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Abstract. Error in weather forecasting is due to inaccuracy
both in the models used, and in the estimate of the current
atmospheric state at which the model is initiated. Because
weather models are thought to be chaotic, and therefore sen-
sitive to initial condition, techniques such as ensemble fore-
casting have been developed to address the latter effect. An
ensemble of forecasts are made with perturbed initial condi-
tions, the aim being to produce an estimate of the probabil-
ity distribution function for the future state of the weather.
Some ensemble schemes also include changes to the model,
so as to account for the effects of model error. While the en-
semble approach is quite widely adopted, however, its ver-
ification is complicated. Furthermore, recent results indi-
cate that model error may be higher, and sensitivity to initial
condition lower, than previously thought, so that model er-
ror is a dominant source of error over the first few days. It
is therefore necessary to evaluate the effect of model error
on ensemble forecasting. In this paper, we consider tech-
niques to achieve this, based on the concept of shadow or-
bits. Two of the methods aim to establish the ability of the
model to shadow (stay close to) the analysis, and therefore of
the ensemble to represent the real weather. The third method
tests whether the convex hull of a particular ensemble, as
formed in the subspace spanned by the ensemble members, is
near the analysis. The techniques are illustrated using a sim-
ple medium-dimensional system, which is tuned to simulate
weather model errors. Comparisons with full weather mod-
els are also presented. It is shown that the presence of model
error can severely limit the accuracy of ensemble schemes,
while ensemble performance can also be used to deduce the
presence of model error.

1 Introduction

Ensemble techniques have become established in recent years
as a method for generating probabilistic weather forecasts.
By running forward an array of slightly perturbed initial con-
ditions, the ensemble forecast is intended to provide an ap-

proximation to the probability density function of the weather’s
future state (Ehrendorfer, 1997; Palmer, 2000). Techniques
involving singular vectors (Molteni et al., 1996) or bred vec-
tors (Toth and Kalnay, 1993) identify the fastest growing per-
turbations, so as to capture any rapidly growing modes. En-
semble shemes have proved to be essential tools in under-
standing the role of initial condition error.

The development of ensemble schemes was originally mo-
tivated by two ideas. The first was that the models were
highly sensitive to initial condition: if the flapping of a but-
terfly’s wings was enough to perturb the atmospheric flow
and affect forecasts (Lorenz, 1963), then it followed that fore-
cast accuracy was limited by the effects of chaos. This could
be accounted for by running an ensemble of perturbed fore-
casts (Toth and Kalnay, 1993). The second idea, or working
hypothesis, was that model error should be relatively small,
at least for short forecast times: the ‘perfect model’ assump-
tion (Buizza et al., 2000). Forecast error would therefore
be dominated by the initial condition rather than the model
(Toth et al., 1996).

Ensemble schemes have since evolved, and more recent
schemes attempt to account, not only for perturbations in
the initial condition, but changes in the model. One ap-
proach is the multi-model ensemble (Harrison et al., 1999),
which includes forecasts using different models as well as
initial conditions. Another method is to perturb the model
itself, either by adding a stochastic error term to the model
equations (Philips, 1986; Bennett and Budgell, 1987), or al-
lowing changes to the model parameters or parameterisation
schemes (Houtekamer et al., 1996; Buizza et al., 1997).

As ensemble useage has evolved, so have methods to ver-
ify their accuracy. However, standard techniques for ensem-
ble verification, such as Brier scores, reliability diagrams,
and Talagrand diagrams, are usually based on statistical ap-
proaches which, while providing useful diagnostics, do not
specifically evaluate the role of model error. For example, it
may be the case that an ensemble scheme does a good job of
capturing the atmospheric variability, and yields promising
statistical results, even though no ensemble member is close
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to the analysis after a couple of days (such an example will
be considered in Section 6).

Our main concern here is that, while the ensemble ap-
proach was originally developed in a context of high sensi-
tivity to initial condition and low model error, recent results
indicate that model error is a major source of error over the
first few days (Orrell et al., 2001). Furthermore, error dou-
bling times due to sensitivity to initial condition appear rela-
tively slow when measured in a global metric (Orrell, 2002).
It is therefore necessary to evaluate the reliability of ensem-
ble schemes when model error is significant, and determine
whether models are sufficiently good that the ensemble ap-
proach is applicable. In this paper, our aim is to develop
methods for gauging the effect of model error on ensem-
ble forecasts, based on the concept of shadow orbits (Smith,
1996; Gilmour, 1998).

A model is said to shadow a specified target (in this case
the analysis) for a shadow time� if it remains within a spec-
ified radiusr of the target over the shadow time. Shadow
performance is primarily determined by model error. If a
model does not shadow, then it is generally because model
error is large; it may not therefore be appropriate to account
for the error by perturbing the initial condition. Also, if no
shadow exists, then no small change to the initial condition
can result in a forecast near the analysis, or by implication
the actual weather, so the ensemble can not strictly speaking
be used to generate a probability distribution function forthe
atmosphere’s future state. The existence of shadow orbits is
therefore a test to determine whether the initial conditioncan
be perturbed so that the predicted state is near the analysis, or
whether the required correction is not in the initial condition,
but in some aspect of the model itself (model perturbations
will also be discussed below).

