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Abstract 

 

Positive and negative feedback loops, for example where a protein regulates its own 

transcription, play an important role in many genetic regulatory networks. Such systems 

will be subject to internal noise, which occurs due to the small number of molecules 

taking part in some reactions. This paper examines the effect of feedback loops on noise 

levels. Error growth techniques from nonlinear dynamics are used to estimate the 

variance of a system around a steady state attractor. It is shown that variablity due to 

intrinsic stochasticity is directly linked to the stability of the steady state, and therefore to 

the system’s resistance to external perturbations. The methods are demonstrated for a 

number of simple systems, including a genetic switch with homo-dimerizing regulatory 

protein, and an oscillator. 
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1. Introduction 

 

Cellular pathways are inherently nonlinear, and incorporate both positive and negative 

feedback loops. Positive feedback loops often cause molecular concentrations to act in a 

switch- like, all-or-none manner, as observed in both enzymatic interaction networks (e.g. 

the MAPK switch in Xenopus embryos (Ferrell Jr. and Machleder 1998)), and in genetic 

regulatory networks (e.g. the sea urchin endomesoderm network (Davidson, Rast et al. 

2002)). Negative feedback loops can control the speed of response to intra and inter-

cellular events (Rosenberg, Elowitz et al. 2002), regulate the concentration of a molecular 

species to a fixed level, or lead to oscillations. Oscillations can be either damped (e.g. the 

level of NF-κ B in the mammalian TNF α -NF-κ B pathway (Hoffmann, Levchenko et 

al. 2002)) or long lasting, as in the cell cycle oscillator controlling cell cleavage timing in 

Xenopus embryos (Goldbeter 1991; Borisuk and Tyson 1998). Identifying and 

characterizing the design principles which underlie such feedback paths is essential to 

understanding sub-cellular systems (Csete and Doyle 2002).  

 

Genetic networks can be modeled using ordinary differential equations (ODE’s) (Bower 

and Bolouri 2001; Neves and Iyengar 2002), and the techniques of nonlinear dynamics 

used to determine stable, periodic, and chaotic attractors, as well as bifurcations between 

these states (Guckenheimer and Holmes 1983; Borisuk and Tyson 1998). However, when 

studied at the level of a single cell, biological systems are not only nonlinear, but highly 

stochastic. The number of molecules of a particular species taking part in a reaction 

within a single cell may be of the order of tens or less (McAdams and Arkin 1999; 

Thattai and Van Oudenaarden 2001). Reactions are therefore not a smooth, continuous 

process, but an inherently random event that is better modeled using stochastic 

techniques (McQuarrie, Jachimowski et al. 1964; Zheng and Ross 1991). In stochastic 

systems, there is no such thing as a stable point (except in the absence of reactants), or a 

perfectly periodic system. This complicates the understanding of system behavior. 

 

There has been considerable research in recent years, both theoretical and experimental, 

into the effects of noise in genetic networks. A number of stud ies have measured the 
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amount of the random variation observed in the fluorescence distributions of a reporter 

protein, and used this to demonstrate that negative feedback suppresses noise (Becskei 

and Serrano 2000), or analyzed the effect of positive regulation in genetic switches 

(Becskei, Séraphin et al. 2001) and bistability (Isaacs, Hasty et al. 2003). Other studies 

have shown how noise is affected by translationa l and transcriptional efficiencies 

(Ozbudak, Thattai et al. 2002), and by internal and external contributions (Elowitz, 

Levine et al. 2002). The difference between eukaryotic and prokaryotic systems was 

explored in (Blake, Kaern et al. 2003). See for example (Paulsson 2004) and (Wall, 

Hlavacek et al. 2004) for useful reviews. 

  

In this paper, we analyse stochastic noise from a nonlinear dynamics perspective, with 

the aim of providing fresh insights into the effects of noise on system dynamics. By 

combining the ODE and stochastic approaches, and using error growth techniques to 

approximate the variance of a system around a steady state equilibrium, the effect of 

auto-regulation on stochastic noise can be determined in a straightforward way from the 

model equations. The method is applied to a number of cases with positive and negative 

feedback, including a bistable switch and a genetic oscillator. Different methods of 

visualizing system behavior as a parameter varies are explored, which correspond to the 

bifurcation diagrams used in deterministic systems. We also discuss “design principles” 

which may underlie genetic networks, and illustrate the connection between variability 

due to internal stochasticity, and stability to external perturbations.  

 

2. Estimating stochastic noise 

 

In this section, we present a formula to estimate the variance of a protein X which 

regulates its own production. Suppose that the production and decay of X is given by the 

reactions: 
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where ϕ  denotes the empty set. The function ( )Xf  reflects the auto-regulation by X of 

its own transcription, while vk  is the maximum rate of production, and dk  the rate of 

degradation.  

 

When X is at its steady state eqX , the rate of production equals the rate of decay, so 

( )eqveqd XfkXk = . In the case of a stochastic simulation, however, X will be 

continuously perturbed by random fluctuations. As discussed in the Appendix, the 

variance of X around the steady state is given by 

 

( ) 0VXhV eq≅           (2) 

 

where 0V  is the variance for the same protein level in the absence of regulation. If X is 

the result of a Poisson process, its variance equals the mean, so eqXV ≅0 . The term 
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is a noise amplification factor. Using the equilibrium condition gives 
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The estimate is obtained by linearizing the dynamics around the stable state; its accuracy 

therefore depends on a number of factors, but generally is lower near for example 

bifurcation points of the ODE where the linearization may not be valid. Estimates of the 

variance can also be obtained directly from the Master Equation (Van Kampen 1992) or a 

Langevin approach (Thattai and Van Oudenaarden 2002), however the error growth 
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approach has a number of advantages. It can be used to derive analytical estimates for 

noise in simple systems, and so understand the dependence of noise on particular 

parameters; but can also be generalized to higher dimension systems, where calculating 

the variance through stochastic simulations can be extremely slow. The method has been 

incorporated into the program Dizzy (http://labs.systemsbiology.net/bolouri/Dizzy), 

which features both ODE and stochastic solvers, and is accessed using the 

“computeFluctuations” option.  

 

If the production of X is independent of X, then 0=
∂
∂
X
f

 and ( ) 1=eqXh . This neutral 

situation will be the case when the production of X is either unregulated, or the regulation 

is unaffected by X. If a genetic network increases the variance of X above this level, so 

( ) 1>eqXh , the network is noise enhancing in X, while if ( ) 1<eqXh  the network is noise 

reducing.  

 

Two conclusions follow immediately from Eq. (3). Firstly, a network of the form of Eq. 

(1) is noise reducing if and only if 0<
∂
∂
X
f

. Since this condition implies that the 

production of X decreases with X, an equivalent statement is that a network with negative 

auto-regulation is noise reducing, and a network with positive auto-regulation is noise 

enhancing. This result is consistent with other theoretical and experimental works 

(Becskei and Serrano 2000; Thattai and Van Oudenaarden 2001). 

 

Secondly, the formula provides a direct link between the variability due to internal 

stochasticity, and stability to external perturbations, as measured by their rate of decay. 

As shown in the Appendix, we can write 

 

( ) ddeq tkXh = ,          (5) 

 

where dt  is the characteristic decay time of external perturbations. Reducing dt  therefore 

both reduces internal variability and improves stability. Clearly there is a link between 
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the decay rate dk  and the decay time of perturbations; the trick of noise reduction is to 

reduce dt  without increasing dk . In the next sections, we give a number of specific 

examples of auto-regulated genetic networks which illustrate this point. 

 

 

3. Positive and negative auto-regulation 

 

A simple example of a network with negative regulation is one in which a protein X 

represses its own formation. The reactions are: 
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The reactions describe the binding and unbinding of X with a promoter P; the production 

of X, which occurs when the promoter is not bound with X; and the decay of X. The rate 

for each reaction is given by the corresponding term ia , and depends on the rate 

parameters which we set to 51 =bk  mol-1h-1, 1002 =bk  h-1, and 1=dk  h-1. Units are in 

terms of number of molecules per cell, rather than concentrations, and we assume a single 

molecule of P in the bound or unbound state. Time is measured in hours, though it could 

equally well be some other unit. For simplicity, both transcription and translation have 

been modeled as a single step. As discussed in the Appendix, the intermediate step will 

introduce additional noise; however the degree of noise amplification due to auto-

regulation, as measured by ( )eqXh , is unchanged. 

 

If the binding reactions are assumed to be at equilibrium, the ODE for this system can be 

written as 

Xk
XK

Kk
dt
dX

d
v −
+

=          (7) 
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where 
1

2

b

b

k
k

K = . For a particular value of vk , the ODE will be attracted to a steady state 

which can be found by setting Eq. (7) to zero. A stochastic simulation, however, never 

achieves equilibrium, as shown in the left panel of Figure 1, which is a time series of X 

for vk =150 mol-1h-1. Calculations were performed with the program Dizzy, using the 

Gillespie algorithm (Gillespie 1976). Also shown are the mean, and the mean plus/minus 

one standard deviation.  

 

While such plots are useful for seeing how the concentration varies with time, we are 

often more interested in visualizing how behavior changes as a function of a particular 

parameter. For example, in a real system the probability of transcription might depend on 

some factor such as the degree of phosphorylation of X, in which case vk  could absorb 

this factor as discussed in (Smolen, Baxter et al. 1998). For ODE systems, a useful 

visualization tool is a plot of the equilibrium concentration of X vs. vk , which can be 

used to reveal for example bifurcation properties. This is shown by the black line in  

Figure 2A, which was obtained by setting Eq. (7) to zero at each value of vk . 

 

For the stochastic simulation, there is no single equilibrium point. An alternative method 

for visualizing the system’s dependence on vk  is illustrated by the color plots in the same 

panel. At each value of vk , a 1000 hour stochastic simulation was performed, as in Figure 

1. The value of X, which is an integer, was then binned, and the results displayed as a log 

density plot. Red indicates high density, while the blue background indicates zero 

density, so the plot shows the degree of spread in the range of X introduced by 

stochasticity. 

 

For this system the gradient of the fractional saturation function is 

( ) 0
2

<
+

−=
∂
∂

eqXK
K

X
f

        (8) 

and the noise amplification is 
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so the system is noise reducing with a maximum possible reduction in noise of 50% as K 

approaches zero. Figure 2C compares the standard deviation of X predicted using Eq. (3) 

to observed values from a stochastic simulation over 1000 time units. Also shown is the 

neutral case where the standard deviation equals eqX . The system shows a degree of 

noise reduction which is consistent with negative auto-regulation. 

 

An example of positive auto-regulation is the system where transcription occurs when X 

is bound to P, for which the ODE is: 

 

ad
v kXk

XK
Xk

dt
dX

+−
+

= .        (10) 

 

The parameters are the same as before except that 11 =bk  mol-1h-1, and 3=ak  mol h-1 is 

a basal transcription rate, which is required for activation. The gradient of the fractional 

saturation function is 

 

( ) 0
2

>
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eqXK
K

X
f

         (11) 

 

which is identical to Eq. (8) except for the change of sign. The noise amplification factor 

can be calculated from Eq. (4).  

 

The right panel of Figure 1 shows a time series of X. The parameter vk  was set to 147 to 

give the same mean X as in the left panel. Note the large increase in stochasticity relative 

to the previous case. Figure 2B illustrates the behavior of this system as a function of vk . 

The concentration of the product X remains low until near Kkk dv =* , at which the ODE 

undergoes a transcritical bifurcation (Alligood, Sauer et al. 1997). 
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If the rate parameter vk  were to depend on some factor such as the degree of 

phosphorylation of X, the system would behave like a genetic switch, with production of 

X suddenly turning on around 100=vk . However, the effect of no ise is so strong that the 

performance of the switch would be poor, with no clear distinction between the ‘on’ and 

‘off’ states over this range of vk  (clearly the impact of noise decreases for high levels of 

vk  and resulting high protein concentrations, but the switch may need to operate with 

lower numbers of molecules). The predicted and observed noise amplification factor is 

shown in Figure 2D. 

 

Comparing Eqs. (8) and (11), the difference between these two systems lies solely in the 

Jacobian. Since the Jacobian determines the decay time of perturbations, it is a measure 

of the stability of the steady state attractor. For 1-D systems such as these, it is possible to 

visualize some aspects of the nonlinear dynamics as illustrated in Figures 2E and 2F. The 

vertical axis is given by 

 

( ) ( )vm

X

v kYdX
dt
dX

kXY +





−= ∫

0

, .       (12) 

 

where ( )vm kY  is the minimum value of ( )vkXY ,  for a given vk . This has the property 

that the slope 
dX
dY

 in the X-direction is equal to 
dt
dX

− , and the curvature at a steady state 

is equal to the Jacobian of the ODE. Thus steady states are points where the slope 
dX
dY

 is 

zero, which by the choice of mY  also satisfy 0=Y . If the curvature is positive, the steady 

state is stable, while if it is negative the state is unstable. The strength of the stability 

depends on the degree of curvature. The resulting surface therefore allows visualization 

of the system dynamics and the basins of attraction  (Alligood, Sauer et al. 1997) for each 

steady state. It is easy to see that the system with negative auto-regulation enjoys a higher 
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degree of stability as vk  increases. Furthermore, resistance to internal noise gives the 

added benefit of resistance to external noise. 

  

To summarise the results of this section, we have seen through two simple examples how 

auto-regulation affects the degree of internal stochastic noise in genetic networks. 

Positive auto-regulation increases stochasticity, to the point where the performance of a 

genetic “switch” can be dominated by the effects of noise; while negative auto-regulation 

reduces noise (as measured by the variance) by as much as 50%. The difference is due to 

the decay properties of the system, which can be visualized using the technique of Eq. 

(12), and is therefore linked directly to resistance to external perturbations, as measured 

by their rate of decay. Similar results can be obtained for more complicated 

transcriptional scenarios, for example where the gene contains multiple binding sites for 

the transcriptional proteins, by choosing an appropriate function ( )Xf . 

 

From Eq. (11), one method to reduce noise amplification due to positive autoregulation  

is to simply reduce the binding dissociation constant K. The system then activates more 

quickly, since the ODE bifurcation point Kkk dv =*  is correspondingly lower. Thus the 

system noise is directly linked to the value of *
vk , and it is impossible to have both a 

highly switchlike characteristic and low stochastic variability using positive 

autoregulation alone. In the next section, we consider another method to reduce 

variability while retaining switch- like characteristics, which actually increases the 

internal stochastic noise. 

 

 

4. Dimerization 

 

We now suppose that the protein X binds with itself to form a homo-dimer, and the dimer 

then binds to DNA and enhances its own production (positive autoregulation). The 

resulting ODE is given by: 
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The parameters 11 =ck  mol-1h-1, 252 =ck  h-1 are the rates for dimerization and de-

dimerization of a protein X, where X2 denotes the dimer. The binding parameters are 

51 =bk  mol-1h-1, 2102 =bk  h-1, with 
1

2

b

b

k
k

K = , while the decay and basal formation 

parameters are  5.0=dk  h-1, 5.0=ak  mol h-1. The parameter vk  (h-1) is again adjustable. 

The structure is the same as that in (Smolen, Baxter et al. 1998) except that the decay of 

the dimer is included. 

 

As shown by the solid line in Figure 3A, Eq. (13) has a bimodal nature with (for certain 

values of vk ) two stable steady states, and a sudden transition between the two. If vk  is 

slowly increased from zero, the system jumps from a low state to a high state at the point 

that the lower steady state becomes unstable, around vk =140; however if vk  is reduced 

from a high value, the transition occurs when the high steady state becomes unstable, 

which is around vk =90. The system therefore behaves as a hysteretic switch. Such all-or-

nothing responses have been observed on a cell-by-cell basis in Xenopus oocytes (Ferrell 

Jr. and Machleder 1998), and have been proposed as a mechanism by which a cell 

population can partition into different phenotypes (McAdams and Arkin 1997; Arkin, 

Ross et al. 1998). 

 

Figure 3A shows a density plot of the dimer X2 as vk  is slowly increased, while Figure 

3B shows the same as vk  is slowly decreased. The transition from low to high state, or 

vice versa, happens more rapidly than with the ODE, so the effect of hysteresis is lower. 

Comparison with Figure 2 shows that the equilibrium curves for the switches with and 

without dimerization are fairly similar, but the spread due to stochasticity in Figure 3C is 

substantially smaller. This is despite the fact that dimerization actually adds significantly 
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to the internal stochasticity. These observations are in keeping with the results of 

(Bundschuh, Hayot et al. 2003). 

 

How then does dimerization reduce noise? The reason is that noise is affected not just by 

the inherent stochasticity of the reactions, but, as mentioned above, by the decay 

characteristics of the system. The latter can be determined from an eigenvalue analysis of 

the Jacobian. For example, the Jacobian of Eqs. (13) at 150=vk  has two eigenvalues 

30.0

46.197

2

211

−=

+≅−=

λ

λ ceqc kXk
        (14) 

with corresponding eigenvectors 

[ ]1,2
5

1
]47.0,89.0[1 −≅−=u , [ ]960.0,281.02 −−=u . Both eigenvalues are negative, 

indicating stability, but there is a large difference in magnitude, which implies a fast and 

a slow time scale for decay. The first rate, with decay time 
1

1
1

λ
−

=dt , corresponds to 

perturbations in the direction of the first eigenvector 1u . This direction conserves the 

total number of protein molecules 22 XX ⋅+ , as occurs during the dimerization 

reaction. The second rate, with decay time 
2

2
1

λ
−

=dt , corresponds to the direction of the 

second eigenvector 2u . Because this is much slower, a perturbation in the direction [ ]0,1 , 

as occurs during the formation or decay of X, or the direction [ ]1,0 , as during the decay of 

X2, will first equilibrate rapidly with the dimerization reaction, and then decay at the 

slower rate 2dt . As shown schematically in Figure 4, the dimerization reduces such a 

perturbation by a factor 
eqc

eqc

XK

XK
s

4

4 22

+

+
= . For given eqX , the factor s has a minimum 

of 
5

1
 when eqC XK = . Therefore, when stochastic effects perturb the system away from 

steady state, the effect of dimerization is to increase the rate of decay back towards the 

equilibrium. The enhanced stability of the system will again make it more resistant to 

externally generated noise.  
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A rough analogy of dimerization might be a stiffening element in the roof of a building. 

Its own weight adds to the overall force (i.e. stochasticity) that needs to be supported, but 

if correctly positioned it can absorb the load of other components (the factor s) and result 

in a more efficient construction. 

 

The improved performance of the switch with dimerization is actually a result of two 

factors: the reduction of stochastic noise due to the above effect, and the step change in X 

and X2 which occurs near the ODE bifurcation point. A more relevant statistic than 

standard deviation might be the dimensionless ratio of standard deviation to the mean; 

with this measure, a sudden increase in the mean will lower the relative impact of noise. 

For the same reason, the performance can be further improved if the decay rate of the 

dimer is lower than that of the monomer as in Figure 3D, since this has the effect of 

increasing the mean dimer population. 

 

The results of this section show that, by affecting the decay characteristics of the system, 

dimerization can be an important factor in the control of stochastic noise. It could 

therefore be viewed as a kind of “design principle” which might underlie genetic 

networks (de Atauri, Orrell et al. 2004; Wall, Hlavacek et al. 2004). In the next section, 

we consider a genetic system where noise might play a more positive role. 

 

 

5. An oscillator system 

 

A somewhat different example of  a nonlinear system is the circadian oscillator described 

in (Gonze, Halloy et al. 2002). The system can again be written in terms of elementary 

reactions between a list of chemical species that includes enzymes, intermediate species, 

and bound and unbound forms of the gene. The result is a system of 24 reactions 

involving 19 chemical species. The number of gene copies is set to one, and the number 

of other molecules is controlled by an adjustable parameter Ω , which can be interpreted 

as a cell volume, so a concentration of X nM corresponds to Ω X molecules per cell. 
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Since a system with fewer molecules tends to be more stochastic, the stochasticity varies 

inversely with Ω . For this section, we consider two cases: a “high stochasticity” case 

with 50=Ω , and a “low stochasticity” case with 200=Ω . 

 

The model can also be approximated in rate- law ODE form in five variables: MP is 

mRNA; P0, P1 and P2 are cytosolic clock proteins; and PN is nuclear protein.  
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    (15) 

 

Parameter values are: 

 

KI = 2 nM, vs = 0.5 nM, vm = 0.3 nM, Km = 0.2 nMh-1, ks = 2 h-1, 

v1 = 6 nMh-1, K1 = 1.5 nM, v2 = 3 nMh-1, K2 = 1 nM, 

v3 = 6 nMh-1, K3 = 1.5 nM, v4 = 3 nMh-1, K4 = 2 nM, 

vd = 1.5, Kd = 0.1, k1 = 2 nM, k2 = 1 nM. 

 

Figure 5 shows a phase space plot, a time series plot, and a plot of power versus 

frequency for a stochastic simulation of the two cases with transcription rate v=0.4. Both 

cases show oscillatory behavior. Interestingly, however, the ODE system has a stable 

point for this value of v (see also noted (Vilar, Kueh et al. 2002)). 

 

Visualizing the behavior of nonlinear systems such as oscillators over a range of 

parameters can be difficult. One method is shown in Figure 6, which is a plot of the 
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standard deviation of the species MP as a function of the transcription rate v, again over a 

range for which the ODE is stable. The results are compared with an estimate obtained 

using the ‘computeFluctuations’ option in Dizzy. Accuracy decreases for higher values of 

v, in part because the Jacobian becomes ill-conditioned near the bifurcation point; 

however the approximation remains useful and is considerably faster to compute than the 

full stochastic simulation. 

 

While the standard deviation provides useful information, it does not indicate whether the 

power in the system is oscillatory or just random. An approach that better captures the 

system properties is the spectral bifurcation diagram (Orrell and Smith 2003), which 

shows the dominant oscillation frequencies as a parameter is varied. Figure 7 compares 

such diagrams for the ODE system and the stochastic simulations. The horizontal axis is 

the transcription rate v. The vertical axis is oscillation frequency, while the colour scale is 

the power at that frequency. For the ODE, all power is concentrated at the base circadian 

frequency and (to a smaller degree) its multiples, indicating that the oscillation is 

perfectly periodic, while the stochastic simulations spread the power over a range of 

frequencies.  

 

At values of v for which the ODE is periodic, the stochastic simulation adds noise but 

also power at the dominant frequency. In some respects, the stochastic simulation is more 

“robust” than the ODE model, in that it produces power over a greater range of 

frequencies; a desirable feature in oscillators (Barkai and Liebler 1999; Hasty, McMillen 

et al. 2001; Ma and Iglesias 2002). It can be viewed as an example of how biological 

systems exploit the presence of noise (Rao, Wolf et al. 2002). Of course this property is 

at the expense of perfect periodicity; but in any case biological oscillators must 

presumably rely on synchronizing effects (Höfer 1999; McMillen, Kopell et al. 2002) 

which would entrain the inherent oscillatory behavior to particular frequencies. 

 

From this analysis, one difference between switches and oscillators is that what counts in 

the former is focusing of stochasticity into the desired switch- like behaviour, while in the 

latter stochasticity can actua lly add to the power of the oscillation. Even at parameter 
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values for which the ODE is stable, the stochastic versions produce noisy oscillations 

with a power spike at the circadian frequency. It was seen in Section 4 that dimerization 

is a desirable feature in the genetic switch because it enhances stability. The purpose of 

an oscillator, however, is the opposite because it is intended to produce large swings in 

concentration. Dimerization would only retard this, because the system would then need 

to produce large changes in both the monomer and dimer concentrations. Therefore one 

might expect dimerization to play a larger role in genetic switches than oscillators. 

 

 

6. Conclusions  

 

In this paper we have combined the ODE and stochastic approaches to analyze the 

behavior of genetic systems. Our method for approximating the variance is easy to use, is 

freely available via the open-source program Dizzy, and can be used to derive simple 

formulas for the variance due to noise. By applying the method to a number of simple 

systems, it has been possible to make or confirm some specific statements about the 

effects of stochasticity: 

 

• In agreement with the cited experimental results, auto-promotion was seen to 

increase noise, while auto-repression can decrease the variance by as much as 

50%.  

• Control of internal noise is linked to stability to external perturbations through the 

decay characteristics. Therefore resistance to internal noise can also give 

resistance to external noise. Homeostatic systems will be resistant to both. 

• Dimerization of regulatory proteins can reduce the effect of noise, not by reducing 

the inherent stochasticity of the reactions, but by altering the decay 

characteristics. 

• Oscillators can exploit stochastic noise, by channeling it into oscillatory power. 

 

Whatever the effect of stochasticity, it is clear that biological systems have evolved to 

control it and exploit it. One way to do this is by shaping the dynamic response by 



  17 

incorporating features such as negative feedback or dimerization. A better understanding 

of the interplay between stochasticity and nonlinearity should lead to improved 

comprehension of how these systems function; help deduce general principles which 

underlie their design; and motivate targeted experiments into the effects of stochastic 

noise. 
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Appendix: Estimating variance of stochastic models 

 

The variance of a stochastic model will depend both on the degree of stochasticity, and 

the nonlinear dynamics. We here show how it can be approximated using error growth 

techniques. Suppose that we have two models of a system: a stochastic simulation 

involving species nx  for 1=n  to S, such as that produced by the Gillespie algorithm  

(Gillespie 1976), and an ODE approximation. In general, the ODE has a reduced number 

of species, so for simplicity we assume the ODE variables are nx  for 1=n  to R with 

R<S. We can view the difference between the stochastic simulation and the ODE model 

as an error produced by the different dynamics. The error growth can then be 

approximated by determining the propagated drift, which includes terms from the 

dynamical forcing error and the model dynamics (Orrell 2001; Orrell, Smith et al. 2001).  

 

The first step is to approximate the forcing error of the stochastic model relative to an 

ODE representation. If the ODE is at a stable point, then an “error” of magnitude 1 

occurs whenever a reaction happens that changes the ODE species by 1 molecule. Let 

∑
=

=
M

i
iaa

1

be the sum of reaction rates over all M possible reactions. Since at equilibrium 

the M reactions are independent, the expected number of reactions of type i over a 

sufficiently long time T is TaK ii = .  

 

Suppose that ic  is the net change to the ODE species introduced by reaction i. For 

example, if the ODE only has species X and Y and a reaction ZYX →+  occurs, then the 

corresponding factor ic  would be 2. However if the reaction is WZX →+ , then the 

factor ic  would be 1 since the only change is to X; and if the reaction does not involve X 

or Y, then 0=ic . Using a Euclidean metric, the difference between the states before and 

after the reaction is then ic . 
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The drift at time T, evaluated numerically for a time step t∆ , is given by a sum of short 

forecast errors ( ) ∑ =
=

N

n nTd
1
f , where nf  is the forecast error in a single time step (Orrell 

2004). The drift represents the component of error (i.e. the difference between the 

stochastic and ODE representations) due to the model equations. A reaction of type i over 

time T implies a change of magnitude ic . Since the errors are stochastic, the total drift 

can be determined by summing the squares of the individual forecast errors from each 

reaction, so  

 

( ) R
M

i

M

i iiii TaTcacKTd === ∑ ∑= =1 1

2 ,       (A1) 

 

where ∑ =
=

M

i iiR caa
1

 is the sum of reaction rates weighted by the appropriate factor ic . 

A further simplification arises by noting that the rate of change of each species nx  is 

obtained from  

∑ =
=

M

i ii
n aw

dt
dx

1
         (A2) 

where iw  is equal to plus or minus the number of molecules of nx  involved in the 

reaction, with the sign depending on whether nx  is increased or decreased by the 

reaction. Since the scaling factor ic  counts the total number of molecules involved in 

each reaction, it follows that  

R

M

i
ii

R

n

M

i
ii aacaw == ∑∑∑

== = 11 1

.        (A3) 

The left hand side is just the sum of the absolute values of reaction rates in the ODE. 

 

The expected forecast error at time tNT ∆= , where t∆  is a discrete time step, is given 

by the propagated drift (Orrell 2002): 

 

( ) n
N

n np tTT fMd ∑ =
=

1
),( .         (A4) 
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Here ( ) ( )JJM tTdtt eetT
T
t −∫ ==),(  is the linear propagator, and J  is the Jacobian evaluated 

at the equilibrium, which is constant in time. Since the errors nf  are stochastic in nature, 

the expected root-mean-square (RMS) error ( )2Td p  over an ensemble of runs will 

increase in a random walk fashion, so  

 

( ) 2

1

2 ),(∑ =
≅

N

n nnp tTTd fM .        (A5) 

 

The linear propagator reflects the growth (or shrinking) of small perturbations under the 

model dynamics, which depends on the linearized dynamics (Guckenheimer and Holmes 

1983) near the attractor. The stability of a point can be analyzed by calculating the 

eigenvalues of the Jacobian (Ott 1993); if they are all negative, then the point is locally 

stable. For reactions with a linear decay, the propagator is of the form 







 −
−

d

k

t
tT

e , where dt  

is the characteristic decay time. Since the forcing errors have magnitude 1, the error is 

given by  

( ) 2

1

2
2

n
N

n

t
tT

p
d

k

eTd f∑ =








 −
−

≅         (A6) 

which asymptotes for large T to the drift evaluated at half the decay time: 

 

( )
22

2
2 d

R
d

p

t
a

t
dTd =








≅ .        (A7) 

Thus the variance can be approximated by knowing only the reaction rates and the decay 

rate.  

 

As an example, suppose that the production and decay of a protein X is given by the 

reactions: 

 

ϕ
ϕ

→
→

X
X

Reaction
      ( )

Xka
Xfka

d

v

=
=

2

1

Rate
        (A8) 
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where ϕ  denotes the empty set. The corresponding ODE is 

 

( ) XkXfkaa
dt
dX

dv −=−= 21 ,       (A9) 

 

so at equilibrium we have  

 

( )eqveqd XfkXk = ,         (A10) 

 

and the term Ra  is given by 

 

( ) eqdeqdeqvR XkXkXfkaaa 221 =+=+= .      (A11) 

 

The decay time can be calculated from the system Jacobian, which is 

 

( ) d
X

v
X

eq k
X
f

k
dt
dX

X
XJ

eqeq

−
∂
∂

=







∂
∂

= .      (A12) 

The decay time for small perturbations is then given by the negative inverse: 

 

( )
eqX

vd
eq

d

X
f

kk
XJ

t

∂
∂

−
=

−
=

11
.       (A13) 

 

The variance is therefore given by 

 

( ) eqeqeq

X
vd

ddR XXhX

X
f

kk

kt
aV

eq

=

∂
∂

−
=≅

2
     (A14) 

where 
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( )
1

1

−















∂
∂

−=
eqXd

v
eq X

f
k
k

Xh         (A15) 

 

is a noise amplification factor. Using Eq. (A10) gives  

( )
1

1

−






















∂
∂

−=
eqX

eq X
f

f
X

Xh ,        (A16) 

which alternatively can be written in control coefficient notation as ( ) ( ) 1
1

−
−= f

Xeq CXh , 

or from Eq. (A13) as ( ) ddeq tkXh = . 

 

For simplicity, we have assumed that the protein X is produced in a single step. If 

transcription and translation are modeled separately, the intermediate step will enhance 

the stochasticity in Eq. (A11) by a factor α . If the decay rate of protein is much slower 

than that of mRNA, then b+≅ 1α , where b is the average number of proteins produced 

per mRNA lifetime (cf Thattai and Oudenaarden 2001); however the amplification of 

noise due to autoregulation remains the same. Thus we can write 

 

( ) 0VXhV eq≅ ,          (A17) 

 

where 0V  is the variance for the same mean level of protein in the absence of 

autoregulation. 

 

The method can be generalized to higher dimension systems. The decay time dt  will 

depend on the type of perturbation, which can be accounted for by performing an 

eigenvalue analysis. Suppose the Jacobian J  has eigenvalues iλ with corresponding 

eigenvectors iu . The drift can likewise be decomposed into the directions iu . The 

different components will then decay at rates given by 
i

it λ
1−

= . For example, if 
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transcription and translation are modeled as separate steps, a faster rate will typically 

correspond to the decay rate of mRNA, and a slower rate to the decay of protein. This 

method has been incorporated into the program Dizzy, and will presented in more detail 

in a separate paper. 
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Figure legends 

 

Figure 1. Plot of a stochastic simulation of the system in Eq. (6) with negative auto-

regulation (left panel), and system in Eq. (10) with positive auto-regulation (right panel). 

Parameters are as in the text, with 150=vk  in the former case, and 147=vk  (to give the 

same mean level) in the latter. Also shown are the mean, and the mean plus/minus one 

standard deviation. Simulation duration is deliberately long to get good statistics. 

 

Figure 2. A and B show equilibrium values and log density plot of X for the system with 

negative auto-regulation (left) and positive auto-regulation (right). Red indicates high 

density, blue low density. C and D compare the predicted standard deviation with the 

observed value. Also shown is the neutral case where there is no noise amplification. E 

and F show the basins of attraction for either system, as discussed in the text. The 

horizontal axis to the left is X, the axis to the right is vk , so the view is from low to high 

vk . Vertical axis Y is defined by Eq. (12). Solid line is the equilibrium value of X in the 

ODE. For high vk  (back edge), the surface for negative regulation (left) has higher 

curvature than that on the right, implying greater stability. 

 

Figure 3. A and B show density plot for X as a function of the transcription rate kv. The 

solid black line shows the stable equilibria for the ODE system, white line shows 

unstable equilibrium. In panel A, kv was started at zero and slowly increased, while in  

panel B kv was started at 170 and slowly decreased. There is a small effect due to 

hysteresis. Color scale indicates log of density. Panel C compares the standard deviation 

of the monomer X and dimer X2 with the neutral case as kv is increased. The improved 

performance of the system is due in part to noise reduction relative to the neutral case, 

and in part because of the jump to a higher steady state near the bifurcation point of the 

ODE. Panel D shows the density plot for the dimer X2 when the decay rate of the dimer 

is halved, so that it decays more slowly than the monomer. 
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Figure 4. Schematic diagram showing how homo-dimerization affects decay 

characteristics. Panel A shows decay of perturbations in [ ]2, XX  phase space. Panels B 

and D compare estimated and measured decay as a function of time. Perturbations in the 

direction [-2,1] corresponding to dimerization, i.e. constrained so that the total protein 

22 XX ⋅+  is unchanged, will decay rapidly at a rate given by td1 (black line, panel B). 

Perturbations in the direction [1,0] decay rapidly in the direction [-2,1] until the dimers 

are in equilibrium with the monomers (solid blue line, panels A and D). The remaining 

perturbation, of magnitude s, then decays at the slow rate given by td1 (dashed blue line, 

panels A and D). The expression for s (panel C) can be determined from the geometry. 

Perturbations in the direction [0,1] decay rapidly to a magnitude equal to 2s (red lines, 

panels A and D). The horizontal time scales in B and D differ by a factor 1000. 

 

Figure 5. Oscillator behavior at transcription rate v=0.4, for which the ODE system has a 

stable point. Shown are the low ( Ω =200) and high ( Ω =50) stochasticity cases. Panels A 

and B show a phase diagram of PN versus Mp (in nM). Trajectories initiated at the ODE 

stable point are perturbed in a stochastic fashion, and are drawn into an oscillatory 

behavior by the model dynamics. Panels C and D show a time series of Mp, E and F show 

the power spectrum with a clear spike near the circadian frequency of 1/24. 

 

Figure 6. Standard deviation of Mp (in nM) as a function of transcription rate v for the 

oscillator model. Shown are the high ( Ω =50) and low (Ω =200) stochasticity cases, as 

well as the estimated standard deviation, which scales as 
Ω
1

. The accuracy of the 

estimate is better for the low stochasticity case, and decreases as v approaches the 

bifurcation point and the Jacobian becomes ill-conditioned, but the method still provides 

a useful approximation over the range. 

 

Figure 7. Spectral bifurcation diagrams for the ODE circadian oscillator (A), the 

stochastic simulation with low stochasticity (B), and high stochasticity (C). Horizontal 

axis is the transcription rate v, vertical axis is the Mp frequency, colour is the log power at 

that frequency. The ODE shows power at higher values of v only at a base frequency of 
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about 1/24 and its multiples, indicating periodicity. The stochastic simulations show 

power at a range of frequencies, with a peak near the circadian frequency, and extends to 

lower ranges of v. At several values of v, the stochastic trajectories drop down to lower 

frequencies. 
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