3p and 

Gal80p; and that noise is controlled by regulatory feedback mechanisms for Gal3p and 

Gal80p. Section 2 explores the role of the feedback loops by comparing two computer 

models of the galactose pathway. The first is the wild type model of the regulatory and 

metabolic systems (see also the works of: [14, 15] ); the second is an unregulated version, 

which is exactly the same in every respect, except that the proteins Gal3p and Gal80p are 

not upregulated during induction, but are maintained at their low, non-induced levels. 

The two models appear similar both in equilibrium and transient behavior; however a 

detailed stochastic simulation shows that the unregulated system is substantially noisier. 

A noise estimation tool is used in Section 3 to identify both the sources of noise, and 

mechanisms within the network which help control the major noise sources. It is seen that 

effectively all system noise can be viewed as a response to mRNA fluctuations caused by 

the creation and decay of those species. The noise is shown to be controlled by feedback 

loops which regulate production of mRNA for Gal3p and Gal80p. Section 4 describes 

experiments using a mutant strain in which feedback regulation of Gal3p and Gal80p has 

been omitted. A comparison of the mutant and wild-type behaviors is found to be 

consistent with the theoretical model simulations. Finally, the results are discussed in 

Section 5. 

 

2. Regulated vs unregulated 
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We previously presented [16] a computer model for the galactose network which 

represents the wild-type yeast in which Gal3p and Gal80p are regulated. The model 

simulates 55 different reaction channels between key species in the galactose network, 

including regulatory and structural proteins, mRNA, and DNA. The reaction parameters 

were set to be consistent with existing experimental data from the literature. The 

equations and details of the model are presented in detail in the above reference, and are 

summarized briefly in Appendix B herein. To determine the role of Gal3p/Gal80p 

regulation, we here compare the behavior of that model with an unregulated version, in 

which the rate of production of mRNA for Gal3p and Gal80p is maintained at the low, 

non-induced levels. Apart from this change, the structure and parameters of the two 

models are the same. The difference between the two models therefore illustrates the 

effect of regulation of these proteins. 

The two models were first simulated using an ordinary differential equation (ODE) 

approach. Figure 2 shows the equilibrium concentrations as a function of external 

galactose, found by running the ODE simulation until the models achieved steady-state. 

In either model, the activated form of Gal3p binds with Gal80p after induction to form a 

complex, and this lowers the quantity of free Gal80p homodimer that is available to 

inhibit transcription. In the unregulated model, the mRNA for Gal3p and Gal80p are 

maintained at constant levels, while in the regulated model both are increased after 

induction. Apart from this difference, however, the two versions show similar behavior. 

As illustrated in Figure 2, the magnitude and speed of response to galactose availability 

when both Gal3p and Gal80p are upregulated are essentially the same as in the 
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unregulated model. Note that this is not the case if only one is upregulated; for example, 

if Gal3p is upregulated, but Gal80p is not, then the system becomes far more sensitive to 

external galactose. We note a recent study [14] which demonstrated that positive 

feedback through Gal3p is responsible for bistability of the system, and that negative 

feedback through Gal80p is partially responsible for the fluctuations which govern the 

transition time from the uninduced to induced state.  Their work, based on strains in 

which the GAL3 and GAL80 feedback loops are deleted one at a time, emphasized the 

separate roles of the Gal80p and Gal3p feedback loops in controlling noise. 

There is also little difference in the transient behavior of our two models, for 

example in the response to induction. The red dashed lines in Figure 3 show an ODE 

simulation of the two models, initiated in the non-induced state, and run forward in time 

with external galactose set to a level corresponding to 10% induction, as measured by the 

concentration of Gal1p (the other structural proteins show a similar induction). This level, 

marked with a triangle on the horizontal axis in Figure 2, is 0.5 mM for the model with 

regulation, and is reduced to 0.32 mM for the model with no regulation to give the same 

mean protein levels. (Another possibility is to change the rate for the activation of Gal3p 

by internal galactose in the unregulated model; however we found this had no significant 

effect on the model properties.) The two models also respond in very similar ways to 

other environmental perturbations, such as a short pulse of external galactose (D.O. 

unpublished data). 