Three points: firstly, by probability distribution function,
we mean for a particular forecast over different realisations
of observation error (Ehrendorfer, 1997), as opposed to a
probability distribution function over a large number of fore-
casts. If a model consistently predicts too high a value of,
say, temperature during the winter, and too low a value dur-
ing the summer, then it may appear to give reasonable results
when averaged over the course of a year, but not for forecasts
on particular days. This will be discussed further when we
look at statistical methods for ensemble verification.

Secondly, shadow performance is metric-dependent, so for
example a model may be able to shadow a local variable such
as temperature in a specific location, even though it fails to
shadow in a more general metric. An ensemble will therefore
generate a spread of temperatures, and the correct answer
can be expected to lie within that range. One could say that
the ensemble approach has succeeded. Our point, though, is
that, if a model does not shadow in a global metric, then that
is because of model error, not the initial condition. There-
fore, while perturbing the initial condition will result ina
certain spread (as will any kind of perturbation), and stand
a good chance of including the correct temperature, it will
not address the underlying problem. An alternative method
to obtain a similar result might be to simply add error bars to

the predicted temperature, where the size of the error bars is
determined from error statistics.

Finally, the purpose of this paper is of course not to im-
ply that ensemble forecasters are unaware of the importance
of model error. The history of weather forecasting is one of
incremental improvements to the models and the data. How-
ever, it is also a historical fact that ensembles were designed
to counter initial condition error, and only later adapted to
account for model error. Since the two types of error are
different in essence, it needs to be studied how ensembles
perform if model error is large. Also, while model error is
constantly being reduced by the designers of weather mod-
els, there is also a debate about whether resources should
be allocated to improving the initial condition, running more
ensemble members, and so on, or using/developing a better
model. An improved understanding of model error is essen-
tial to this debate.

In this paper, three different methods for investigating the
effects of model error on ensemble forecasts are discussed.
The first two address the question of whether shadow orbits
can, in principle, exist. The third is a simple test to determine
whether a particular ensemble contains a shadow point after
a certain time. The techniques are illustrated using a sim-
ple medium-dimensional model/system pair, which is tuned
to simulate typical weather model error growth, and the re-
sults compared with weather model results. In conclusion,
we consider strategies to account for model error, including
the use of stochastic model error terms, and ask how good
a model has to be for the ensemble approach to work effi-
ciently.

2 The two-level system

To illustrate the validation of ensemble techniques, we will
use a version of the Lorenz ’96 system (Lorenz, 1996), that
is designed to simulate a number of properties of weather
model behaviour. Thetwo-levelsystem, which was intro-
duced in (Orrell, 2002) to study the causes of forecast error
growth, consists of 8 large-scale variablesxi and 32 cou-
pled small-scale variablesyi;j , which can be viewed as at-
mospheric variables around a circle. The equations, which
are given in the Appendix, simulate properties such as ad-
vection, damping, and forcing. Model error is provided by
stochastic forcing terms which are present in the system, but
absent in the model. In addition, the random component of
analysis errors is simulated by adding a random noise com-
ponent to each observation of the system. The magnitude of
the noise term is set to1:0m in thex variables, and0:5ms�1
in they variables. (In reality, neither model errors or analysis
errors will be purely stochastic. Also, estimates of analysis
error magnitude will be affected by model error, due to use
of the model in the analysis procedure. The aim here is not to
account for all these effects, but only to produce a reasonably
plausible model/system pair which will illustrate the effect of
model error on ensembles.)

We first re-cap some of the properties of the system. Be-
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cause thex variables are large-scale and slow-varying, while
the y variables are small-scale and fast-varying, the former
resemble variables such as 500 hPa height, while the latter
resemble more energetic variables like wind and tempera-
ture. By suitable choice of the scaling parameters, the er-
rors can be brought to match those of a GCM (global circu-
lation model, in this case the ECMWF operational model).
The root-mean-square error growth is shown in Figure 1:
the forecast errors of the large-scalex (solid line, top panel)
agree reasonably well with GCM 500 hPa errors (+ symbol),
while the small-scaley errors (bottom panel) are similar to
GCM total energy errors. The two-level system also matches
the GCM in terms of model error, as measured by the drift,
and sensitivity to initial condition, as measured by lagged
forecasts in a global metric (Orrell, 2002).

As discussed in the above reference, the drift can be com-
puted from a sum of short forecast errors. For example, sup-
pose the target point at timetj = to + j� is ~x(tj), and letxj(t) for t � tj be the model trajectory initiated at the target
point~x(tj). The drift at timetK is then given by:d(tk) = kK�1Xj=0 (xj(tj+1)� ~x(tj+1))k (1)

(the timestep� should be chosen sufficiently small that the
calculation converges). Because the stochastic model error
terms in the two-level system are uncorrelated, the drift grows
in a square-root fashion like a random walk.

The size of the model error terms was determined by fitting
the drift curves to those of the GCM. Figure 1 also shows for
comparison the effect when the stochastic model error terms
are reduced by a factor 10. When model error is high, the
observation error has little effect on the calculations, but for
low model error the observation error has a more significant
effect. Two cases are therefore shown: in case 1, the observa-
tion error is at the normal value, while in case 2 it is tripled.
In either case the rate of growth is significantly below that of
the GCM.

Since the two-level model manages to approximate the ba-
sic properties of GCM error growth, it is reasonable to sup-
pose that it should capture the essence of weather model en-
semble behaviour. The upper panels of Figure 2 show errors
for a 500-member ensemble generated by random perturba-
tions. The left panel can be compared with any 500 hPa en-
semble. The errors in they variables (right panel) are similar
but have a smaller spread.

The lower panels show Talagrand diagrams for thex andy variables for a 32-member ensemble, formed from taking
perturbations in the positive and negative directions of the
16 leading singular vectors in they metric, with an optimi-
sation time of 2 days. These diagrams, which are discussed
for example in (Ehrendorfer, 1997), provide a statistical test
of the ensemble by counting the distribution of the true sys-
tem relative to the ensemble predictions. Suppose we wish
to predict thei’th x-component of the true system. Since the
ensemble contains 32 members, it will provide 32 valuesxji
wherej denotes the ensemble member. These can be ordered
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Fig. 1. Plot comparing root-mean-square errors for the two-level system
with low and high model error. The observation error plays a larger role
when model error is small than when model error is large, so two cases
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Fig. 2. Plot showing the ensemble performance of the two-level system. The
top left panel shows errors inx variables, which can be compared to a 500
hPa ensemble for a weather model. The right panel shows the corresponding
errors for they variables. Lower panels show Talagrand diagrams of a 2-
day forecast inx (left) andy (right) variables. Dotted line shows the ideal
distribution. See text for discussion.

so that they form a partition into 33 bins, where the first bin
corresponds to predictions smaller thanx1i , the second bin
corresponds to values betweenx1i andx2i , and the last bin
corresponds to values greater thanx32i . We then note where
the observed value of the true system lies, and repeat the ex-
periment a number of times, for each indexi. The result is a
histogram of the position of each observation in the ensem-
ble partition. If the ensemble gives a probability distribution
function of the analysis, then the distribution should be flat,
but here there is a distinct U-shape which indicates that the
true values are often falling above or below the ensemble’s
range. The same effect, if to a slightly lower degree, is typi-
cally seen with GCM’s (Strauss and Lanzinger, 1996).

Note that the Talagrand diagram only tests whether the en-
semble gives a probability distribution function over many
forecasts, which is a different question than whether it will
do so over a single forecast, with different realisations ofthe
observation error. In general, statistical verification schemes
such as Talagrand diagrams provide a necessary condition for
the ensemble to be an accurate representation of the atmo-
sphere’s future state; however, they are not a sufficient con-
dition, since one could obtain a perfect Talagrand diagram by
using an ensemble of randomly chosen climate states (Strauss
and Lanzinger, 1996). For the same reason, while such dia-
grams are useful diagnostic tools in many respects, they are
unsuited for assessing the effect of model error: as discussed
in Section 6, a model can be quite bad, but yield a satisfac-
tory Talagrand diagram, so long as it has been tuned to give
a reasonable climatology.

A stronger necessary condition is that ensembles contain
members where error at future times remain small, i.e. shadow
orbits. As we will see below, the ability of a model to shadow
is primarily a function of its model error. It is notable that

none of the ensemble members in the upper panels shadow
for long, since the errors of all members increase with time.
For weather models, it is not possible to interpret ensemble
diagrams so easily, because the ensemble is small relative to
the dimension of the space, and the fact that ensemble errors
increase with time does not necessarily imply that there do
not exist other perturbations of equal or smaller magnitude
that do shadow. In order to validate the ensemble approach,
it is therefore necessary to find alternative methods for estab-
lishing the existence of shadow orbits. In the next sections,
we consider some techniques for doing this.

3 Estimating shadow times

If ensembles are to be used to generate probability distribu-
tion functions of the weather at some future time� , then at
least one point, perturbed an amount smaller than or equal to
the perturbation radiusr of the ensemble, should manage to
shadow the analysis within that radiusr for time � . In other
words, if the target orbit (in this case the analysis) is~s(t), the
model trajectory iss(t), and the error vectore(t) ise(t) = s(t)�~s(t); (2)

then we require an initial perturbatione(0) such thatke(t)k �r for all 0 � t � � . We will consider two independent
methods to estimate a model’s ability to shadow, which were
also discussed in less detail in (Orrell et al., 2001). The
first, which is direct but also expensive, will be to directly
search for candidate shadow orbits. The second is based on
theshadow-drift law, which relates shadow times to the drift.
A third technique is a simple test to check whether a partic-
ular ensemble, created by either initial condition or model
perturbations, can contain a shadow point after a period of
time. Because model error is larger in they variables, we
will concentrate on shadowing in these variables: it is found
that any orbit which shadows iny has only negligible errors
in x (though the opposite is not true).

The most straightforward method of estimating shadow
times is to search for orbits that shadow within a radiusr.
Ideally, with infinite computer resources, this would be done
by testing all initial displacementske(0)k � r inside the
shadow radius for one which remains within the shadow ra-
dius for the longest time. Failing that, an optimisation tech-
nique can be used to find the optimal initial condition; one
method, dubbed the ‘amoeba’ method (Hansen, 1999), uses
a simplex scheme (Press et al., 1993). The upper panel of
Figure 3 shows a distribution of shadow times determined in
this way for the two-level model with shadow radiusr = 2.

While the amoeba technique is suitable for use with the
two-level model, such a brute-force approach cannot be used
with weather models, because of the high dimension of the
space. Some more efficient scheme must therefore be ap-
plied. One approach might be to search in a limited subspace,
for example the space of singular vectors, which would have
the benefit of giving the maximum final displacement for
the smallest initial displacement. A problem, though, is that
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model error is unlikely to be aligned with the singular vec-
tors; indeed, because of the high dimension of the space, it
is safe to assume that the two are orthogonal. Therefore the
chances of finding an optimal shadow orbit in such a sub-
space is small.

However, if the adjoint is available, it can be used, not
just to produce singular vectors, but to actually find the opti-
mal initial displacement which will offset model error. Such
a code has been used at ECMWF for so-called ‘sensitivity
analysis’ (Rabier et al., 1996). Suppose that we set a shadow
time � , and wish to find an initial condition which stays
within a minimal distance of the true system. (In effect, this
is the inverse of the normal shadowing problem, since we
set the time first and determine the radius, rather than vice-
versa.) If we focus only on the final error, and ignore for the
time being the intermediate points, then the problem can be
phrased asminimise C(e(0)) = 12ke(�)k2: (3)

This optimisation problem has HessianMT (t)M(t) (4)

whereM is the linear propagator of the forecast model, and
the transpose symbol refers to the adjoint operator (Dimet
and Talagrand, 1988). An optimal solution can be found in
an iterative fashion by taking a sequence of steps in the New-
ton direction (Gill et al., 1981). Similar techniques are also
employed in 4D-Var (Lewis and Derber, 1985; Courtier and
Talagrand, 1994).

Figure 4 shows how this optimisation routine works in
practice for the two-level model. At each iteration, the ini-
tial condition is perturbed in the Newton direction, which re-
duces the final error. The process is terminated when the ini-
tial and final errors are equal. Note that intermediate points
do not exceed the shadow radius: this is typical of shadowing
behaviour, but needs to be checked for. When performed for
a variety of different shadow times� , the result is a curve of
shadow radius versus shadow times, as in Figure 3. Compar-
ing the performance of the sensitivity method to the amoeba
method, it seems that the method works well forr < 4 (di-
ameter less than 8), but is less efficient at higher radii.

The sensitivity method can be improved by adapting it so
that the optimisation is performed relative to the constraint on
the size of the initial perturbation. In its usual form, the sen-
sitivity method is solving an unconstrained problem, rather
than a constrained one, so the solution found by terminating
the iterative process when the initial error equals the finaler-
ror does not yield an optimal result. This can be addressed
by writing the problem instead asminimise C(e(0)) = 12ke(�)k2subje
t to ke(0)k � r (5)

where the constraint is on the magnitude of the initial condi-
tion. One approach to solving such problems is the penalty
function method (Gill et al., 1981), which transforms the

constrained problem into an unconstrained one by adding a
penalty term:minimise C(e) = 12ke(�)k2 + �(ke(0)k � r2) (6)

where� is some suitably large constant. The above formu-
lation will force the initial conditione(0) to have radiusr;
alternatively, the penalty function could switch on only ifthe
radius exceeds the shadow radius.

There is a symmetry to the shadow problem, however,
which doesn’t distinguish between the initial and final dis-
placements; we could equally well minimise the initial dis-
placement subject to the final displacement being within the
shadow radius. A balanced approach, then, is to minimise
the sum of the initial and final displacementsminimise C(e) = 12ke(�)k2 + 12ke(0)k2: (7)

The shadow radiusr can then be taken as the maximum of
these two values. We again assume that intermediate values
will remain within bounds; this is easily checked for. The
Hessian of the cost function isMT (�)M(�) + 2I (8)

which can be used to determine the Newton direction. We
refer to this method as the ‘pinch’ method, since it involves
minimising the initial and final displacements. Figure 3 com-
pares its performance with the other methods; it is more effi-
cient than the sensitivity technique forr > 4, but for smaller
values there is little difference between the three methods.

Therefore while the pinch method is superior to the sensi-
tivity method, and can also be implemented with fairly mi-
nor modifications, it appears that the existing sensitivitycode
should give reliable results so long as the shadow radius is
sufficiently small.

4 The shadow-drift law

Another method to estimate shadow performance is through
the shadow-drift law. This states that the expected radius
within which the model can shadow the target system for
a time � is either approximately equal to, or greater than,
the drift divided by 2. Equivalently, the shadow diameter is
bounded below by the drift. Furthermore, if model error is
large, then the bound is approached, so the shadow diameter
is approximately equal to the drift. The lower panel of Figure
3 shows the drift in they variables. It provides a fairly ac-
curate estimate of the amoeba method shadow diameter for
the first day or so, and gives an underestimate at higher times.
Since the drift, which is just a sum of short forecasts, is easily
computed, this is a cheap method to estimate shadow times,
especially when model error is large.

The shadow-drift law was illustrated in (Orrell, 2001) for
a variety of model/system pairs, including weather models.
The general proof is given in the same reference, and will be
the subject of a future paper. The argument rests on showing
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that, in a dissipative model, the net effect of a model’s sensi-
tivity to initial condition is small when averaged over a large
number of experiments. Shadow performance is therefore
dominated by the model error, as measured by the drift. We
here present a more limited but rather simpler proof, based
on the pinch method of searching for shadow orbits, which
applies to a specific class of models.

We will first assume that the linearised dynamics in (Orrell
et al., 2001) is exact, so error growth can be modelled ase(�) �M(�; 0)e(0) + d(�): (9)

(This approximation can be improved by using thepropa-
gated driftin place of the drift, as discussed in (Orrell, 2002);
for shadow orbits the difference is small.)

Suppose that, using the pinch method, we find an initial
conditionê0 which minimises the average of the initial and
final displacements squared, so it solves the problemminimise C(e0) = 12kM(�)e0 + d(�)k2 + 12ke0k2: (10)

Let r̂2 = C(ê). Then ifr is the minimum attainable shadow
radius, it follows thatr � r̂, i.e. no orbit can shadow (under
the linearised dynamics) within a radius smaller thanr̂. For
suppose that there exists an initial conditione0 for which the
initial and final errors are within a radiusr � r̂. Then for
this initial condition, we haveC(e0) = 12r2 + 12r2 � r̂2 (11)

which violates the assumption thatê0 is optimal.
The solution of Eq. 10 therefore yields a radiusr̂ which is

an underestimate of the true shadowing radius. We can solve
directly for r̂ by setting the gradient of the cost functionC
equal to zero:MT (�)(M(�)ê0 + d(�)) + ê0 = 0: (12)

Dropping the dependence on time for clarity, we haveê0 = (MTM+ I)�1MTd (13)

whereI is the identity matrix.
We next write the linear propagatorM in its singular value

decomposition (SVD) form (Golub and Loan, 1989) asM = UWVT : (14)

If M is ann by n matrix, thenU andV are matrices of the
same dimension with orthonormal columns, whileW is a
diagonal matrix with positive diagonal entries. Substituting
into Eq. 13 then gives an initial displacementê0 = �V(W2 + I)�1WUTd (15)

from which it follows thatr̂2 = C(ê0) (16)= 12dTU(W2 + I)�1UTd (17)= 12 nXi=1 (d � ui)21 + �2i (18)

Fix the magnitude of the drift vector, and the multipliers�i, and assume that the components of the drift vector are
uncorrelated with the direction of the singular vectors. Then
if we take the expected value of the sum over all possible
orientations of the singular vectors, the term(d � ui)2 is a

random variable of magnitudekdk2n . Thereforehr̂2i = 12 h nXi=1 (d � ui)21 + �2i i (19)= kdk22n nXi=1 11 + �2i : (20)

(Note that this is slightly different from Eq. 9 of (Orrell et
al., 2001), which was obtained by a geometric argument. The
result here gives only a lower bound on the shadow radius.)

To demonstrate the shadow-drift law, we wish to showhr̂2i � kdk24 ; (21)

which will occur ifnXi=1 1(1 + �2i ) � n2 : (22)

Now, an example of a volume preserving model is one where
the magnitudes of then singular vector multipliers�i, when
arranged in descending order, follow a power law distribu-
tion, so that�i = �1� 2in1 : (23)

The largest singular vector multiplier is therefore�1, and the
smallest is�n = ��11 . An equal number of directions con-
tract as expand in phase space, and because the product of
the multipliers is 1, such a model would preserve state space
volume.

Given the ideal power law distribution, it is easily seen thatnXi=1 11 + �2(1� 2in )1 = n2 : (24)

It therefore follows that, if a plot of the singular vectors lies
beneath the power series distribution for some choice of�1,
then the shadow-drift law will apply.

This argument therefore proves the shadow-drift law for
only a specific class of models, namely those which are more
dissipative than the power law case, in the sense described
above. However, real models often have this characteristic.
The upper panel of Figure 5 plots the average singular value
multipliers for the two-level model, compared with a power
law distribution (a straight line in the semilog scale). Re-
sults, which are averaged over 100 shadow experiments at
shadow radius 4.0ms�1, always lie below the straight line,
indicating that the model is more dissipative than the volume-
preserving ideal power law case. The lower panel compares
the root-mean-square value of each term in the sum Eq. 22
to the corresponding term for the power law; since the solid
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Fig. 5. Top panel shows the average singular value multipliers for the two-
level model (solid line), compared with a power law distribution (dotted
line, which is straight in the semilog scale). Results are averaged over 100
shadow experiments at shadow radius 4.0ms�1. The solid line is always
below the straight line, indicating that the model is more dissipative than
the volume-preserving ideal power law case. The lower panelcompares the
root-mean-square value of each term in the sum Eq. 22 to the corresponding
term for the power law. Here the solid line is always above thedotted line.

line is always above the dotted line, it follows that the mini-
mum shadow radius will be greater than that predicted by the
shadow-drift law, so the law gives a lower bound as claimed.
For weather models, where the full range of singular values
is not calculated, we need to evoke the general proof, which
applies to dissipative models.

The shadow-drift law can be used to estimate shadow times
for a range of different shadow radii. The results can then be
compared with actual shadow experiments, as in Figure 3.
Because the shadow calculations and the drift calculations
are performed in completely different ways, this gives two
independent methods of estimating shadow times. Perform-
ing the calculations for a variety of different shadow times
will also negate the possibility that the two tests agree by ac-
cident.

A drawback to these two methods is that they really apply
only to ensembles formed by perturbating the initial condi-
tion, not the model itself. The next section presents a tech-
nique to measure the effect of model error on a given ensem-
ble, however it is generated.

5 The mean projection test

The third method to gauge the effect of model error on en-
semble forecasts is to check whether the convex hull of a par-
ticular ensemble contains a shadow point (i.e. a point within
the shadow radius of the analysis) after a period of time. By
convex hull, we mean as formed within the subspace spanned
by the ensemble members, so if there aren ensemble mem-
bers, the convex hull has dimensionn+ 1.

The reason for using the convex hull is that the ensemble
is usually formed by taking each perturbation at a set magni-
tude. If all ensemble members fail to shadow, this still leaves
the possibility that some linear combination of the initialper-
turbations, that lies within their convex hull, could shadow. If
we assume that the model is roughly linear over short times
(though see (Gilmour et al., 2001), then the image of that
point at a set time would lie within or near the convex hull
of the ensemble. Therefore, if the convex hull can be shown
to be moving away from the analysis, it is a much clearer in-
dication of model error than showing only that the ensemble
members themselves fail to shadow.

This technique is less general than the shadow methods,
since it applies only to a particular ensemble, and cannot
be used to determine the overall shadow performance of a
model. It is also a stronger condition, since it demands that
the convex hull actually contains a shadow point, rather than
asking whether a shadow point could in principle exist given
the right perturbation. An advantage is that it is extremely
easy to perform. It can also be applied to ensemble schemes
which include perturbations to the model.

For a particular time� , each ensemble member is expressed
as an error field (say 500 hPa) over a grid. The ensemble
mean error is then computed. Figure 6 is a schematic dia-
gram showing the ensemble errors, mean error, and convex
hull of the ensemble in a 2-D space. We claim that to check
whether the convex hull contains members within a distancer of the origin, it suffices to take the projection of each en-
semble error onto the mean error vector (solid line joining
the ensemble mean to the origin in the figure). If the projec-
tions of the errors are all greater than the shadow radius, then
the errors themselves must be greater than that radius. This
holds for any point in the convex hull.

The method is called themean projection test. Referring to
the figure, ifp is the magnitude of the projection of the near-
est pointe onto the mean error, then so long asp is greater
than the shadow radius, no point in the convex hull can be a
shadow point.

To see why this is the case, consider the plane which is
orthogonal to the mean error and a distancep from the origin.
This plane is indicated in the figure by the solid line which
contains the pointe. If the mean projection test fails, thenp > r, and all the ensemble errors, and therefore the entire
convex hull, must be either on, or on the opposite side from
the origin of, this plane. Since the minimum distance from
the plane to the origin isp, it follows that no ensemble error
is within the shadow radiusr.

Figure 7 shows the mean projection test applied to a 20-
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shadow radius (here 0.5) for all ensemble members, the mean projection test
fails, and we deduce that the convex hull of the ensemble doesnot contain a
shadow point.

member ensemble for the two-level model, in thex andy
variables. The projections of the ensemble errors onto the
mean error are shown each 3 hours. Since the projections
are always greater than the shadow radius, indicated by the
dotted line, it follows that this particular ensemble does not
contain a shadow point for even 3 hours.

For the two-level model, all three techniques therefore give
a similar answer: ensembles in they variables (correspond-
ing to total energy), with a perturbation radius of0:5ms�1,
will shadow at that radius for at most a few hours. The en-
sembles cannot therefore be considered a reliable probabilis-
tic guide to the true state of the system. Since the two-level
drift was chosen to match that of the GCM, the shadow-drift
law implies that GCM shadow times will be similar; how-
ever, this must be confirmed by searching for actual shadow
orbits, for example with the sensitivity code, and checking
whether particular ensembles contain shadow points, with
the mean projection test.

Because the mean projection test shows whether an en-
semble is drifting away from truth, it can serve as a test for
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Fig. 7. Plot showing the mean projection test applied to the two-level sys-
tem. The projection of the ensemble errors onto the mean error, sampled
each 3 hours, is greater than the shadow radius (dotted line)at any time,
implying that the convex hull of the ensemble does not contain a shadow
point.

model error. Ensembles can therefore be used, not just as a
forecasting tool, but as a method for determining or verify-
ing the importance of model error relative to initial condition
error.

6 Comparisons with weather models

To show how the above techniques can be applied to real
weather models, we briefly compare two weather model case
studies with results for the two-level model. The intention
is to illustrate that the methods are workable, and that the
two-level model is capable of simulating actual ensemble
schemes. The first case study is the inter-model comparison
between the ECMWF T42 and TL159 models, which was
presented in (Orrell et al., 2001). In this experiment, the T42
model was used to shadow a TL159 target orbit. The shadow
radius at 2 days was estimated from the shadow-drift law,
and the sensitivity code. We will compare the results with a
modified version of the two-level system.

The solid line in the upper left panel of Figure 8 shows the
total energy forecast error. The large initial error is due to
the truncation operator between TL159 and T42. The drift at
time 2 days was estimated from a sum of short forecast errors
to be1:8ms�1 (it is about equal to the total forecast error).
From the shadow-drift law, the expected shadow radius is
therefore half the drift, or0:9ms�1.

The sensitivity code was then used to produce an actual
shadow orbit. The dotted line shows the result after fifty it-
erations of the optimisation procedure. Because the radiusat
two days is slightly greater than the initial radius, it appears
that the shadow orbit could have been improved by perform-
ing further iterations. The average of the initial and final er-
rors is about1:1ms�1, which is slightly greater than the drift
over two, as expected by the shadow-drift law.

For comparison, the upper right panel shows ay variable
error curve and typical shadow orbit for the two-level (medium
error) model, where the model error terms were reduced by a
factor 4, and observation errors by a factor 2, so as to match
the inter-model error curve. The shadow orbit was calculated
using the amoeba method with a shadow radius of1:0ms�1.

The two methods for estimating the two-level shadow ra-
dius at time two days therefore give a radius in the region
of 1:0ms�1. Since this is greater than the ensemble pertur-
bation radius, it means that an ensemble is not expected to
contain shadow points at 2 days. In fact, the drift becomes
equal to twice the shadow radius after about half a day, so
the ensemble should cease to contain shadow points after this
time.

The lower panels show ensemble errors calculated for T42
(left) and the two-level model with medium error (right). The
two-level ensemble contains a large sample of 400 perturba-
tions, so it is safe to assume that no shadow point exists after
at most half a day; for the T42 ensemble, which contains
only 50 perturbations in the +/- directions of the leading 25
singular vectors, a mean projection test should ideally be per-
formed, however this was not done at the time of the exper-
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Fig. 8. Plot comparing shadow behavior for the T42/TL159 inter-model
experiment, and the two-level system with medium error. Upper left panel
shows T42 forecast error and shadow orbit optimised at 2 days. Lower left
panel shows a T42 ensemble. Panels on right show same for the two-level
model with medium error, where the model error terms have been reduced
by a factor 4, and the observation errors by a factor 2, to match the inter-
model data.

iment. The effect of model error is clear for either ensemble
by the large initial slope.

It is interesting to note that the ensemble errors relative to
T159 can be viewed as the orthogonal sum of the T42 fore-
cast error, and errors of the T42 ensemble with respect to an
unperturbed T42 control. This is shown in Figure 9. The up-
per panel shows the T42 ensemble errorse42 relative to T42.
Because there is no model error in this situation, the errors
are due to initial condition only. The lower panel shows the
T42 forecast errorf159 relative to T159 (dotted line). This er-
ror is due primarily to the model. The orthogonal sum off159
with the T42 ensemble errorse42 is a good approximation to
the total ensemble errors in Figure 8. This is a consequence
of Eq. 9, which shows that the error can be approximated as
the sum of two components, one due to the initial condition,
and one to the model error. The reason the two-level model
can approximate the weather model ensemble behaviour is
because it has the right amount of model error and the right
sensitivity to initial condition.

The second case study is an ensemble from the NOAA
MRF model. The upper left panel of Figure 10 shows the
ensemble errors at one-day increments in 500 hPa. The er-
ror of the ensemble mean is also shown. Note the large size
of the initial perturbations. The average perturbation size is
about12m, which we set as the shadow tolerance. Because
of the large initial perturbations, and the increased shadow
tolerance, the expected shadow times are longer than in the
previous case study. The lower left panel shows a mean pro-
jection test for this ensemble. The radius of12m is indicated
by the dashed line, and the mean projection test appears to
fail after about 2.5 days.

How does this compare with expected shadow behaviour?

0 1 2 3 4
0

1

2

3

4

5

6

days
m

/s

e
42

0 1 2 3 4
0

1

2

3

4

5

6

days

m
/s

f
159

                 
sqrt(e

42
2 +f

159
2 )

Fig. 9. Plot showing how inter-model ensemble errors can be viewed as
the orthogonal sum of errors due to initial condition, and error due to the
model. Top panel shows errorse42 of the T42 ensemble with respect to the
T42 control forecast. Since there is no model error, the errors are due to
initial condition only. Lower panel shows the forecast error f159 relative to
the T159 model, which is primarily due to model error (dashedline). The
orthogonal sum of this with the ensemble errorse42 gives a result (solid
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lower left panel of Figure 8.
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Fig. 10. Plot showing ensemble errors and mean projection test for the MRF
model in 500 hPa, and the two-level model inx. The MRF ensemble was
initiated at Oct 30, 2001. Top panels show root-mean-squareerrors, eval-
uated once per day. The perturbation size is12m for the MRF ensemble.
Lower panels show the corresponding mean projection test. In either case,
the projected errors exceed the12m line after about 2 days.

Since we are working in a non-global metric, statements about
shadowing will depend to an extent on the other, unseen vari-
ables. Nevertheless, we can make some broad approxima-
tions. As a proxy for drift, we can use the ensemble mean
error (if model error is large, then the drift accounts for most
of the error over short times (Orrell, 2002)). An ensemble
with perturbation size12m should shadow at most until the
mean error is about twice the radius, or24m. Extrapolating
the error curve, this happens after about 3 days. Since this
is the best expected shadow time for an optimal perturbation,
it is reasonable that the ensemble should shadow a slightly
shorter time.

For comparison, the right panels show a two-level model
ensemble inx. The results of the mean projection test in
the lower right panel again show that the ensemble contains
no shadow point at radius12m after about 2.5 days. Note
that the reason shadow times are longer than in Figure 7 is
because the shadow radius is12m instead of2m. Loosely
speaking, if drift varies approximately with the square-root
of time, then expected shadow times will vary approximately
with the square of shadow radius.

Together, these case studies show that the three methods
based on drift, shadow experiments, and mean projection
tests, are feasible techniques which can be applied to full
weather models. In terms of computational expense, the drift
is comparable to a single long forecast, while the mean pro-
jection test is similar to calculating root-mean-square errors.
The studies also show that the two-level model can be adapted
to simulate a number of different weather models.

7 Model perturbations

The above techniques will help to validate the performance
of ensembles. A related question is how ensembles might
be improved if model error is large. As discussed in the
introduction, one approach that has been adopted is to use
stochastic elements in the model equations, either by perturb-
ing the model parameters, or by adding a stochastic forcing
term.

Suppose for example that the errors are assumed to arise
from sub-grid scale processes, and we decide to account for
them by adding stochastic terms to the model. For the two-
level model, we could do this by simply adding stochastic
terms which have the same magnitude as those in the true
system. The model and the system would then have identical
equations, but different realisations of the stochastic forcing.
Figure 11 shows the result. In the upper panels, the spread of
the ensemble errors has increased relative to Figure 2. How-
ever, so has the mean error. The reason is that errors are
dominated by the drift, which is the integral of the tendency
error over time. The unperturbed model is in a sense an op-
timal choice, because the constant forcing minimises the ex-
pected value of the tendency error, and therefore the drift.
If the model contains stochastic terms equal in magnitude to
those of the system, then the expected tendency error is the
expected value of the sum of the two stochastic terms, which
represents an increase by a factor

p2. Therefore, while the
spread increases, so does the mean error, and the net effect
is that overall accuracy is not improved: of the 400 points
tested, none managed to shadow within a reasonable toler-
ance. We could not therefore say that adding the stochastic
terms has helped ensemble performance, if the goal is to pro-
vide a probability distribution function.

The lower panels, however, tell a very different story. Be-
cause the model and the true system now have identical vari-
ability, the model yields a perfect Talagrand diagram, even
though the ensemble is no closer to tracking the system. This
shows the limitation of statistical techniques when discussing
ensemble quality. The problem is that prediction of near-
term errors, and the prediction of long-term error variability,
are two completely different questions. Statistical verifica-
tion methods are better suited to the latter than the former.

To further illustrate this point, suppose that we wish to
predict the next number in a random string of 0’s and 1’s.
To minimise the expected root-mean-square error, we should
choose a value of 0.5 as our prediction, for which the RMS
error is 0.5. This is essentially what we did with the model of
the two-level system, where we used the average value of the
forcing and ignored the stochastic terms. Another approach
would be to use a coin, one face marked 0 and the other 1, as
a ