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Abstract. Error in weather forecasting is due to inaccuracy proximation to the probability density function of the wieat's
both in the models used, and in the estimate of the currentuture state (Ehrendorfer, 1997; Palmer, 2000). Techrsique
atmospheric state at which the model is initiated. Becausénvolving singular vectors (Molteni et al., 1996) or brectve
weather models are thought to be chaotic, and therefore seners (Toth and Kalnay, 1993) identify the fastest growing pe
sitive to initial condition, techniques such as ensembite-fo turbations, so as to capture any rapidly growing modes. En-
casting have been developed to address the latter effect. Asemble shemes have proved to be essential tools in unde
ensemble of forecasts are made with perturbed initial condistanding the role of initial condition error.
tions, the aim being to produce an estimate of the probabil- The development of ensemble schemes was originally mo-
ity distribution function for the future state of the weathe tivated by two ideas. The first was that the models were
Some ensemble schemes also include changes to the modaighly sensitive to initial condition: if the flapping of a bu
S0 as to account for the effects of model error. While the en+erfly’s wings was enough to perturb the atmospheric flow
semble approach is quite widely adopted, however, its verand affect forecasts (Lorenz, 1963), then it followed toat{
ification is complicated. Furthermore, recent results-indi cast accuracy was limited by the effects of chaos. This could
cate that model error may be higher, and sensitivity toghiti be accounted for by running an ensemble of perturbed fore:
condition lower, than previously thought, so that model er-casts (Toth and Kalnay, 1993). The second idea, or working
ror is a dominant source of error over the first few days. Ithypothesis, was that model error should be relatively small
is therefore necessary to evaluate the effect of model erroat least for short forecast times: the ‘perfect model’ agsum
on ensemble forecasting. In this paper, we consider techtion (Buizza et al., 2000). Forecast error would therefore
niques to achieve this, based on the concept of shadow olbe dominated by the initial condition rather than the model
bits. Two of the methods aim to establish the ability of the (Toth et al., 1996).
model to shadow (stay close to) the analysis, and therefore 0  Ensemble schemes have since evolved, and more recel
the ensemble to represent the real weather. The third methogchemes attempt to account, not only for perturbations in
tests whether the convex hull of a particular ensemble, ashe initial condition, but changes in the model. One ap-
formed in the subspace spanned by the ensemble members dgoach is the multi-model ensemble (Harrison et al., 1999),
near the analysis. The techniques are illustrated usinga si which includes forecasts using different models as well as
ple medium-dimensional system, which is tuned to simulateinitial conditions. Another method is to perturb the model
weather model errors. Comparisons with full weather mod-itself, either by adding a stochastic error term to the model
els are also presented. It is shown that the presence of modeluations (Philips, 1986; Bennett and Budgell, 1987), or al
error can severely limit the accuracy of ensemble schemegowing changes to the model parameters or parameterisatio
while ensemble performance can also be used to deduce th&zhemes (Houtekamer et al., 1996; Buizza et al., 1997).
presence of model error. As ensemble useage has evolved, so have methods to ve
ify their accuracy. However, standard technigues for easem
ble verification, such as Brier scores, reliability diageam
1 Introduction and Talagrand diagrams, are usually based on statistieal af
proaches which, while providing useful diagnostics, do not
Ensemble techniques have become established in recent yeapecifically evaluate the role of model error. For example, i
as a method for generating probabilistic weather forecastsmay be the case that an ensemble scheme does a good job
By running forward an array of slightly perturbed initiallco ~ capturing the atmospheric variability, and yields prommsi
ditions, the ensemble forecast is intended to provide an apstatistical results, even though no ensemble member ie clos
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to the analysis after a couple of days (such an example wilthe predicted temperature, where the size of the error bars i
be considered in Section 6). determined from error statistics.

Our main concern here is that, while the ensemble ap- Finally, the purpose of this paper is of course not to im-
proach was originally developed in a context of high sensi-ply that ensemble forecasters are unaware of the importanc
tivity to initial condition and low model error, recentrésu  of model error. The history of weather forecasting is one of
indicate that model error is a major source of error over theincremental improvements to the models and the data. How.
first few days (Orrell et al., 2001). Furthermore, error dou- ever, it is also a historical fact that ensembles were design
bling times due to sensitivity to initial condition appeata-  to counter initial condition error, and only later adapted t
tively slow when measured in a global metric (Orrell, 2002). account for model error. Since the two types of error are
It is therefore necessary to evaluate the reliability ofeems  different in essence, it needs to be studied how ensemble
ble schemes when model error is significant, and determin@erform if model error is large. Also, while model error is
whether models are sufficiently good that the ensemble apeonstantly being reduced by the designers of weather mod
proach is applicable. In this paper, our aim is to developels, there is also a debate about whether resources shou
methods for gauging the effect of model error on ensem-be allocated to improving the initial condition, running reo
ble forecasts, based on the concept of shadow orbits (Smitlensemble members, and so on, or using/developing a bette

1996; Gilmour, 1998). model. An improved understanding of model error is essen-
A model is said to shadow a specified target (in this caseial to this debate.
the analysis) for a shadow timeif it remains within a spec- In this paper, three different methods for investigating th

ified radiusr of the target over the shadow time. Shadow effects of model error on ensemble forecasts are discusse
performance is primarily determined by model error. If a The first two address the question of whether shadow orbits
model does not shadow, then it is generally because modean, in principle, exist. The third is a simple test to defiersn
error is large; it may not therefore be appropriate to actounwhether a particular ensemble contains a shadow point afte
for the error by perturbing the initial condition. Also, ibn  a certain time. The techniques are illustrated using a sim-
shadow exists, then no small change to the initial conditionple medium-dimensional model/system pair, which is tuned
can result in a forecast near the analysis, or by implicationto simulate typical weather model error growth, and the re-
the actual weather, so the ensemble can not strictly spgakinsults compared with weather model results. In conclusion,
be used to generate a probability distribution functiorthe  we consider strategies to account for model error, inclydin
atmosphere’s future state. The existence of shadow ogbits ithe use of stochastic model error terms, and ask how goo«
therefore a test to determine whether the initial conditian a model has to be for the ensemble approach to work effi-
be perturbed so that the predicted state is near the analysis ciently.
whether the required correction is not in the initial corudit
but in some aspect of the model itself (model perturbations
will also be discussed below). 2 Thetwo-level system

Three points: firstly, by probability distribution functip
we mean for a particular forecast over different realisetio To illustrate the validation of ensemble techniques, wé wil
of observation error (Ehrendorfer, 1997), as opposed to aise a version of the Lorenz '96 system (Lorenz, 1996), that
probability distribution function over a large number ofde  is designed to simulate a number of properties of weathet
casts. If a model consistently predicts too high a value of,model behaviour. Théwo-levelsystem, which was intro-
say, temperature during the winter, and too low a value durduced in (Orrell, 2002) to study the causes of forecast error
ing the summer, then it may appear to give reasonable resuligrowth, consists of 8 large-scale variablesand 32 cou-
when averaged over the course of a year, but not for forecastgled small-scale variablag ;, which can be viewed as at-
on particular days. This will be discussed further when wemospheric variables around a circle. The equations, which
look at statistical methods for ensemble verification. are given in the Appendix, simulate properties such as ad-

Secondly, shadow performance is metric-dependent, so fovection, damping, and forcing. Model error is provided by
example a model may be able to shadow a local variable suchtochastic forcing terms which are present in the systein, bu
as temperature in a specific location, even though it fails toabsent in the model. In addition, the random component of
shadow in a more general metric. An ensemble will thereforeanalysis errors is simulated by adding a random noise com
generate a spread of temperatures, and the correct answponent to each observation of the system. The magnitude o
can be expected to lie within that range. One could say thathe noise term is set th0m in thez variables, an@.5ms !
the ensemble approach has succeeded. Our point, though, iisthey variables. (In reality, neither model errors or analysis
that, if a model does not shadow in a global metric, then thaterrors will be purely stochastic. Also, estimates of analys
is because of model error, not the initial condition. There-error magnitude will be affected by model error, due to use
fore, while perturbing the initial condition will result in ~ of the model in the analysis procedure. The aim here is not tc
certain spread (as will any kind of perturbation), and standaccount for all these effects, but only to produce a readgnab
a good chance of including the correct temperature, it will plausible model/system pair which will illustrate the eftfef
not address the underlying problem. An alternative methodnodel error on ensembles.)
to obtain a similar result might be to simply add error barsto  We first re-cap some of the properties of the system. Be-
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cause the: variables are large-scale and slow-varying, while
the y variables are small-scale and fast-varying, the former
resemble variables such as 500 hPa height, while the latter
resemble more energetic variables like wind and tempera-
ture. By suitable choice of the scaling parameters, the er-
rors can be brought to match those of a GCM (global circu-
lation model, in this case the ECMWF operational model).
The root-mean-square error growth is shown in Figure 1:
the forecast errors of the large-scalésolid line, top panel)
agree reasonably well with GCM 500 hPa errors (+ symbol),
while the small-scalg errors (bottom panel) are similar to

GCM total energy errors. The two-level system also matches o X error

the GCM in terms of model error, as measured by the drift, — Tigh error .
and sensitivity to initial condition, as measured by lagged 60| low error 1

forecasts in a global metric (Orrell, 2002). soll + o N

As discussed in the above reference, the drift can be com-
puted from a sum of short forecast errors. For example, sup-
pose the target point at time = ¢, + jA is x(¢;), and let
x;(t) fort > t; be the model trajectory initiated at the target
pointx(t¢;). The drift at timet i is then given by:

K—-1
d(tr) = I p_ (xj(tj+1) = X(tj41))l ) .
j=0 days
(the timestepA should be chosen sufficiently small that the
. . y error
calculation converges). Because the stochastic model erro 15,
terms in the two-level system are uncorrelated, the drifivgr — high error
in a square-root fashion like a random walk. o owerror 1 +
The size of the model error terms was determined by fitting + GCMTE

the drift curves to those of the GCM. Figure 1 also shows for 1oy

comparison the effect when the stochastic model error terms
are reduced by a factor 10. When model error is high, the
observation error has little effect on the calculationg,fbu 5
low model error the observation error has a more significant
effect. Two cases are therefore shown: in case 1, the observa
tion error is at the normal value, while in case 2 it is tripled o ‘ ‘ ‘ ‘ .
In either case the rate of growth is significantly below tHat o 0 1 2 3 4 5
the GCM. days

. Since th? two-level model manage_s t.O approximate the bal':ig. 1. Plot comparing root-mean-square errors for the two-leystesn
sic properties of GCM error growth, it is reasonable to SUP-yith low and high model error. The observation error playamér role
pose that it should capture the essence of weather model emhen model error is small than when model error is large, so ¢ases
semble behaviour. The upper panels of Figure 2 show errorgre shown. Upper panel shows errorairvariables with high error (solid
for a 500-member ensemble generated by random perturbé{’-‘e)’ low model error and normal observation error (casedtted line),

. . and low model error with observation error increased by tofabree (case
tions. The left panel can be compared with any 500 hPa en?, dashed line). Results are compared with the GCM 500 hRétgds-

semble. The errors in thevariables (right panel) are similar  sympol). Lower panel compares theerrors for the different cases with
but have a smaller spread. GCM total energy.

The lower panels show Talagrand diagrams for:thend
y variables for a 32-member ensemble, formed from taking
perturbations in the positive and negative directions ef th
16 leading singular vectors in themetric, with an optimi-
sation time of 2 days. These diagrams, which are discussed
for example in (Ehrendorfer, 1997), provide a statistieat t
of the ensemble by counting the distribution of the true sys-
tem relative to the ensemble predictions. Suppose we wish
to predict the’th z-component of the true system. Since the
ensemble contains 32 members, it will provide 32 valtes
wherej denotes the ensemble member. These can be ordered

m/s
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x variables y variables

none of the ensemble members in the upper panels shado
for long, since the errors of all members increase with time.
For weather models, it is not possible to interpret ensemble
diagrams so easily, because the ensemble is small relative t
the dimension of the space, and the fact that ensemble errot
increase with time does not necessarily imply that there do
not exist other perturbations of equal or smaller magnitude
days that do shadow. In order to validate the ensemble approact
it is therefore necessary to find alternative methods fatest
i 15 lishing the existence of shadow orbits. In the next sections
we consider some techniques for doing this.

x error
y error

percent

s 3 Estimating shadow times

o 1 ® I B If ensembles are to be used to generate probability distribu
tion functions of the weather at some future timethen at
Fig. 2. Plot showing the ensemble performance of the two-leveksysThe least one point, perturbed an amount smaller than or equal t
top left panel shows errors in variables, which can be compared to a 500 the perturbation radius of the ensemble, should manage to
hPa ensemble forfaweather model. The right panel shows t_r&sponding shadow the analysis within that radiuor time 7. In other
errors for they variables. Lower panels show Talagrand diagrams of a 2- words, if the target orbit (in this case the analysi??,)('!s), the

day forecast inz (left) andy (right) variables. Dotted line shows the ideal . . .
distribution. See text for discussion. model trajectory is(t), and the error vectas(t) is
e(t) = s(t) —s(b), )

so that they form a partition into 33 bins, where the first bin then we require an initial perturbatief0) such that|e(t)|| <
corresponds to predictions smaller than the second bin . forall 0 < + < . We will consider two independent
corresponds to values betweeh andz?, and the last bin  methods to estimate a model’s ability to shadow, which were
corresponds to values greater thgf. We then note where  gjso discussed in less detail in (Orrell et al., 2001). The
the observed value of the true system lies, and repeat the eXyst, which is direct but also expensive, will be to directly
periment a number of times, for each indeXhe resultisa  search for candidate shadow orbits. The second is based @
histogram of the position of each observation in the ensemtheshadow-drift lawwhich relates shadow times to the drift.
ble partition. If the ensemble gives a probability disttibn A third technique is a simple test to check whether a partic-
function of the analysis, then the distribution should bg fla yjar ensemble, created by either initial condition or model
but here there is a distinct U-shape which indicates that th%)erturbations, can contain a shadow point after a period of
true values are often falling above or below the ensemble’'sime. Because model error is larger in thevariables, we
range. The same effect, if to a slightly lower degree, is-typi || concentrate on shadowing in these variables: it is fbun
cally seen with GCM's (Strauss and Lanzinger, 1996). that any orbit which shadows inhas only negligible errors
Note that the Talagrand diagram only tests whether the enin z (though the opposite is not true).
semble gives a probability distribution function over many  The most straightforward method of estimating shadow
forecasts, which is a different question than whether it wil times is to search for orbits that shadow within a radius
do so over a single forecast, with different realisationthef  |deally, with infinite computer resources, this would be €on
observation error. In general, statistical verificationesnes by testing all initial displacement$e(0)|| < r inside the
such as Talagrand diagrams provide a necessary condition fghadow radius for one which remains within the shadow ra-
the ensemble to be an accurate representation of the atmetius for the longest time. Failing that, an optimisatiorhtec
sphere’s future state; however, they are not a sufficient connique can be used to find the optimal initial condition; one
dition, since one could obtain a perfect Talagrand diagram b method, dubbed the ‘amoeba’ method (Hansen, 1999), use
using an ensemble of randomly chosen climate states (Straug simplex scheme (Press et al., 1993). The upper panel a
and Lanzinger, 1996). For the same reason, while such diarigure 3 shows a distribution of shadow times determined in
grams are useful diagnostic tools in many respects, they arghis way for the two-level model with shadow raditis= 2.
unsuited for assessing the effect of model error: as discuss  While the amoeba technique is suitable for use with the
in Section 6, a model can be quite bad, but yield a satisfactwo-level model, such a brute-force approach cannot be use:
tory Talagrand diagram, so long as it has been tuned to givevith weather models, because of the high dimension of the
a reasonable climatology. space. Some more efficient scheme must therefore be ay
A stronger necessary condition is that ensembles contaiplied. One approach might be to search in a limited subspace
members where error at future times remain small, i.e. sSkaddor example the space of singular vectors, which would have
orbits. As we will see below, the ability of a model to shadow the benefit of giving the maximum final displacement for
is primarily a function of its model error. It is notable that the smallest initial displacement. A problem, though, &tth
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model error is unlikely to be aligned with the singular vec- constrained problem into an unconstrained one by adding «
tors; indeed, because of the high dimension of the space, penalty term:
is safe to assume that the two are orthogonal. Therefore the 1
chances of finding an optimal shadow orbit in such a sub-minimise C(e) = =||e(7)||* + A(||e(0)|| — %) (6)
space is small. 2

However, if the adjoint is available, it can be used, notwhere) is some suitably large constant. The above formu-
just to produce singular vectors, but to actually find the-opt lation will force the initial conditione(0) to have radius’;
mal initial displacement which will offset model error. $uc alternatively, the penalty function could switch on onlyhié
a code has been used at ECMWEF for so-called ‘sensitivityradius exceeds the shadow radius.
analysis’ (Rabier et al., 1996). Suppose that we set a shadow There is a symmetry to the shadow problem, however,
time 7, and wish to find an initial condition which stays which doesn't distinguish between the initial and final dis-
within a minimal distance of the true system. (In effectsthi placements; we could equally well minimise the initial dis-
is the inverse of the normal shadowing problem, since weplacement subject to the final displacement being within the
set the time first and determine the radius, rather than viceshadow radius. A balanced approach, then, is to minimise
versa.) If we focus only on the final error, and ignore for the the sum of the initial and final displacements
time being the intermediate points, then the problem can be 1 1

phrased as minimise C(e) = §||e(7')||2 + §||e(0)||2. (7)
1 .
minimise C'(e(0)) = §||e(7')||2. (3)  The shadow radius can then be taken as the maximum of
_ S ) these two values. We again assume that intermediate value
This optimisation problem has Hessian will remain within bounds; this is easily checked for. The
M7 ()M(#) (4) Hessian of the cost function is
whereM is the linear propagator of the forecast model, andM " (T)M(7) + 21 (8)

the transpose symbol refers 0 the adqunt operator (D'm%vhich can be used to determine the Newton direction. We
and Talagrand, 1988). An optimal solution can be found in . e . .

. . . . . refer to this method as the ‘pinch’ method, since it involves
an iterative fashion by taking a sequence of steps in the Newfninimisin the initial and final displacements. Figure 3 ecom
ton direction (Gill et al., 1981). Similar techniques arsaal g P -9

employed in 4D-Var (Lewis and Derber, 1985; Courtier and pares its performaqge_wnh the. other methods; itis more effi-
cient than the sensitivity technique for> 4, but for smaller
Talagrand, 1994).

: . oo . . values there is little difference between the three methods
Figure 4 shows how this optimisation routine works in

. . . - Therefore while the pinch method i rior to th nsi-
practice for the two-level model. At each iteration, the ini eretore € the pinch method is superior o the sens

tial condition is perturbed in the Newton direction, whieha r tivity method, and can also be implemented with fairly mi-

duces the final error. The process is terminated when the ini[10r modifications, it appears that the existing sensitiitgie

. : ) . .~ should give reliable results so long as the shadow radius is

tial and final errors are equal. Note that intermediate goint sufficiently small

do not exceed the shadow radius: this is typical of shadowing '

behaviour, but needs to be checked for. When performed for

a variety of different shadow times the resultis a curve of 4 The shadow-drift law

shadow radius versus shadow times, as in Figure 3. Compar-

ing the performance of the sensitivity method to the amoebaAnother method to estimate shadow performance is througt

method, it seems that the method works wellfo: 4 (di- the shadow-drift law. This states that the expected radius

ameter less than 8), but is less efficient at higher radii. within which the model can shadow the target system for
The sensitivity method can be improved by adapting it soa time 7 is either approximately equal to, or greater than,

that the optimisation is performed relative to the conatran  the drift divided by 2. Equivalently, the shadow diameter is

the size of the initial perturbation. In its usual form, tle@s  bounded below by the drift. Furthermore, if model error is

sitivity method is solving an unconstrained problem, rathe large, then the bound is approached, so the shadow diamet

than a constrained one, so the solution found by terminatindgs approximately equal to the drift. The lower panel of Figur

the iterative process when the initial error equals the #nal 3 shows the drift in the variables. It provides a fairly ac-

ror does not yield an optimal result. This can be addressedurate estimate of the amoeba method shadow diameter fo

by writing the problem instead as the first day or so, and gives an underestimate at higher times

1 Since the drift, which is just a sum of short forecasts, idgas
minimise C'(e(0)) = §||e(7')||2 computed, this is a cheap method to estimate shadow time:s
subject to [le(0)| < r (5) especially when model error is large.

The shadow-drift law was illustrated in (Orrell, 2001) for

where the constraint is on the magnitude of the initial condi a variety of model/system pairs, including weather models.
tion. One approach to solving such problems is the penaltyThe general proof is given in the same reference, and will be
function method (Gill et al., 1981), which transforms the the subject of a future paper. The argument rests on showin(
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Fig. 3. Plot showing performance of different shadowing schemep- U
per panel shows a histogram of shadow times determined trengmoeba
method at shadow radi®ns—!. Lower panel compares average shadow
times determined using the amoeba, pinch (minimise iratia final errors),
and sensitivity (minimise final error only) methods. Theghimethod gives
results similar to the amoeba method, while the sensitiviethod is accu-
rate for shadow times up to 2 days. The solid line is the dxiftich gives a

Histogram of shadow times at radius 2 m/s
l4¢

12r —

1t
0.8}
0.6
0.4}

0.2}

0 0.5 1 15
days

Shadow diameter versus average shadow time
12+ +

N
o
+

\

2*radius (m/s)

4t 4 — drift

— — amoeba
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0 1 2 3 4 5
average shadow time (days)

lower bound for the expected shadow diameter.

Evolution of shadow orbit r=4m/s

0 0.5 1 15 2 25 3

61 iter=44

0 0.5 1 15 2 25 3

61 iter=72

0 05 1 15 2 25 3
days

Fig. 4. Evolution of a two-level model shadow orbit using the sewigjt
method. Upper panel shows the forecast erray.infhe choppy nature of
the curve is due to the fluctuations of the stochastic termd vell be less
evident in higher-dimensional systems. Middle panel shibe®rbit at iter-
ation 44, part-way through the optimisation procedure. ddst function is
given by the square of the final displacement at time 3 daysh Eeration
takes a step with direction determined using Newton’s neetfidhe proce-
dure continues until (lower panel) the initial displacetnequals the final
displacement, her¢ms—1.



that, in a dissipative model, the net effect of a model's sens

tivity to initial condition is small when averaged over agar
number of experiments. Shadow performance is thereforeincorrelated with the direction of the singular vectorseith
dominated by the model error, as measured by the drift. Wef we take the expected value of the sum over all possible
here present a more limited but rather simpler proof, basedrientations of the singular vectors, the tefdh- u;)? is a

on the pinch method of searching for shadow orbits, whichyandom variable of magmtudg‘_ Therefore

applies to a specific class of models.

We will first assume that the linearised dynamics in (Orrell

et al., 2001) is exact, so error growth can be modelled as

e(r) = M(7,0)e(0) + d(r).

)

(This approximation can be improved by using trepa-

gated driftin place of the drift, as discussed in (Orrell, 2002);

for shadow orbits the difference is small.)
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Fix the magnitude of the drift vector, and the multipliers
o;, and assume that the components of the drift vector are

2

) = Lo (19)
=1 g
e ¢ 1

™ le-l-a?' (20)

(Note that this is slightly different from Eq. 9 of (Orrell et

Suppose that, using the pinch method, we find an initial@l-» 2001), which was obtained by a geometric argument. The
condition&, which minimises the average of the initial and "esult here gives only a lower bound on the shadow radius.)
final displacements squared, so it solves the problem

minimise C'(eg) = %HM(T)GO +d(n)|?

Let7? = C(e). Then ifr is the minimum attainable shadow
radius, it follows that > #, i.e. no orbit can shadow (under

1 2
+ Sl

(10)

the linearised dynamics) within a radius smaller tharfror
suppose that there exists an initial conditégrfor which the

initial and final errors are within a radius <
this initial condition, we have

1 1
C(eo) = 57"2 + 57‘2 S f2

which violates the assumption th&t is optimal.

7. Then for

(11)

The solution of Eq. 10 therefore yields a radiushich is
an underestimate of the true shadowing radius. We can solve
directly for # by setting the gradient of the cost functich

equal to zero:
M7 (1) (M(7)éo + d(7)) + & = 0.

(12)

Dropping the dependence on time for clarity, we have

&= MM +1)'M”"d

wherel is the identity matrix.

(13)

We next write the linear propagat®f in its singular value
decomposition (SVD) form (Golub and Loan, 1989) as

M =UWVT.

(14)

If M is ann by n matrix, thenU andV are matrices of the
same dimension with orthonormal columns, whiié is a
diagonal matrix with positive diagonal entries. Subsiitgt

into Eq. 13 then gives an initial displacement
& = —V(W?2 +1)'wu”’d
from which it follows that
72 = CO(é&)
_ %dTU(W2 +1)'UTd
1= (d-u;)?
- 32

i=1

(15)

(16)
(17)

(18)

To demonstrate the shadow-drift law, we wish to show

2
() > 14 (21)
4
which will occur if
n n
; 1+ 0’ 5 (22)

Now, an example of a volume preserving model is one where
the magnitudes of the singular vector multipliers;, when
arranged in descending order, follow a power law distribu-
tion, so that

1—28

o, =0, ™. (23)
The largest smgular vector multiplier is thereferg and the
smallest isg,, = 01 . An equal number of directions con-
tract as expand in phase space, and because the product
the multipliers is 1, such a model would preserve state spac
volume.

Given the ideal power law distribution, it is easily seerttha

= 1 n
2 am Ty (24)

It therefore follows that, if a plot of the singular vectoisd
beneath the power series distribution for some choice, pf
then the shadow-drift law will apply.

This argument therefore proves the shadow-drift law for
only a specific class of models, namely those which are more
dissipative than the power law case, in the sense describe
above. However, real models often have this characteristic
The upper panel of Figure 5 plots the average singular value
multipliers for the two-level model, compared with a power
law distribution (a straight line in the semilog scale). Re-
sults, which are averaged over 100 shadow experiments &
shadow radius 4.6hs!, always lie below the straight line,
indicating that the model is more dissipative than the vaum
preserving ideal power law case. The lower panel compare:
the root-mean-square value of each term in the sum Eq. 22
to the corresponding term for the power law; since the solid
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— two_‘|eve| | 5 Themean projection test

power law

=
o
(I

The third method to gauge the effect of model error on en-
semble forecasts is to check whether the convex hull of a par
ticular ensemble contains a shadow point (i.e. a point withi
the shadow radius of the analysis) after a period of time. By
convex hull, we mean as formed within the subspace spanne
by the ensemble members, so if there mmensemble mem-
bers, the convex hull has dimensiont+- 1.

The reason for using the convex hull is that the ensemble
is usually formed by taking each perturbation at a set magni-

mean sigmaygi)
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. . tude. If all ensemble members fail to shadow, this still E=av
index i o . L L
the possibility that some linear combination of the inifial-
turbations, that lies within their convex hull, could shaddf
1 —— we assume that the model is roughly linear over short times
ogl| — two-level " (though see (Gilmour et al., 2001), then the image of that
s power law ' point at a set time would lie within or near the convex hull
‘= of the ensemble. Therefore, if the convex hull can be shown
g o7 to be moving away from the analysis, it is a much clearer in-
%’ 06 . dication of model error than showing only that the ensemble
2o members themselves fail to shadow.
5 0.4 o This technique is less general than the shadow methods
E 03 o since it applies only to a particular ensemble, and canno
02 ’ be used to determine the overall shadow performance of ¢
model. Itis also a stronger condition, since it demands that
ot 5 10 15 20 25 30 the convex hull actually contains a shadow point, rathem tha
index i asking whether a shadow point could in principle exist given

the right perturbation. An advantage is that it is extremely

IFig- |5- T‘:jp Ipamal_'ds?ows the a"erage ?ir’:g“'af Va'“‘lf m‘jj'ﬁp"_zrs”gm"’c’(‘j easy to perform. It can also be applied to ensemble scheme
evel model (solid line), compared with a power law disttib (dotted —\io jnclude perturbations to the model.

line, which is straight in the semilog scale). Results aerayed over 100 . . .
shadow experiments at shadow radius #.8~!. The solid line is always For a particular time-, each ensemble member is expressec

below the straight line, indicating that the model is morssiiative than ~ as an error field (say 500 hPa) over a grid. The ensemble
the volume-preserving ideal power law case. The lower peoreipares the  mean error is then computed. Figure 6 is a schematic dia
root-mean-square value of each term in the sum Eq. 22 to thespmnding gram showing the ensemble errors, mean error, and conve
term for the power law. Here the solid line is always abovedbited line. hull of the ensemble in a 2-D space. We claim that to check
whether the convex hull contains members within a distance
o o ~r of the origin, it suffices to take the projection of each en-
line is always above the dotted line, it follows that the mini semple error onto the mean error vector (solid line joining
mum shadow radius will be greater than that predicted by thgne ensemble mean to the origin in the figure). If the projec-
shadow-driftlaw, so the law gives a lower bound as claimed jons of the errors are all greater than the shadow radies, th

For weather models, where the full range of singular valuese errors themselves must be greater than that radius. Thi
is not calculated, we need to evoke the general proof, which,q|4s for any pointin the convex hull.

applies to dissipative models. The method is called theean projection tesReferring to
The shadow-driftlaw can be used to estimate shadow timeghe figure, ifp is the magnitude of the projection of the near-
for a range of different shadow radii. The results can then bexst pointe onto the mean error, then so longjass greater
compared with actual shadow experiments, as in Figure 3than the shadow radius, no point in the convex hull can be &
Because the shadow calculations and the drift calculationghadow point.
are performed in completely different ways, this gives two  To see why this is the case, consider the plane which is
independent methods of estimating shadow times. Performorthogona| to the mean error and a d|sta;nﬁ@m the origin_
ing the calculations for a variety of different shadow times This plane is indicated in the figure by the solid line which
will also negate the possibility that the two tests agreedy a contains the poiné. If the mean projection test fails, then
cident. p > r, and all the ensemble errors, and therefore the entire
A drawback to these two methods is that they really applyconvex hull, must be either on, or on the opposite side from
only to ensembles formed by perturbating the initial condi- the origin of, this plane. Since the minimum distance from
tion, not the model itself. The next section presents a techthe plane to the origin ig, it follows that no ensemble error
nique to measure the effect of model error on a given ensemis within the shadow radius
ble, however it is generated. Figure 7 shows the mean projection test applied to a 20-
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. The mean projection test model error. Ensembles can therefore be used, not just as
T o + forecasting tool, but as a method for determining or verify-
=©- mean error + . . . el . g
25) + N ing the importance of model error relative to initial cormalit
error.

6 Comparisonswith weather models

To show how the above techniques can be applied to rea
weather models, we briefly compare two weather model cast
studies with results for the two-level model. The intention
T - ] is to illustrate that the methods are workable, and that the
X1 error two-level model is capable of simulating actual ensemble

) o ) o schemes. The first case study is the inter-model compariso
Fig. 6. Schematic diagram showing the mean projection test. Erisemb oy 00n the ECMWE T42 and TL159 models, which was
errors (in 2-D) are indicated by '+ symbols. Solid line sitag at origin is . . .
the error of the ensemble mean. The projection of ensembieb®e: onto presented n (Orre" etal, 2001)- In this experiment, the T
the mean error is the distange Since this projection is greater than the model was used to shadow a TL159 target orbit. The shadov
shadow radius (here 0.5) for all ensemble members, the nregtiion test radius at 2 days was estimated from the shadow-drift law,
fails, and we deduce that the convex hull of the ensemble gioesontaina  gnd the sensitivity code. We will compare the results with a
shadow point. modified version of the two-level system.

The solid line in the upper left panel of Figure 8 shows the
total energy forecast error. The large initial error is doe t

variables. The projections of the ensemble errors onto thé.he truncation opere_ltor between TL159 and T42. The drift at
mean error are shown each 3 hours. Since the projection@me 2 days was estimated from a sum of short forecast error:

—1 (it
are always greater than the shadow radius, indicated by th 0 be lt‘ﬁmsh é't 'S(;ibf(t) Lljt eq;JhaI to the 'io':jal fﬁ rzcast e(;r_or)._
dotted line, it follows that this particular ensemble does n rom the shadow-ariit law, the expected shadow radius IS

; -1
contain a shadow point for even 3 hours. th(_arrﬁfore hqltf th d”;t’ o®'9771‘:] : dgt q ¢
For the two-level model, all three techniques therefore giv € sensilivity code was then used 1o produce an actua

a similar answer: ensembles in thevariables (correspond- sha<_jow orbit. The_ d_otte_d line shows the result after fifty it
ing to total energy), with a perturbation radius®$ms 1!, erations O.f the_ optimisation procedur_e._ Becau_se the radius
will shadow at that radius for at most a few hours. The en-tWO days is slightly greater than the |n|_t|al radius, it appe
sembles cannot therefore be considered a reliable pradgabil that the shadow orbit could have been improved by perform-

tic guide to the true state of the system. Since the two-levefng fgrther iterations. Thg average of the initial and final_e
drift was chosen to match that of the GCM, the shadow-drift'©'> ' about..1ms ™", which is slightly greater than the drift
law implies that GCM shadow times will be similar; how- over two, as expected by the shadow-drift law.

ever, this must be confirmed by searching for actual shadow For compar(ijson,_ th? nger rigf;)t_ [;anil Showf\mrliani[fd.
orbits, for example with the sensitivity code, and Checkingerrorcurve and typical shadow orbit for the two-level ( !

whether particular ensembles contain shadow points, Witherror) model, where thg model error terms were reduced by ¢
the mean projection test. factor 4, and observation errors by a factor 2, so as to matct

Because the mean projection test shows whether an er%—he inter-model error curve. 'I_'he shadow orbit_was caEdlate
semble is drifting away from truth, it can serve as a test forSN9 the amoeba method \.N'th a shadow radius@hs .

The two methods for estimating the two-level shadow ra-
dius at time two days therefore give a radius in the region
& o i of 1.0ms~!. Since this is greater than the ensemble pertur-
" iiié‘i’ 5 ) iiii bation radius, it means that an ensemble is not_expected t

5% i!i!? AN contain shadow points at 2 days. In fact, the drift becomes
» ! % o equal to twice the shadow radius after about half a day, sc
the ensemble should cease to contain shadow points after th
’ time.
Iy ' L The lower panels show ensemble errors calculated for T4Z
ol . S (left) and the two-level model with medium error (right).&'h
days two-level ensemble contains a large sample of 400 perturba
Fig. 7. Plot showing the mean projection test applied to the twetleys- tions, so itis safe to assume that no shadow pOIDt exists ?ﬁe
tem. The projection of the ensemble errors onto the meam, erampled at most half a da_'y; fqr the T42 _ensgmble, which Cc_)mams
each 3 hours, is greater than the shadow radius (dotteddiney time, ~ ONly 50 perturbations in the +/- directions of the leading 25
implying that the convex hull of the ensemble does not cantgashadow  Singular vectors, a mean projection test should ideallydve p
point. formed, however this was not done at the time of the exper-

0.5

member ensemble for the two-level model, in thendy

x error
y error
©

1
days



110

T42 vs TL159 Two-level (medium error)
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Fig. 8. Plot comparing shadow behavior for the T42/TL159 inter-eiod
experiment, and the two-level system with medium error. éspeft panel
shows T42 forecast error and shadow orbit optimised at 2. daywer left
panel shows a T42 ensemble. Panels on right show same fordhievel
model with medium error, where the model error terms have beduced
by a factor 4, and the observation errors by a factor 2, to Iméite inter-
model data.

iment. The effect of model error is clear for either ensemble
by the large initial slope.

It is interesting to note that the ensemble errors relative t
T159 can be viewed as the orthogonal sum of the T42 fore-
cast error, and errors of the T42 ensemble with respect to an
unperturbed T42 control. This is shown in Figure 9. The up-
per panel shows the T42 ensemble eregssrelative to T42.
Because there is no model error in this situation, the errors
are due to initial condition only. The lower panel shows the
T42 forecast errofi 59 relative to T159 (dotted line). This er-
ror is due primarily to the model. The orthogonal sunygf
with the T42 ensemble erroeg, is a good approximation to
the total ensemble errors in Figure 8. This is a consequence ‘ ‘ ‘ ‘
of Eq. 9, which shows that the error can be approximated as 0 1 2 3 4
the sum of two components, one due to the initial condition, days
and one to the model error. The reason the two-level model ] ) )
can approximate the weather model ensemble behaviour 9% 71 S how nieode nseriie orors e ve v o
because it has the right amount of model error and the rightogel. Top panel shows errorss of the T42 ensemble with respect to the
sensitivity to initial condition. T42 control forecast. Since there is no model error, thererace due to

The second case study is an ensemble from the NOAAnitial condition only. Lower panel shows the forecast erfosg relative to
MRF model. The upper left panel of Figure 10 shows the the T159 model, which is primarily due to model error (dastieg). The

. . orthogonal sum of this with the ensemble erre ives a result (solid
ensemble errors at one-day increments in 500 hPa. The ef g 9 (

; _"line) which closely approximates the ensemble errorsivelad T159 in the
ror of the ensemble mean is also shown. Note the large siz@er left panel of Figure 8.

of the initial perturbations. The average perturbatioe $&

about12m, which we set as the shadow tolerance. Because

of the large initial perturbations, and the increased stado

tolerance, the expected shadow times are longer than in the

previous case study. The lower left panel shows a mean pro-

jection test for this ensemble. The radiusl@fn is indicated

by the dashed line, and the mean projection test appears to

fail after about 2.5 days.

How does this compare with expected shadow behaviour?

m/s
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GCM errors Two-level errors

—-O- mean
—— ensemble

7 Modé perturbations

The above techniques will help to validate the performance
of ensembles. A related question is how ensembles migh
be improved if model error is large. As discussed in the
introduction, one approach that has been adopted is to us
stochastic elements in the model equations, either byiertu

’ s i days ing the model parameters, or by adding a stochastic forcing
GCM caliper Two-level caliper

40 _ 40 term.
30 f 30 % Suppose for example that the errors are assumed to aris
+ from sub-grid scale processes, and we decide to account fo
e % i %20 + % them by adding stochastic terms to the model. For the two-
o g T w00 %7 L level model, we could do this by simply adding stochastic
terms which have the same magnitude as those in the tru
o I 5 3 o I 5 3 system. The model and the system would then have identica

days days equations, but different realisations of the stochasticifag.

, _ - Figure 11 shows the result. In the upper panels, the spread ¢
Fig. lO._PIot showing ensemble errors and mean projection test éaviRF the ensemble errors has increased relative to Figure 2 How
model in 500 hPa, and the two-level modehin The MRF ensemble was .
initiated at Oct 30, 2001. Top panels show root-mean-sqemnes, eva- ~ €Ver, SO has the mean error. The reason is that errors ar
uated once per day. The perturbation sizéds: for the MRF ensemble. ~ dominated by the drift, which is the integral of the tendency
Lower panels show the corresponding mean projection testither case,  error over time. The unperturbed model is in a sense an op
the projected errors exceed thizm line after about 2 days. timal choice, because the constant forcing minimises the ex

pected value of the tendency error, and therefore the drift.
If the model contains stochastic terms equal in magnitude to
those of the system, then the expected tendency error is th
expected value of the sum of the two stochastic terms, whick

Since we are working in a non-global metric, statements'zalbOLrleloresents an increase by a faci@. Therefore, while the

shadowing will depend to an extent on the other, unseen V,a”épread increases, so does the mean error, and the net effe
$ that overall accuracy is not improved: of the 400 points
ntested, none managed to shadow within a reasonable tolel
ance. We could not therefore say that adding the stochasti

terms has helped ensemble performance, if the goal is to pro

tions. As a proxy for drift, we can use the ensemble mea
error (if model error is large, then the drift accounts foraino
of the error over short times (Orrell, 2002)). An ensemble
with perturbgtion side_m should ;hadow at most unti_l the vide a probability distribution function.
mean error is about twice the radius,2dm. Extrapolating )

the error curve, this happens after about 3 days. Since this The lower panels, however, tell a very different story. Be-

is the best expected shadow time for an optimal perturb,ation(:?:_Se thhe moddel Ian_dlghe true sfyste_lr_nlnow hzvde_ identical vari
it is reasonable that the ensemble should shadow a slightl llity, the mode ylelds a per ect alagrand diagram, even
shorter time. hough the ensemble is no closer to tracking the system. Thit

shows the limitation of statistical techniques when distup

For comparison, the right panels show a two-level modelensemble quality. The problem is that prediction of near-

ensemble inz. The results of the mean projection test in term errors, and the prediction of long-term error variaphil

the lower right panel again show that the ensemble contain&'® two completely dlffere_nt questions. Statistical vesii
no shadow point at radiut2m after about 2.5 days. Note tion methods are better suited to the latter than the former.

that the reason shadow times are longer than in Figure 7 is T0 further illustrate this point, suppose that we wish to
because the shadow radiusl&m instead of2m. Loosely ~ Predict the next number in a random string of 0's and 1's.
speaking, if drift varies approximately with the squaretro 10 Minimise the expected root-mean-square error, we shoul

of time, then expected shadow times will vary approximatelychoose a value of 0.5 as our prediction, for which the RMS
with the square of shadow radius. erroris 0.5. This is essentially what we did with the model of

the two-level system, where we used the average value of th

Together, these case studies show that the three method@rcing and ignored the stochastic terms. Another approact
based on drift, shadow experiments, and mean projectiofvould be to use a coin, one face marked 0 and the other 1, a
tests, are feasible techniques which can be applied to fult ‘model’ for the random string. We toss the coin, and take
weather models. In terms of computational expense, the drifthat as the prediction.  In the long-term, the model would
is comparable to a single long forecast, while the mean proPerfectly replicate the climatology of the system, in that i
jection test is similar to calculating root-mean-squarerss would give 0’s half the time and 1’s half the time. However

The studies also show that the two-level model can be adaptdi® €xpected RMS error for a single prediction, WhiChJIES
to simulate a number of different weather models. has increased by a factgf2. This corresponds to the case
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cannot necessarily be transplanted to deal with model error
at least until we know more about the nature of this error.
For ensembles to provide a reasonable probability distri-
bution, model error should ideally be reduced below some
threshold. Itis interesting to ask, again in the somewhat id
alised context of the two-level system, how good the model
needs to be. It was seen with the inter-model case study the
model error had a significant effect on ensemble performance
when the model error in the two-level system was reduced by
a factor 4. The two-level model was therefore again run with

100% stoch

- 210 the stochastic model error terms this time reduced by a fac:
E10 H tor of 10. The upper panels of Figure 12 show errors of a
. 5 typical ensemble; note the different vertical scale. The ex
ﬂﬂﬂﬂﬂ”ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ Mﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ[ﬂlﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ pected shadow times at a radiugms~! are in the region
I U R % 10 2 3 of 4 days. The ensemble will therefore contain a shadow

interval interval

orbit for around this time: however, it still does not func-
Fig. 11. Plot showing the effect on ensemble performance of addoahes-  tion very well as a probabilistic forecast. It appears tvare
tic terms to the model. Left panels show errorinariables, right panels ~a small amount of model error is capable of disrupting the
show errors iny variables. Upper panels are ensemble errors, lower Da”e'sperformance of ensembles. The middle panels show the Ta
show Talagrand diagrams of a 2-day forecast. While theiaddit stochas- 54 and diagrams at 2 days. The statistics are worse than fc
tic terms increases the spread of the ensemble, and yiektfegpTalagrand . .
diagram, it actually detracts from overall accuracy. the stochastic model discussed above, even though ensemt
accuracy is far improved! The lower panels show the results
of the mean projection test applied every 12 hours over a 7-
where we added stochastic terms to the model. day period. The ensembles in eitheor y variables cease
o to contain shadow points after about 4 days, as indicated b
For the mode! ofarandomstring, itis at least the case thaf, 54 that the projections onto the mean error are greate
an ensemble with spread equal to the mean error, e.g. thfﬁ‘lan the shadow tolerance (dotted line) past this time. Note

consisting of 0 and 1, is guaranteed to contain the true valuethat, if model error is reduced by a factor 10, then forecast
In a high dimension space, the situation is worse. Any ran-

o rror growth will be as shown in Figure 1, so the model has

dom perturbation is expected to be orthogonal to the modegxceIIent predictive skill.
error, so will not correct it. The spread will increase, but
so will the mean error. Therefore the ensemble’s chance of
containing shadow points will probably not improve. 8 Conclusions and future work

In any case, the existence of a shadow orbit is a necessary,
but not a sufficient, condition for ensembles to be effective The aim of ensemble schemes is to provide a probability dis-
An ensemble consisting of all possible two-level statesldiou  tribution function of the weather’s future state. If thistés
contain a shadow point, but no useful information. The goaloccur, then a reasonable condition that must be satisfied i
of ensemble forecasting is not to increase the spread by anghe existence of a shadow orbit. In this paper we have dis-
means possible, since the usefulness of the resulting probaussed independent tests for estimating shadow times. Th
bilistic forecast will vary inversely with the range of pess first is based on the currently existing sensitivity codeiclvh
bilities portrayed. can be used to produce candidate shadow orbits. The sec

Perturbing, or changing, the model may well work better ond is based on the shadow-drift law, which relates expectec
for weather models than for the two-level system, which isshadow performance to model error as measured by the drift
perhaps a worst-case example since the errors are entirejoth these techniques have already been tested in inteelmod
random. However, there remain some additional theoreti-experiments at ECMWF. By plotting a curve of shadow ra-
cal questions. Ensembles are suitable for simulating the efdius versus shadow times using both methods, the chance
fects of initial condition error because we know certaimggg  of the two agreeing by accident can be mitigated. The sen:
about that error source. For example, the ‘true’ initialcon sitivity code can also be improved by including the initial
dition (i.e. the weather) is expected to exist within a darta constraint, as in the pinch method. A third technique, the
distance of the analysis. Also, perturbations can be chosemean projection test, is a simple method to check whether &
in the direction of rapidly growing modes, to give the maxi- particular ensemble, however generated, contains a shado
mum spread. Model error is a completely different situation point after a period of time. It can also serve as a method to
There is no obvious ‘model space’ counterpart to singulardetermine, through ensemble behaviour, the effects of inode
vectors or bred vectors. There may even be no accessible setror.
of equations that perfectly mimic the dynamics of the system Ensemble schemes are essential tools for studying the ef
(Smith, 2000; Judd and Smith, 2001). The ensemble methodfects of initial condition error. However, for the two-ldve
ology, which was designed to handle initial condition error model, it appears that model error must be small in order for
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Fig. 12. Plot showing ensemble performance when stochastic errthrein
two-level model is reduced by a factor 10. Upper left panelésrors, upper
right panel isy errors. Middle panels show the 2-day Talagrand diagrams:
note the difference in shape from the high-error case. Lgaeels show
the results of the mean projection test, which indicatesttr@convex hull

of the ensemble ceases to contain shadow points after atlays4 Shadow
times for ay radius of0.5ms~!, determined by the amoeba method, are
also in the region of 4 days.
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ensembles to yield accurate probabilistic forecasts. 1&mi
effects may also occur with weather models. This is not to
say that, when model error is high, a probabilistic approach
to forecasting is no longer required, or that ensembles will
not be applicable. Even if a model is incapable of shadowing
the analysis, it may still be the case that ensembles are-a ust
ful tool for making forecasts, say of temperature in a partic
ular region (any method of generating an ensemble will pro-
duce a certain spread, and the larger the spread, the great
the chance that the observed value will fall within the baind
of the ensemble). However, since in this case the forecast et
rors are not themselves primarily a result of changes in the
initial condition, it follows that perturbing the initialandi-

tion may not be the most appropriate or efficient way to pro-
duce a probabilistic distribution. And, as discussed in-Sec
tion 6, model perturbations are not without their difficedi

For these reasons, other techniques, such as the use of pé
error statistics, may provide an equally valid, and celyain
cheaper, method to generate probabilistic forecasts.

The two-level system has been used to simulate a numbe
of different weather models. While it manages to reproduce
many aspects of GCM behaviour, however, it is only a stand-
in for the real thing. As mentioned earlier, for example, the
effect of analysis error, which is a complex convolution of
observation error and model error, is not adequately repre
sented by the two-level system. Nor does it fully capture the
variability of error growth over different scales. Howeytbie
fact that a system can be produced which agrees reasonab
well with GCM behaviour, but fails to yield accurate ensem-
ble forecasts, demonstrates that weather models need to &
carefully examined to validate the ensemble approach. The
most direct method is to establish the existence of shadov
orbits. Such experiments will reveal the effect of modeberr
on current ensemble schemes.

Appendix A Thetwo-level system

The two-level system is a scaled version of the Lorenz '96
system, which was used in (Lorenz, 1996) to simulate error
growth, with stochastic terms added. The equations are

4

dz;
= Te@im @) —wik F =) i+ 0R)
Jj=1
du; s
Zg] c2yi,j+1 (yi,jfl — yi’j+2) — Y+ i+ CMZ)

fori = 1to 8, andj = 1 to 4. The indices are cyclic, so for
examplez;;s = z; andy; j+4 = yi+1,;, and the variables
can be viewed as atmospheric quantities around a circle. Th
parameterc is set to 10. Ther variables are scaled by a
factor 900 to put in units ofn for comparison with GCM
500 hPa results, while thgvariables are scaled by a factor
5.3 to put in units ofms~! for comparison with total energy.
Time is scaled by a factor 100 to put in dayB.= 14 is a
constant forcing term, whil&/, andV, are random variables
with variance 2.5 and 7.5 respectively, updated every Hour.
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addition, ther andy variables are observed each hour with forcing, soN, = N, = 0, and no observation error &, =

a stochastic errad,, andO,,, which have standard deviation O, = 0. The difference between the model and the system

1.0m and0.5ms ! respectively. These terms are meant to is therefore the stochastic forcing terms, and the observat

simulate the random component of the analysis errors. error. Equations are solved using a Runge-Kutta scheme witt
In themedium error system,N, andN, are reduced by time step of one hour. A long transient of 100,000 hours is

a factor 4, and the observation erfey andO,, by a factor 2.  run before making calculations.

In thelow error system,V, andN, are reduced by a factor

10, while observation error is unchanged unless OtherWiS@cknowledgementsThanks to J. Barkmeijer and M. Leutbecher for help
spécified with the ECMWF weather model calculations, and to J. Hackette en-

. . .semble data. Thanks also to L. Smith for useful discussions.
The model has the same equations, but with no stochastic
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