The ODE approach gives an idea of the cell-averaged system behavior, but is only 

accurate when the number of molecules taking part in all reactions is very high, which is 

certainly not the case for the galactose model. A more realistic approach is the ensemble 
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of 30 stochastic simulations shown by the green lines in Figure 3. These were performed 

using the open-source program Dizzy (http://magnet.systemsbiology.net/dizzy), which 

incorporates a number of different solvers [17]. The Gillespie solver [18] used here 

employs a Monte Carlo technique to generate trajectories consistent with the Chemical 

Master Equation [19]. The green lines can be viewed as corresponding to the behavior of 

individual cells. The mean of the ensemble of 30 simulations is indicated in the figure by 

the blue lines. There is considerable variability around the mean, which indicates the 

range of responses between different cells. However the mean is close to the ODE 

simulation, so one could say that for this system the ODE adequately captures the 

average behavior of a large number of cells. 

These simulations again show no great differences between the regulated and 

unregulated models. However, one expected property of the galactose network [20], and 

indeed other such networks, is that the structural proteins Gal1p, Gal2p, Gal7p and 

Gal10p have slow decay times, so perturbations due to stochastic effects lead to low-

frequency fluctuations. Therefore while Figure 3 gives an impression of how individual 

cells react to induction, the time scale is not sufficiently long to accurately measure the 

noise properties. To get reliable results, the stochastic effects must either be computed for 

many cells, or alternatively for a single cell over a long simulation time (we established 

empirically that 10000 minutes was adequate for the results to converge). Figure 4 

compares long simulations, using Dizzy’s implementation of the Tau-Leap algorithm 

[21-23], for the two versions of the model in the 10% induction state. The models have 

the same mean concentrations (except for internal galactose, denoted GAI), but the 

unregulated model in the right panels appears noisier. This is confirmed by the top panel 
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of Figure 5, which shows the dimensionless ratio of standard deviation to mean for the 

range of species. Noise is higher for the unregulated model almost across the board. 

Simulations were performed at partial induction since the impact of noise is greater at 

low species concentrations [24, 25], and the computation time is also faster. 

Of particular interest is the metabolic intermediary galactose 1-phosphate (denoted 

GA1P). Regulation of Gal3p and Gal80p affects noise not just in the regulatory network, 

but also in the downstream metabolic products. Galactose 1-phosphate is thought to be 

toxic to the cell at high concentrations [26-29].  As shown in the simulation results in 

Figure 4, greater noise in the unregulated model can result in ‘spikes’ of GA1P more than 

twice the physiological concentration. Regulation of noise could improve the viability of 

the organism, by controlling the maximum concentration of GA1P experienced, and the 

magnitude of peak-to-peak fluctuations. From these simulations, it therefore appears that 

the regulatory feedback loops are not necessary for induction, but reduce system noise. 

The next section looks more closely at the specific sources of noise, and how the 

feedback loops function to reduce it. 

 

3. Sources of noise 

 

Since GA1P is part of an interconnected system, fluctuations in its concentration depend 

on variations in all the other species in the network. In order to understand how noise in 

GA1P arises, and how the network might control it, it is necessary to identify the sources 

of noise at a system level. For example, one reaction in the network might be extremely 

noisy, but have little effect on the rest of the system; while another might generate less 
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noise, but have a magnified effect downstream. To this end, we used the noise estimation 

tool in Dizzy [30], which estimates the total variance as a weighted sum of the reaction 

rates. For a system with N species and M reactions, the expression for the total variance 

in the different species is the N-dimensional vector: 

 ∑
=

=
M

j
jjs

12

1
wv          (1) 

 

where the js  are reaction rates, and the jw  are weighting factors, which are derived from 

the system equations. The derivation is given in [30], and a detailed definition of the 

terms is given in Appendix A. 

Eq. (1) provides a general framework for the analysis of noise in biochemical 

networks. The equation is obtained by considering the stochastic noise as a perturbation 

to the steady state solution of the ODEs, akin to a stochastic model error. The deviation 

of the stochastic trajectory from the ODE steady state can then be estimated using error 

growth methods [31, 32]. The variance v represents a balance between two effects. The 

first is the size of the stochastic perturbations in the various reactions, which depends on 

the reaction rates js . The second is the system stability as measured by the negative real 

part of the eigenvalues of the system Jacobian, which appear in the weighting factors jw . 

The jw  have units of time, and are analogous to decay times for the perturbations arising 

from the different reactions. 

The resulting estimates for system noise are shown in the lower panel of Figure 5. 

The estimation tool captures the differences between the two models, and takes only 
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seconds, instead of days, to compute. Its main advantage is that it can be used to 

determine the primary causes of stochasticity in the system. Each term in the summation 

Eq. (1) corresponds to the variability which is introduced by a particular reaction channel. 

Referring to that equation, if the j’th reaction were somehow made non-stochastic, the 

total variance in GA1P would decrease by an amount about equal to the corresponding 

term jjs w
2
1

 in the sum. (There is also a secondary effect on the weighting factors for the 

other terms, as evident from the equations in Appendix A, but it is quite small. See for 

example the discussion of Figure 6, panel C below.) 

Panels A and B of Figure 6 show the largest contributions to GA1P noise in the 

regulated and unregulated models respectively. They are expressed in terms of the ratio 

of standard deviation to the mean: jjs
PGA

w
2
1

1
1

, where PGA1  is the mean GA1P 

concentration. In either model, the reactions which contribute the most are those which 

create (or destroy) mRNA. In fact, these reactions account for about 98% of the total 

estimated noise, while all other reactions contribute only about 2%. This makes sense 

since the mRNA only exist in low copy numbers, tend to be highly stochastic, and drive 

the formation of protein. Because the reactions of creation and destruction are in 

equilibrium, the two contribute an equal amount.  

Since mRNA creation/decay reactions account for most of the system noise, it 

follows that fluctuations in downstream proteins are primarily a reaction to changing 

mRNA levels. This is graphically demonstrated in Figure 7, which compares a simulation 

of the full model (blue line, compare left panels of Figure 4), with a simulation in which 

the time course mRNA concentrations from the stochastic simulation were a fixed input, 
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but the concentrations of all other species were determined from that using ODEs (red 

lines). Any change in protein levels is therefore due not to protein reactions themselves 

(which are simulated with ODEs) but are reactions to the changes in mRNA. The close 

agreement implies that protein fluctuations are almost entirely a result of mRNA noise.  

Another way to look at this is that, if fluctuations in mRNA levels could be 

removed completely, then the rest of the system would experience hardly any noise. 

Reactions such as translation of proteins, or interactions between proteins, would result in 

only mild stochasticity. As an illustration, the green lines in Figure 7 show a stochastic 

simulation in which all mRNAs are kept artificially fixed at their equilibrium levels, but 

the other reactions proceed in a stochastic fashion as before. It therefore indicates the 

noise which would result in the rest of the system if the creation and decay of mRNA 

were somehow to be completely noise-free. The extremely low noise level confirms that 

system noise is due primarily to mRNA creation/decay. 

Using the estimation tool, we can go further and determine the dependence of 

system noise on particular creation/decay reactions. For example, the second highest 

contribution in the unregulated model is from the mRNA for Gal80p. If the mRNA for 

Gal80p only is kept at a fixed level without formation or decay, then the noise due to its 

formation and decay reactions will be muted. As shown in Figure 6, panel C, the 

contribution from those reactions drops out and the total variability is lowered; however 

the contributions to variability from the other reactions are little changed. 

It is of course impossible to completely eliminate reaction noise in this way. It can 

be reduced through negative autoregulation or feedback [33, 34], and in the regulated 

model the protein Gal80p does reduce its own formation in this way. At partial induction, 
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however, there is also positive feedback, through Gal3p. Increasing Gal3p tends to 

increase the level of activation and so produce more Gal3p, which in turn increases 

Gal80p. Just as negative feedback reduces noise, so positive feedback increases it; and 

the total system includes both. 

In fact, the noise reduction comes about because the net effect of the feedback loops 

is to increase the rate of production of both Gal80p and Gal3p. The amount of these 

proteins, in monomer and dimer form, as well as the various complexes they form, all 

increase, so the entire control network grows in size. Since the degree of stochastic 

variability tends to decrease with the number of molecules, the network is less noisy. This 

mechanism was demonstrated by estimating the noise for another variant of the model in 

which Gal3p and Gal80p are again not regulated; however rather than being maintained 

at the non-induced level, they are maintained at the higher level of 10% induction. The 

estimated noise for this unregulated model, shown in panel D, is close to that of the full 

regulated model. The result was confirmed by running a full stochastic simulation; the 

ratio of standard deviation to noise for GA1P was 0.22, in near agreement with the 

regulated model at 0.23. 

If this unregulated model succeeds in reproducing the noise characteristics of the 

regulated model, one might then ask why the organism doesn’t simply maintain a higher 

concentration of Gal3p and Gal80p at all times. One way to do this is to slow the decay 

rates for the regulatory mRNA, which in the model decay relatively rapidly compared to 

structural mRNA [20]. (Another way is to simply speed production, but this might be 

metabolically constrained.) The results are shown in panel E of Figure 6 for a tenfold 

decrease in the decay rate of the regulatory mRNA, which brings the protein 
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concentrations up to the levels of panel B. There is now a much larger contribution to 

noise from the formation of regulatory mRNA. The reason is that, with a slower decay 

time, the number of proteins produced per mRNA molecule is increased. As discussed, 

and demonstrated experimentally [2], this leads to more noise being transmitted to the 

regulatory proteins, and, it follows, the rest of the network.  

What counts is therefore not just the level of regulatory proteins, but the rate at 

which the mRNAs are degraded. But if the regulatory mRNA must be degraded quickly 

to avoid the transmission of noise, it means that many must be produced to maintain a 

given level, which is metabolically expensive. The cell therefore appears to adopt a “just-

in-time” approach, ramping up the control network when necessary, but maintaining it at 

a low level when used only in a sensing capacity. This structure is consistent with the 

aims of reducing noise, while avoiding the metabolic cost of producing excess mRNA 

and protein. Indeed, if the metabolic cost were not a significant constraint, then 

presumably noise would rarely be an issue in genetic networks, since all regulatory 

species and mRNA would be maintained at high levels (except where randomizing noise 

was desired). 

We therefore conclude from the theoretical results that most noise is due to 

transcription of mRNA; it is controlled by Gal3p and Gal80p feedback mechanisms; and 

while the feedbacks reduce noise, they do not appear to be necessary otherwise. In the 

next section, we demonstrate experimentally the role of the feedback loops, by omitting 

them from a mutant strain of yeast. 

 

4. Experimental results 
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In order to test the effect of regulation on network noise, a mutant strain of yeast was 

prepared in which Gal3p and Gal80p were expressed at low, constant levels. The wild-

type promoters of GAL3 and GAL80 were replaced with the minimal promoter of the 

cytochrome-c isoform 1 (CYC1) gene, with no upstream activating sites. The green 

fluorescent protein gene (GAL1:GFP) was also inserted into the yeast genome to act as a 

reporter [35, 36]. This strain therefore corresponds to the unregulated version of the 

model, with the reporter protein indicating the level of system activation. Its behavior 

was compared with a second strain which was wild-type except for the addition of the 

GFP reporter.  

Using flow cytometry, we measured the fluorescence of cells in the mutant and 

wild-type at low concentrations of galactose. From the histogram of fluorescences, we 

calculated the cell-to-cell variation in the fluorescence intensity. The results for 0.05% 

galactose are shown in Figure 8. This corresponds to approximately 50% induction. The 

noise coefficients, defined as the ratio of standard deviation to mean, are 0.066 for the 

wild-type, and 0.126 for the mutant. (There is a slight difference in the mean, but by 

whatever measure the unregulated case is noisier.) Some of this noise will be due to 

effects such as variation in cell size, stage in the cell cycle, and so on. As discussed in 

Appendix B, however, this additional noise is decreased somewhat by the experimental 

procedure, which sorts for cells of a similar size. The effect of removing the regulation is 

to increase the system noise by a factor of about 1.91. 

The experimental results can be compared with Figure 9, which was obtained by 

running an ensemble of 100 stochastic simulations. The noise coefficients here are 0.113 
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for the wild-type, and 0.224 for the mutant. These are in approximate agreement with 

estimated values, from the noise estimation tool in Dizzy, of 0.105 and 0.266 

respectively. See Table 1 for a summary of the stochastic and experimental results. While 

the noise is slightly higher in the computer simulations than in the experimental results, 

the model correctly predicts two things. Firstly, the mutant strain can respond to 

galactose. The mean level of induction in either case is quite similar.  Thus, if one were 

only to measure the average induction over a large number of cells, it would be hard to 

understand the role of regulation. Secondly, the mutant strain is considerably noisier than 

the wild-type version. Again, this can only be determined experimentally using 

measurements of individual cells. The main effect of regulation therefore appears to be to 

control system noise. 

 

5. Discussion 

 

The above computer and experimental results show how analysis of the sources of noise 

in the galactose network allows us to “reverse engineer” some of its features. If an 

engineer were to design this system, they might apply the following logic. Effectively all 

noise in the system is a response to fluctuations in mRNA; so to control noise, the main 

priority is to reduce the relative size of these fluctuations, and reduce their transmission 

to the rest of the system. The structural mRNAs, such as the GAL7 transcript, are major 

contributors to system noise, but are already upregulated to high levels during induction. 

The regulatory mRNAs are not required to produce large numbers of proteins, but should 

have both a reasonably short decay time, and a high concentration after induction, to 
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prevent noise. Since this combination is metabolically expensive, the solution is to 

regulate these mRNA, so their rate of production is increased when necessary, but kept 

low when used only in a sensing capacity.  

Of course, the system was not designed according to some logical plan; but through 

understanding the sources of noise, we can gain some insight into the role of features 

which otherwise seem unnecessarily complicated and metabolically expensive. Up-

regulation of Gal3p and Gal80p requires the formation of more mRNA and protein and 

adds complexity. For this feature to have been selected by evolution, it is reasonable to 

suppose that it confers some advantage, and the control of noise is a likely contributor. 

In any case, it is clear that, in analyzing the properties of a system, ODE 

simulations of computer models, or experimental results averaged over a large number of 

cells, may disguise important properties of the system. The computer models with and 

without regulation only reveal their differences through detailed stochastic simulations. 

Similarly, single-cell experimental analysis was required to show that, while lack of 

regulation has only a small effect on the average level of induction, it does result in 

greater stochastic noise.  

 

Materials and Methods 

 

 The model used is as described in our previous study [38], except as indicated 

here.  For the mutant strain, we modified the fractional saturation for GAL3 and GAL80 

to a fixed value of 0.04.  This fractional saturation value is consistent with the data in 

Table 3 of  [39], which shows the ratio of basal expression, to UAS-activated expression, 
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of a CYC1-lacZ reporter construct.  We added a reporter gene driven by the 

GAL4/GAL80/GAL3 regulatory mechanism, with one binding site for GAL4.  The half-

life of the reporter product was defined to be ~350 minutes, which is consistent with in 

vivo measurements of GFP degradation [40].  The maximal rate of initiation of 

transcription, the maximal rate of initiation of translation per transcript, and the half-life 

of the transcript for the reporter gene were chosen to be identical to the other structural 

GAL genes in the model. 

 All simulations of the GAL model were performed using the Dizzy software 

program [17] version 1.9.1, on a 46-node Intel dual-processor cluster computer (IBM) 

running Linux kernel version 2.4.22 (Red Hat).  The Java virtual machine used is the Java 

2 Runtime Environment, version 1.4.2 (IBM). 

 The dynamics of the model was solved in two steps.  First, the steady-state was 

obtained by numerically solving, out to a long time scale, the deterministic chemical 

kinetics using ordinary differential equations (ODEs).  The steady-state concentrations of 

the species provided the initial conditions for the stochastic simulations. Second, the 

steady-state stochastic dynamics were solved using a Monte Carlo technique in which the 

results were averaged over an ensemble of realizations of a Markov process representing 

the stochastic kinetics.  The initial conditions for the first (ODE) step were the species 

concentrations at steady-state in the uninduced model (0% galactose, corresponding to 

growth in non-GAL-repressing media).   

 Deterministic simulations were conducted using the fifth-order Dormand-Prince 

ODE solver with a fourth-order error estimation formula and adaptive step-size control.  
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The ODE solver used is the odeToJava solver (Raymond Spiteri & Murray Patterson, 

www.netlib.org/odeToJava), available as the simulator option  

odeToJava-dopr54-adaptive within the Dizzy software program.  The relative 

and absolute error tolerances were set to 0.0001.  The initial step size was set to 0.4.  The 

stop time was set to 4000 minutes, which was sufficient for the wild-type and mutant 

models to reach steady-state, for the galactose concentrations used. 

 Stochastic simulations were conducted using the Gillespie Tau-Leap 

Algorithm [22] which is available within Dizzy as simulator option tauleap-

complex.  A stop time of 1440 minutes was used, with 400 time samples per 

simulation. The Tau-Leap relative error threshold was set to 0.0005.  The number of 

separate simulations conducted was 200 (for mutant and wild-type models separately), 

yielding an overall effective ensemble size of 40,000.   

 A mutant strain was constructed containing GAL80 and GAL3 behind the CYC1 

minimal promoter, by replacing the endogenous promoters of each gene with the CYC1 

minimal promoter.  Briefly, URA3 was fused up stream of the CYC1 promoter, 

comprising nucleotides –138 to –1 (where +1 is the A of the CYC1 start codon), by 

sequential PCR with flanking oligomers containing ~60 bp arms homologous to either 

GAL3 or GAL80.  This construct was integrated into BY4742 or BY4741 [41] replacing 

nucleotides –1  to –899 of GAL3 or nucleotides –1 to –249 of GAL80, respectively. The 

individual CYC1:GAL3 and CYC1:GAL80 strains were crossed and diploids sporulated to 

obtain haploid strains containing both modifications. 

The reporter gene encoding GFP+ under the control of the GAL1 promoter was 

generated by PCR. To do this, the gene encoding GFP+ followed by the 
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Schizosaccharomyces pombe gene HIS5, was amplified from pGFP+/HIS5, generated by 

replacing EGFP in pGFP/HIS5 [42] with GFP+ [43].  The GAL1 promoter consisting of 

nucleotides -12 to –690 was amplified from genomic DNA and the two PCR products 

were fused by PCR using flanking oligomers containing ~60 bp sequences homologous 

to HIS3. The gene fusion was integrated into BY4741 and into an isogenic strain 

containing both GAL3 and GAL80 modifications, replacing +1 to +400 of the his3∆ 1 

locus.  Strains with galactose-dependent green fluorescence were selected by 

fluorescence microscopy.   

 All yeast strains were grown overnight in YEP (1% yeast extract, 2% peptone) 

supplemented with 2% glucose (YEPD), washed and transferred to YEP containing 2% 

raffinose (YEPR), and grown for 16 hours at 30 ºC.  Cells were collected and induced in 

YEPR or YEP supplemented with galactose (YEPG) at the concentrations indicated in 

the main text, for 6 hours. Induced cells were suspended at 1-10 x 106/ml (approximately 

0.6 OD600) in the induction media and measured on a high-speed inFlux cell sorter 

(Cytopeia).  Cells were analyzed based on scattered laser light and fluorescence from a 

focused 488-nm argon ion laser operating at 300 mW. The data for each event consisted 

of an ordered tuple of the forward light scatter (FSC), perpendicular (side) light scatter 

(SSC), pulse width of the forward scattered light, and the integrated fluorescence from 

510 nm to 550 nm to quantify the green fluorescent protein concentration.  Data from a 

single run of the flow cytometer was stored in a Flow Cytometry Standard (FCS) version 

3.0 format file incorporating 100,000 events.  Initial visualization of the flow cytometry 

data was performed using Summit Offline (DakoCytomation) version 3.1.  The 

correlation between fluorescence and cell size was corrected by fitting a linear function to 
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the fluorescence vs. forward-scatter data. The first-order term was subtracted from the 

ordinate (fluorescence) values, and the ordinates additively rescaled so that the mean 

adjusted fluorescence is the same as the mean raw fluorescence.  This adjustment 

removed the cell-size bias in the fluorescence values.  A subset of events within a 

window of forward-scatter was used to generate the final fluorescence histogram.  The 

window had a width of 1 standard deviation (of the forward scattering) and was centered 

at the median forward scattering value.  The purpose of this window selection was to 

ensure approximate homogeneity of analyzed cell volumes, and to exclude multiple-cell 

events. 

 

Appendix A: Noise estimation formula 

 

We present here the definition of the terms in Eq. (1) of the main text. See [37] for the 

derivation. We assume a biochemical network consisting of N molecular species with 

concentrations ix  molecules/cell, and M reactions. 

 

jr  is first defined to be the N-dimensional unit column vector which describes the 

direction of the j’th reaction. If for example the reaction is c

k

ba xxx j→+ , then 

species ax  and bx  lose one molecule, and species cx  gains one molecule, so jr  is the 

column vector with the value 
3

1−
 in rows a and b, and 

3

1
 in row c. 

 

js  is the reaction rate. For the above example, it is bajj xxks = . This term appears 

directly in the summation in Eq. (1). 
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J is next defined as the Jacobian of the ODE system equations. If the system is at a stable 

equilibrium, the eigenvalues ju of J have negative real part. 

 

Q is the matrix 1−= PTPQ  where P is the matrix formed from the column eigenvectors 

of J, and T is the diagonal matrix with entries ( ) ( )ju
jj

Re

1
,

−
=T . 

 

jw  is a vector with entries equal to the square of those in jQr . These are the weighting 

factors which reflect the system’s ability to damp out internal fluctuations. 

 

The column vector giving the variance of each species is then given by ∑
=

=
M

j
jjs

12

1
wv , 

which is Eq. (1).  

 

This algorithm has been tested against stochastic simulations, and incorporated into the 

program Dizzy [17]. 
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FIGURES 
 

 

Figure 1. Schematic diagram of the regulatory portion of the galactose network in yeast. 

When galactose enters the cell, in a process involving Gal2p, it causes Gal3p to bind with 

Gal80p, thus activating the production of structural proteins Gal1p, Gal7p, and Gal10p. 

These convert the galactose to glucose 1-phosphate, with galactose 1-phosphate (not 

shown) as one intermediary in the process. See text for discussion.
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Figure 2. Comparison of equilibrium behavior as a function of external galactose (GAE), 

for the galactose pathway model with regulation (left panels), and a version in which 

Gal3p and Gal80p are not upregulated (right panels). Shown from top to bottom are 

regulatory protein; structural protein; internal galactose GAI and galactose 1-phosphate 

GA1P (see [16] for details). G80 refers to Gal80p protein, G80t is total Gal80p in 

monomer or dimer form, and likewise for the other symbols. The two models show 

similar behavior for the structural proteins and metabolic quantities. The triangle 

indicates the 10% induction level. 
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  regulated     unregulated 

      

Figure 3. Comparison of the models with regulation (left panels) and without regulation 

(right panels) during induction. Top panels show mRNA for Gal80p and Gal7p, denoted 

R80 and R7; middle panels show protein dimers, denoted G80d and G7d; lower panels 

show metabolic quantities. Red dashed lines are from an ODE simulation, green lines are 

an ensemble of 30 stochastic simulations, blue lines are the mean of the stochastic 

simulations. The model is initiated in the non-induced condition, then external galactose 

is added corresponding to 10% induction (0.5 mM for the normal model, 0.32 for the 

version without regulation). The two versions of the model appear quite similar in 

behavior, except for R80 which is held fixed in the unregulated model. 
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Figure 4. Comparison of the two versions of the model in the 10% induction state for a 

long time scale (the statistics are equivalent to shorter simulations over a number of 

cells). The model without regulation (panels on right) has increased noise in regulatory 

and structural proteins, as well as the intermediary GA1P (galactose 1-phosphate). See 

also Figure 9 for GA1P results over many simulations. 
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Figure 5. Comparison of stochastic variability for the two versions of the model in the 

10% induction state. Shown is the dimensionless ratio of standard deviation to mean, 

calculated both from the stochastic simulation using the Tau-Leap solver in Dizzy (upper 

panel) and the estimation technique (lower panel). Both methods are in reasonable 

agreement, and indicate that the system without regulation has higher noise. Symbols for 

species is as in previous figures, but G3i refers to the activated form of Gal3p, and G3 to 

the inactive form.  
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Figure 6. The reactions which contribute most to noise in GA1P, at the 10% induction 

level, are the formation and destruction of the mRNA in the horizontal axis of panel A 

(both contribute an equal amount). Noise is higher in the unregulated model (panel B) 

with Gal3p and Gal80p at low levels. If the mRNA for Gal80p is kept at a fixed level (no 

formation or decay reactions) in this unregulated model, then the contribution of those 

reactions is zero, but the contributions of the other reactions are little changed (panel C). 

If the unregulated model is adjusted so that Gal3p and Gal80p are kept at the high level 

of 10% induction (panel D), then the noise reduction is almost the same as in the 

regulated case. If the same effect is achieved by slowing the decay rate of regulatory 

mRNA, noise is enhanced (panel E). 
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Figure 7. Plot illustrating that noise is due to mRNA fluctuations. Shown are the gal7p 

dimer (upper) and galactose 1-phosphate (lower) concentrations. Red dashed line shows 

an ODE simulation in which the stochastic mRNA levels are used as input, so noise in 

protein is solely a response to the changing mRNA levels. It is almost identical to the full 

simulation shown by the blue line (from Figure 5), indicating that system noise arises 

primarily from mRNA fluctuations. Green line shows a stochastic simulation in which 

mRNA levels are kept artificially fixed at their equilibrium values, thus eliminating their 

contribution to noise; the noise in the rest of the system is now negligible. 
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Figure 8.  Histogram of adjusted fluorescence values for the selected flow cytometry 

events for the wild-type and mutant stains cultured in 0.05% galactose, which 

corresponds to approximately 50% induction. The histograms are normalized to have unit 

area, over the fluorescence range of the data points shown. The data was acquired six 

hours after the introduction of galactose. See Appendix B for details. The noise 

coefficients are 0.066 for the wild-type, and 0.126 for the mutant. The means are 

393.1981 (wild-type) and 437.3525 (mutant). 
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Figure 9. Histogram of the number of reporter molecules, from stochastic simulations of 

the two versions of the GAL model at steady-state. The noise coefficients are 0.113 for 

the wild-type, and 0.224 for the mutant. These compare with estimated values, from the 

noise estimation tool in Dizzy, of 0.105 and 0.266 respectively. The means are 7.54E4  

(wild-type) and 8.73E4 (mutant). Stochastic results are from a 100-member ensemble of 

1440 minute simulations, with 400 samples taken per simulation, performed using the 

Tau-Leap (“tauleap-complex”) simulator in Dizzy version 2.1.1 with the relative error 

tolerance set to 0.0005. 
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TABLES 

 

 

 Estimate Stochastic Experimental 

Wild-type 0.105 0.113 0.066 

Mutant 0.266 0.224 0.126 

Ratio 2.53 1.974 1.91 

 

Table 1. Coefficients of variation, defined as the standard deviation divided by the mean, 

for wild-type and mutant strains of yeast. Stochastic calculations were performed using 

the estimation tool in Dizzy, and the Tau-Leap simulator data of Figure 9. Experimental 

values are from the fluorescence data of Figure 8. The ratio between mutant and wild-

type shows the noise enhancement due to elimination of the feedback loops. 

 

 

 

 

 

 

 


