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1. Introduction

Genetic regulatory networks (GRNs) control cellular state, form, and function. They

are responsible for executing embryonic developmental programs, changing cellular

state in response to signaling events, and controlling metabolic processes based

on environmental conditions. Specific examples include the early cell specification

process within the sea urchin embryo,1 the control of galactose uptake in yeast,2−4

and the pathogen-triggered immune response within a macrophage5.

GRNs typically involve feedback interactions among multiple genes. For exam-

ple, Figure 1 shows interactions among 36 genes involved in the specification of

three cell types in early sea urchin embryos1. The expanded section highlights the

complex feedback interactions in a small part of the network. Such multiple feed-

backs make Gedanken understanding the behavior of larger GRNs virtually impos-

sible. The situation is frequently more complex in adult organisms, where feedback

loops intertwine genetic, metabolic, and signaling networks closely. Signaling and

metabolic events change the state of a GRN, which in turn modifies the structure

of the “upstream” signaling/metabolic network. For example, in the yeast galac-

tose utilization pathway, complex interactions among the regulatory genes GAL3 ,

GAL4 , and GAL80 control the synthesis of a handful of enzymes that regulate

galactose metabolism4. In turn, imported galactose activates the regulatory protein

Gal3p, which inhibits the repressive effect of the Gal80p protein on the GAL regu-

lon. This is a positive feedback loop between the regulatory and metabolic networks,

as shown in Figure 2. The prevalence and complexity of feedback loops necessitates
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Fig. 1. Schematic diagram of 36 interacting genes underlying endomesoderm specification in early
sea urchin embryos1. Each gene is represented by a horizontal line (denoting DNA) and a bent
arrow (denoting the basal transcription apparatus). The portion of the horizontal line preceding
the bent arrow represents the cis-regulatory region of the gene. Lines emanating from one gene
and incident on another, denote transcriptional regulatory interactions. Some interactions involve
signaling (indicated by a double chevron symbol) and/or protein interactions. The call-out region
highlights some of the important feedback interactions in the endoderm. It is noted that additional
information such as biochemical reaction rate constants and a mechanistic description of gene
regulation are required in order to simulate the dynamics of the network depicted in the diagram6.

Fig. 2. Schematic diagram of the core genetic regulatory network of the galactose utilization path-
way in yeast4 . Only the galactose-import part of the metabolic pathway is shown (GAL2 gene
and thick blue arrows indicating galactose importation and processing). There is a feedback loop
between the metabolic import of galactose, Gal3p activation, Gal80p inactivation, and Gal2p con-
trol of galactose importation. It is noted that additional information such as biochemical reaction
rate constants and a mechanistic description of gene regulation are required in order to simulate
the dynamics of the pathway depicted in the diagram4.
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computational modeling and simulation of large-scale networks that include genetic,

metabolic, and signaling elements.

A complication in modeling large-scale GRNs is that the small numbers of

molecules involved result in inherently high levels of stochastic noise in GRNs.

Only two copies of each gene are transcribed in diploid organisms, and the number

of mRNA molecules expressed by genes that code for transcription factors is typ-

ically small7. Stochastic noise in GRNs can result in complex patterns of cellular

heterogeneity8−10. The effects and significance of such variability can be analyzed

with stochastic simulations11−17, but the computational cost of stochastic simula-

tions often increases dramatically with model complexity.

The task of conducting stochastic, large-scale GRN simulations is further com-

plicated because transcription and translation are highly complex processes whose

kinetics we can only approximate. In Figure 3, we show some of the critical steps in

(A)

KP-P
KP-DNA

(B) (C)

(D) (E)

Fig. 3. Major steps in transcription: (A) One or more transcription factors diffuse along DNA
and bind to specific sites. (B) Cooperative interactions recruit co-factors. (C) Physical DNA is
re-structured (e.g., looping, chromatin remodeling). (D) Recruitment of the transcription complex
and initiation of transcription. (E) Translocation on DNA, and initiation of further transcriptions.

eukaryotic transcription. The five steps depicted in this cartoon compress into sin-

gle events, complex chemical interactions each involving tens of molecular species.

The component interactions for most of these “events” are not fully understood and

so cannot be modeled at the level of true chemical kinetics. Even if these details

were fully known, the sheer number and complexity of interactions would make

exact mechanistic simulation of all steps in gene transcription computationally pro-
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hibitive for any more than a few genes. Thus, there is a pressing need to model

transcription in terms of a series of approximate models. The approximate models

abstract out the unknown detailed steps, but preserve the key known features of

transcription and translation and faithfully capture intrinsic noise characteristics.

Consider the last step in Figure 3, the translocation of the transcription appa-

ratus along DNA. For a typical mRNA molecule, this would involve approximately

103–104 individual, base-pair by base-pair DNA copying and translocation steps.

A GRN modeler would often require only the times at which RNA molecules are

released and not be interested in the intermediate steps between transcription initi-

ation and transcript release. Yet, to understand the effect and role of transcriptional

noise in network behavior, an accurate model of RNA production is needed.

Because of the large number of factors and co-factors that collectively regulate

animal genes, modeling the formation of a transcription factor complex on DNA and

the steps that lead to transcription initiation can involve thousands of elementary

reaction steps. For a multi-gene network, the task of generating a model description

would therefore be daunting even if all the individual steps were known.

Thus, analysis of the behavior of GRNs requires the modeling of

• Interactions of multiple (often large numbers of) genes.

• Metabolic / signaling networks that regulate and are regulated by the genes.

• Feedback interactions within and between the above networks, giving rise

to complex nonlinear dynamics.

• Stochastic kinetics arising from the small numbers of molecules.

• Reduced models of transcription and translation that compress the hun-

dreds of individual reaction steps involved in transcription and translation

to a few steps, while retaining the above four critical features.

In the rest of this paper, we describe a modeling and simulation software pro-

gram, Dizzy, which answers all the above needs and offers additional benefits.

2. Overview of the Dizzy software system

In this section, we give an overview of the major features of Dizzy, a software

framework for modeling the dynamics of complex biochemical systems.

Modular simulation framework: Dizzy employs a modular design in which

each simulator is a software unit that conforms to a simple, well-defined interface

specification. The biochemical modeling semantics are separated from the descrip-

tion of how the dynamics is to be solved. This architecture facilitates an iterative

model development cycle in which the model is analyzed using various simulation

algorithms. The simulators implemented in Dizzy are described in Section 3.

Templates–reusable and hierarchical model elements: Dizzy’s model def-

inition language permits the definition of reusable, parameterized model elements

called templates. This enables the construction of a prepackaged library of templates

that can simplify the task constructing a complex model. The template feature is
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further described in Section 4.

Complex kinetic rate laws: Dizzy enables the creation of reduced stochastic

models containing reactions whose propensities may be expressions of arbitrary

complexity, representing the average effect of underlying reaction steps that are in

quasi-steady-state (QSS). This permits efficient approximate modeling of enzyme-

catalyzed reactions and other processes for which the overall kinetic rate is more

complicated than mass-action kinetics. This feature is further described in Section 5.

Multi-step and delayed reaction processes: Dizzy enables the simulation of

complex multi-step processes such as elongation and translocation during transcrip-

tion or translation, through two methods. One may define a “multi-step” reaction

process, or a reaction process with an intrinsic, phenomenological time delay. The

multi-step and delayed reaction features are described further in Section 6.

Estimation of steady-state stochastic noise: Dizzy provides a feature for

estimating or calculating the steady-state stochastic fluctuations of the species in a

biochemical model, requiring only the solution of the deterministic dynamics. The

steady-state noise estimation feature is described further in Section 7.

Integrated, graphical, and portable software framework: Dizzy has sev-

eral important software features including integration with external software tools, a

graphical user interface (GUI), and a high level of portability. The software features

of Dizzy are described in Section 8.

Many software tools are available for solving the deterministic and stochastic

dynamics of complex biochemical networks18−20. A detailed overview of the most

common algorithms for simulating biochemical kinetics is presented in Section 2 of

the Supplementary Material. In Table 1, we compare some of the more widely-used

simulation software tools against a specific list of simulation algorithms and features

described above. To the best of our knowledge, Dizzy is the first software tool

available that includes all of the features enumerated above. In addition, it includes

novel implementations of the Gibson-Bruck and Gillespie Tau-Leap algorithms that

are applicable to models with complex kinetic rate laws. At present, Dizzy is not

able to explicitly model spatially inhomogeneous chemical species concentrations

and transport phenomena such a diffusion. However, Dizzy permits partitioning of

a model into distinct spatial compartments. Each compartment volume is treated

as a spatially homogeneous, continuously well-stirred system.

3. Modular Simulation Framework

Dizzy has a modular design in which a simulator is a plug-in that conforms to a

well-defined software interface. Each simulator is implemented as a self-contained

unit that creates all of the internal data structures it needs to function. This allows

for a variety of simulation techniques to be applied to a single model description,

and for the clean separation of the simulation method from the model description.

The model definition is focused on the biochemical semantics of defining chemical

species and reactions. The technique and parameters for simulating the model are
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Software Name Deterministic Stochastic Hybrid Templates Stoch QSS Multi-step

Dizzy ODE GD, GB TL yes yes yes

BioNetS21 ODE GD HR yes

BioPSI22 PRSS

BSTLab23 ODE

Cellerator24 ODE yes

BioCharon25 ODE/DE yes

Cellware26 GD TL

DBSolve27 ODE

Dynetica28 ODE GD yes yes

E-Cell29 ODE GD, GB HR yes

ESS30 GD
Genomic Ob-
ject Net31

ODE/DE HPN HFPN yes limited

Gepasi32, 33 ODE yes

Jarnac34 ODE (see SBW) yes

JSim35 ODE/DE

JWS36 ODE

KineticIT17 VB

KINSOLVER37 ODE

MCell38 GD

Metabolizer39 ODE GB

MMT240 ODE yes

NetBuilder41 DGAF limited

SBW34, 42−46 ODE GD, GB TL

SigTran47 ODE GD, GB, FB limited

Simpathica48 ODE

Stochastirator49 GD

StochSim50 FB

STOCKS151 GD

STOCKS214 GB TL yes

STODE52 GD yes

ULTRASAN53 SPN

Virtual Cell54 ODE

Table 1. This table compares simulation software programs. The simulation algorithms referenced
in this table are described in Section 2 of the Supplementary Material. The column “Deterministic”
lists the deterministic algorithms supported by the software. The abbreviations used are as follows:
ODE, an ordinary differential equation solver; ODE/DE, a hybrid ODE solver that supports
discrete events; DGAF, a directed graph of algebraic functions. The column “Stochastic” lists the
stochastic simulation algorithms supported by the software. The abbreviations used are as follows:
GD, Gillespie’s Direct method55 ; GB, the Gibson-Bruck Next Reaction method56 ; FB, the Firth-
Bray multi-state stochastic method57 ; HPN, a hybrid Petri net method58 ; SPN, a stochastic
Petri net method53 ; PRSS, the Priami-Regev-Shapiro-Silverman π-calculus method22, 59. The
column “Hybrid” lists the hybrid stochastic/deterministic or accelerated approximate stochastic
simulation algorithms supported by the software. The abbreviations used are as follows: TL,
the Gillespie Tau-Leap method11, 13; HFPN, a hybrid function Petri net method31 ; HR, the
Haseltine-Rawlings method12 ; VB, the Vasudeva-Bhalla method17 . The column “Stoch QSS”
means that stochastic simulations with complex rate laws based on the quasi-steady-state (QSS)
assumption (as described by Rao and Arkin16), are supported. It should be noted that BioNetS,
Simpathica, ESS, and BioCharon are all available within the BioSPICE Dashboard software60.
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specified in the simulation controller, and do not require changes to the model.

Dizzy includes both stochastic and deterministic simulators. The stochastic sim-

ulators are discrete-event or multiple-event Monte Carlo algorithms; for information

about the random number generator used, please refer to Section 3.2 of the Sup-

plementary Material. The deterministic simulators model the dynamics as a set of

ordinary differential equations (ODEs) which are solved numerically.

One benefit of this modular design is that one may use a deterministic ODE-

based solver for optimization and parameter fitting, and switch to a stochastic sim-

ulation technique for exploring the stochastic dynamics, once the model parameters

have been established. This modularity also simplifies the task of implementing a

new simulator and integrating it into the system. In this section we describe the

simulators available in our software system.

Dizzy includes an efficient implementation of a stochastic simulator based on

Gillespie’s Direct Method55. It uses the Monte Carlo technique to generate an ap-

proximate solution of the master equation61 for chemical kinetics. In this method,

simulation time is advanced in discrete steps, with precisely one reaction occur-

ring at the end of each discrete time-step. Both the time steps and the reaction

that occurs are random variables. The Direct Method requires recomputing all

reaction probability densities after each iteration. The computational complexity

of the method therefore increases linearly with the number of reactions. Further-

more, for sufficiently large simulation time, the total number of iterations can be

prohibitively large for some systems. Nevertheless, for simple systems with small

numbers of species and reactions, the Direct Method can be useful.

Dizzy also implements a stochastic simulator based on Gibson and Bruck’s Next

Reaction Method56. The computational cost of this Monte Carlo-type method scales

logarithmically with the number M of reaction channels, in contrast with the Gille-

spie algorithm which scales linearly with M . We have implemented a tree traversal

technique to analyze a rate expression for a chemical reaction that has a complex

kinetic rate law, in order to ascertain the dependence of the rate expression upon

the various chemical species in the model. This permits applying the Gibson-Bruck

method to models that implement complex kinetic rate laws, such as those cases

described in Section 5.

Two stochastic simulators based on Gillespie’s Accelerated Approximate

Method11, 13 (here referred to as the “Tau-Leap” Method) have been implemented

in Dizzy. The Tau-Leap Method is a stochastic process that approximately solves

the chemical master equation, based on a controllable, dimensionless error param-

eter ε. A quantity known as the “maximum allowed leap time” τ is periodically

computed based on ε, according to the Gillespie-Petzold formula13. If the time scale

τ is less than a few times the inverse aggregate reaction probability density (where

the exact threshold is configurable and only effects efficiency), a Gillespie Direct

discrete event is carried out. In the case where τ exceeds the threshold time scale,

a “leap” is performed. The number of times each reaction occurs during the time

interval τ is generated using the Poisson distribution based on the reaction’s proba-
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bility density per unit time. The state of the system is updated to reflect the realized

number of times each reaction occurs during the time interval τ . After each “leap”

iteration, the maximum allowed leap time τ is recomputed.

Two versions of the Tau-Leap algorithm have been implemented, Tau-Leap Com-

plex and Tau-Leap Simple. The Tau-Leap Simple algorithm is intended for simple

models entirely composed of reaction channels with mass-action kinetics. The Tau-

Leap Complex algorithm is a novel adaptation of Tau-Leap that is intended for

use with models with complicated (e.g., enzymatic) rate expressions whose par-

tial derivatives are very expensive to evaluate symbolically. In this method, the

full symbolic Jacobian is stored and used at each iteration, in order to exploit the

caching of evaluated, algebraically complex sub-expressions in the computation of

the Gillespie-Petzold formula.

Using the Poisson distribution to model the number of times Nf a given reac-

tion can occur during a time interval τ , has the disadvantage that the exponential

tail allows for rare events in which the realized number of times a reaction occurs

(generated from the distribution) is too great for the numbers of reactant species

available; we call this “reactant exhaustion.” This is not indicative of a failure of the

algorithm per se, but of a need to decrease the time scale τ . Our implementation

avoids this problem with a three-part adaptation. First, we calculate the expected

change in all species concentrations assuming all reactions occur a number of times

equal to the propensity times τ (this is just the mean value of the distribution).

If any species is expected to be become negative as a result, the time scale τ is

decreased in proportion to how early in the interval τ the species is expected to be-

come exhausted. Second, for each reaction channel, we derive the maximum number

of times a given reaction can occur before its reactants are exhausted; from this we

derive the mean time scale tex for reactant exhaustion. If half this time scale is less

than τ , then τ is decreased to 0.5tex. Third, if despite the previous steps a resultant

Nf causes reactant exhaustion, a new set of realized Nf values is generated; in

practice such occurrences are extremely rare, so the risk of bias is minimal.

Dizzy also includes a deterministic simulator based on a fifth order Runge-Kutta

ODE solver. Step size is adaptively controlled, based on a fourth order error estima-

tion formula62. Both relative and absolute error tolerances may be independently

specified, as well as the initial step size. Although Runge-Kutta is not state-of-the-

art for high-accuracy integration, it is particularly useful for models in which a

derivative function is discontinuous62, 63.

Two additional deterministic simulators have been implemented based upon

the odeToJava ODE solver package by Patterson and Spiteri64, 65. This package

includes a Dormand-Prince fourth/fifth order solver66 with adaptive step size con-

trol. It also contains a Runge-Kutta implicit-explicit ODE solver67 that is useful

for systems with a high degree of stiffness63.

The performance of the deterministic and stochastic simulation algorithms de-

scribed above has been benchmarked using a variant of the heat-shock response

model for Escherichia coli proposed by Srivastava et al.68 and adapted by Taka-
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hashi et al. for benchmarking the performance of the E-Cell simulator69. This model

includes a large separation of dynamical time scales, which is typical of complex

biochemical networks. The text of the model is included in Section 4 of the Supple-

mentary Material. The benchmark results for the heat-shock model are summarized

in Table 2. The results show the efficiency of the Gibson-Bruck algorithm relative to

Algorithm Running time

Gillespie Direct 514.6 ± 28.2 s

Gibson-Bruck 404.9 ± 10.7 s

Tau-Leap Simple 35.53 ± 0.43 s

Tau-Leap Complex 9.55 ± 0.15 s

Dormand-Prince 5/4 ODE 1.814 ± 0.020 s

Table 2. Benchmark results for solving the dynamics of the E. coli heat-shock model out to
100 seconds. The benchmark was carried out on a workstation with a single Intel Pentium 4
processor with a clock speed of 2.79 GHz and 1 GB of RAM. The operating system was Red
Hat Linux release 8.0, kernel version 2.4.20. The Java Runtime Environment (JRE) used was
the IBM Java Development Kit (JDK) version 1.4.1, standard edition. The heat-shock model
was solved for 100 seconds of simulation time, using five algorithms: Dormand-Prince fourth/fifth
ODE, Gillespie, Gibson-Bruck, Tau-Leap Complex, and Tau-Leap Simple. The ensemble size for
the stochastic simulators was one. For each of the five simulators, the simulation was repeated ten
times, in order to obtain an average. The ε error tolerance for the Tau-Leap algorithms was 0.01.
Both the relative and absolute error tolerances for the ODE solver were 10−4.

the Gillespie Direct algorithm, and the significant speed improvement of Tau-Leap

algorithms over the Gibson-Bruck and Gillespie algorithms. It should be emphasized

that no modificationsa of the model definition file were necessary in order to switch

between the various simulation algorithms shown above This is made possible be-

cause our model definition language is simulation algorithm-agnostic. Furthermore,

the Tau-Leap method does not require an ad hoc partitioning of the model into

stochastic and deterministic reaction channels. This is a potential advantage in an-

alyzing a complex model for which the “fast” and “slow” degrees of freedom are

not known a priori.

4. Templates: Reusable and Hierarchical Model Elements

The iterative and integrative process of model building in systems biology entails

frequent re-use and adaptation of existing models of biochemical networks and sys-

tems. The increasing complexity of models leads to repetition of structurally similar

network elements within a model. We employ a template semantic to enable the

definition of reusable and hierarchical model elements. In this section we describe

this template feature.

aChanging the simulation algorithm necessitates changing certain parameters related to simulation
control and accuracy. These changes occur outside the scope of the model definition file.
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A template is a parameterized macro that has a type name. The template may be

referenced multiple times within a biochemical model. The type name gives some

indication of the function and content of the template. For example, one might

define a template with type name yeastGene. Each time a template is used within

a model, it is given an instance name, such as GAL7. For a given template, all

instance names must be unique.

A template typically contains one or more chemical species definitions and reac-

tions that are internal to the template, which means that these species and reactions

inhabit a namespace that is “local” and distinct from the “global” namespace of

the model. This means that if template yeastGene contains a definition for species

A, then the template instance GAL7 will contain a species GAL7::A. This ensures

that chemical species and reactions that are physically or conceptually localized to

a particular template instance, do not interfere with their counterparts in another

instance of the same template.

A template is a parameterized macro, which enables the template instance to

interact with the rest of the model. A template parameter may simply be a numeric

value such as the rate of a biochemical process or the coding region length of a

gene. Each template instance may have a different value, that is passed to the tem-

plate instance through the template reference semantic. Alternatively, a template

parameter may represent a chemical species that is not localized to the template

instance, for example, a transcription factor in the nucleus. Finally, a template pa-

rameter may represent a numeric quantity that is the “output” of the template. For

instance, the template feature is used to define fractional saturation functions for

transcriptional activation, and the value of the fractional saturation function is the

“output” parameter of the template (see Section 5 for more information).

Templates are hierarchical in the sense that a template definition may contain a

template instance. In such a case, the inner template namespace is nested within the

containing template’s namespace. A file inclusion mechanism allows the separation

of template definitions from the model definition. This facilitates the development

and re-use of a library of previously defined and curated model elements, such as

genes, fractional saturation functions, and so forth.

A sample model definition file employing the template feature is shown in Sec-

tion 5 of the Supplementary Material. The model describes the galactose utilization

pathway in yeast.

5. Stochastic reactions with complex kinetic rate laws

Reactions described by complex kinetic rate laws present a particular challenge for

stochastic modeling. Most formulations of stochastic chemical kinetics are based

upon the assumption of elementary mass-action kinetics for all reaction channels55.

This assumption often does not apply to complex rate laws, which may consist of

many independent elementary interaction steps. These steps may be unknown, or

their kinetic data may be unknown. This lack of sufficient information to formulate
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the kinetics of the system completely in terms of elementary (mass-action) reac-

tion channels is a stumbling block to performing stochastic simulations of complex

biochemical networks. In a related problem, very large collections of fast-occurring

reaction channels within a model may be prohibitively expensive to stochastically

simulate. In both cases, it may be desirable to simulate a reduced master equation

that approximates the time-averaged effect of the fast reaction channels. In this sec-

tion we describe how our simulation environment enables the stochastic simulation

of such a reduced master equation.

Rao and Arkin propose an approximate method16 for stochastically simulating

an enzyme-catalyzed processes governed by a complex rate law. In this method, the

rate law is evaluated in terms of the number of substrate molecules, which will be a

random (fluctuating) variable. The rate is then converted to the units of the reac-

tion parameter, molecules per second. The Rao-Arkin method is applicable under

the “quasi-steady-state” (QSS) condition, in which there exists a large separation

between the (shorter) time scale of the reversible enzyme-substrate complex reac-

tion events, and the (longer) time scales of interest in the system. Rao and Arkin

suggest that under the QSS conditions, this approximation represents a systematic

reduction of the chemical master equation based on time scales.

With the goal of enabling the stochastic simulation of models using complex rate

expressions beyond mass-action kinetics, our model definition environment allows

defining the rate of a chemical reaction as an arbitrary mathematical expression. It

is understood that one is solving the stochastic dynamics of an approximate reduced

master equation, and that the validity of the solution depends on the validity of the

reduced master equation. This feature enables the solution of the dynamics of sys-

tems involving the coupled dynamics of a regulatory network and a metabolic path-

way. In the regulatory network, intrinsic stochasticity is important. In the metabolic

pathway, metabolite conversions are taking place at such a high rate that one may

apply the QSS assumption for the detailed interactions underlying the pathway

steps.

The initiation of transcription for genes in the GAL regulon in yeast illustrates

the efficiency of using complex kinetic rate expressions in a stochastic simulation.

In the GAL regulon, the Gal4p homodimer is a transcription factor, and the Gal80p

homodimer can bind on top of Gal4p and repress transcription. For genes with mul-

tiple binding sites, Gal80p dimer binding is thought to be cooperative. The number

of Gal4p transcription factor binding sites for GAL genes varies from one to five70.

The number of distinct states (and possible state transitions) increases as three to

the power of the number of binding sites. The GAL2 gene has five binding sites; the

number of states of the cis-regulatory region is 243. The number of unidirectional

elementary reactions implementing transitions between these states is 1580. In a

complex multi-gene model, exact modeling of the dynamics of transcription factor

binding for all of the cis-regulatory regions is computationally prohibitive.

In order to approximately model the effect of transcription factor concentrations



March 8, 2005 13:49 WSPC/INSTRUCTION FILE paper

12 Stephen Ramsey, David Orrell and Hamid Bolouri

on the stochastic probability density for initiation of transcription, one can define a

time-averaged fractional saturation function for transcription initiation at steady-

state. This function can be analytically calculated in terms of a sum of probabilities

for configurations that lead to transcription71. We have derived a general formula for

the fractional saturation for N binding sites and three states (empty, factor bound,

and factor plus repressor bound) at each binding site, including the effect of coop-

erativity for transcription factor binding4. This formula permits efficient stochastic

simulation of transcription initiation as a function of repressor and transcription

factor concentrations, without the burden of simulating a multiplicity of elemen-

tary reactions for all possible state transitions. This constitutes an approximation

to the full underlying dynamics of transcription factor binding. The accuracy of the

approximation depends on the relative sizes of two time scales: the time scale over

which the transcription factor concentration is varying, and the time scale on which

transcription factor binding reactions are occurring. Our simulations indicate that

if the former time scale is at least two times the latter, the fractional occupations

of the micro-states of the cis-regulatory region should remain in quasi-steady-state

with respect to the slowly-varying transcription factor concentrations, and the ap-

proximate method should have no more than 10% deviation from the transcription

initiation rate given by the full stochastic dynamics.

Figure 4 shows the ensemble-averaged fractional saturation calculated using the

exact stochastic method, as compared with our time-averaged steady-state frac-

tional saturation function. The excellent agreement between the approximate and

exact methods illustrates that in some cases, a large collection of fast-occurring el-

ementary reactions may be replaced with an algebraic expression summarizing the

steady-state, time-averaged behavior. In addition, the dependence of the fractional

saturation level on the number of binding sites is consistent with expectations based

on thermodynamics4. Using the template feature of the Dizzy modeling language

described in Section 4, the fractional saturation function is made available as a

reusable modeling element.

6. Multi-step and Delayed Reaction Processes

The dynamics of genetic regulatory networks involves delays due to transloca-

tion/elongation times for transcription and translation6, 18, 72. In this section, we

describe our two methods for modeling such processes.

Following Gibson and Bruck’s model of transcription as a cascade of structurally

identical chemical reaction steps56, 73, we have implemented a “multi-step” reaction

channel as a modeling element in our system. Conceptually, a multi-step reaction

is a chain of elementary, irreversible reaction steps transforming species A into

species B. The reaction parameter for each elementary reaction step is k. We have

implemented methods for modeling the kinetics of such multi-step processes in both

the deterministic and stochastic simulation cases.

In the case of stochastic simulations, the method of Gibson and Bruck56 is used,
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Fig. 4. Comparison between the exact stochastic model and the approximate ODE model of
transcriptional activation, for genes with different numbers of binding sites in the GAL regulon in
yeast. The stochastic simulation includes all possible state transitions between different binding
site states for the cis-regulatory region; the Gibson-Bruck algorithm was used, with an ensemble
size of 1000. The ODE solution shows the transcriptional activation in the case where a fractional
saturation function is used to approximately model the average effect of the possible cis-regulatory
interactions; the Dormand-Prince 5/4 algorithm with a relative tolerance of 10−4 was used.

in which the probability density distribution P (τ) for the multi-step reaction to

complete after it has started is given by the gamma distribution. For the case of

deterministic (ODE) kinetics, we implement a numerical method for solving the

multi-step kinetics as an integro-differential equation. We compute the instanta-

neous rate of production of B as k multiplied by a convolution of the concentration

A with P (τ). For details, please refer to Section 3.4 of the Supplementary Material.

As an approximation to a multi-step reaction with a large number of steps,

Dizzy allows the definition of an irreversible reaction A −→ B with an intrinsic

time delay. For the case of a stochastic simulation of a reaction channel with a time

delay, we employ a non-Markovian stochastic process in which a molecule of species

A is consumed, and a molecule of species B is produced, with a fixed delay between

the two events. For the case of a deterministic simulation of a reaction channel

with a time delay, we employ a delay differential equation (DDE)74. For a detailed

description of the implementation, please refer to Section 3.3 in the Supplementary

Material.

The yeast galactose utilization model has been analyzed with the inclusion of

translocation delay times for transcription and translation. Figure 5 shows the time-

series data for mRNA levels for the model. The effect of the elongation time is clearly
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size of 100. The external galactose level is 0.5 mM, which corresponds to 10% induction.

visible, as compared to the same model with no translocation/elongation delays4.

7. Estimation of steady-state stochastic noise

In model development, it is frequently necessary to conduct many simulations of a

model, in order to optimize model parameters for best agreement with experimental

data. The high computational cost of conducting stochastic simulations of complex

models motivates the need for a fast technique to estimate the steady-state noise

level in a biochemical network. Orrell et al.75 have developed a fast method for

estimating the steady-state stochastic noise in a kinetic model.

The system, consisting of M reaction channels and N species, is evolved de-

terministically using ODEs to steady-state, and the N × N Jacobian matrix J is

computed and diagonalized. The eigenvalues of J are represented as a vector ~E. The

real parts of ~E are checked to ensure negativity at the steady-state. We construct

a diagonal matrix T whose elements Tii′ are given by the formula,

Tii′ = Iii′
1

√

−Re(Ei)
(1)

where I is the identity matrix, and i, i′ ∈ {1, . . . , N}. We then compute the matrix

P of eigenvectors of J. The stochastic variance σ2

i of the ith species at steady state
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can then be computed using the formula75

σ2

i =
1

2

M
∑

j=1

aj

[

(PTP−1v)ij

]2

. (2)

where the ij subscript denotes the ij element of the matrix PTP−1, aj is the in-

stantaneous rate of the jth reaction in events per unit time, and v is the N × M

stoichiometric matrix for the system. Because this technique is based on a lin-

earization of the model around a steady state, it is only applicable for estimating

the fluctuations of the system when it is near steady state.

The aforementioned steady-state fluctuation estimation technique has been ap-

plied to a reduced version of the yeast galactose utilization model (see Section 5

of the Supplementary Material) governing the production of the protein Gal7p,

when the external galactose level is 0.5 mM. Simulations were performed using

both an ODE solver and the Gibson-Bruck simulator. The results are summarized

in Figure 6. The results show that the technique gives a reasonable estimate for the
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Fig. 6. Coefficient of variation of the steady-state fluctuations of the species involved in the pro-
duction of Gal7p in the yeast galactose utilization pathway. The stochastic method of calculating
the fluctuations (“measured”), and the ODE estimation technique (“predicted”), are compared.
The error bars on the stochastic results are one-sigma uncertainties, due to the finite ensemble
size of 100. The (d) symbol indicates a homodimer.

steady-state noise level, even for the case of a complex model. The degree of accu-

racy in the estimate will depend on how close the system is to steady-state, and on

the extent of non-linearities in the model that may render the linearized approxima-

tion invalid. The technique quite accurately quantifies the change expected in the
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noise level due to a change in the model75. The ODE-based estimation technique

is extremely fast, in this case 105 times faster than the Monte Carlo (stochastic)

method.

Because of the speed of the estimation technique and its accuracy for quantifying

changes to noise based on changes to the model, the technique is well suited for use

in model parameter optimization, as well as estimating whether a full stochastic

simulation is needed to capture the steady-state behavior of chemical species of

interest. In addition, the estimation technique can be used to quantify the various

contributions to the noise for a given chemical species, from the different reaction

channels in the model76.

8. Integrated, graphical, and portable software framework

The notable software features of Dizzy are: portability across many computer archi-

tectures, integration with external software programs, and a graphical user interface

(GUI). In this section, these software features are described.

Dizzy is implemented in the Java programming language, which enables Dizzy

to execute on any computer platform for which a Java 2 Runtime Environment of

version 1.4.1 or newer, is available. Dizzy has been optimized for efficient numerical

computation in the Java Runtime Environment.

Dizzy is capable of simulating models expressed in the Systems Biology Markup

Language (SBML)77, 78 Level 1. Dizzy can also export a model into SBML. For

optimal performance, a model should be written in the Dizzy model definition

language, rather than imported from SBML. The SBML import feature enables

Dizzy to simulate a model constructed with the BioTapestry software program79.

Three of the simulation algorithms within Dizzy may be invoked through the

Systems Biology Workbench (SBW)42; the Gibson-Bruck, Gillespie Direct, and

Runge-Kutta ODE simulators. These simulators may be easily invoked from any

SBW-enabled model development platform, such as CellDesigner80 or JDesigner81.

Dizzy provides a menu-driven graphical user interface. This user interface in-

cludes screens for simulation control, model editing, plotting simulation results,

and browsing/searching the hypertext user manual. A screen capture of the Dizzy

graphical user interface is shown in Figure 7. Visualization of a biochemical model in

a graphical representation is enabled through a software bridge to the Cytoscape84

software system. More information about Dizzy’s software implementation, includ-

ing a listing of library dependencies, can be found in Section 3.1 of the Supplemen-

tary Material.

Dizzy is free and open-source software, distributed under the GNU Lesser Gen-

eral Public License (LGPL)85. The Dizzy software is available for download at the

web page http://magnet.systemsbiology.net/dizzy.
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Fig. 7. A screen capture of the Dizzy program showing a simulation of a model of circadian
rhythms in Drosophila melanogaster82 . The results indicate that the model has a stable fixed
point when simulated deterministically, but has unstable perpetual oscillations when simulated
stochastically83 .

9. Conclusions

In this paper we have presented a comprehensive software tool for conducting

stochastic and deterministic simulations of the dynamics of complex networks of

biochemical reactions. The tool is particularly well suited for modeling the dynam-

ics of integrated large-scale genetic, metabolic, and signaling networks.
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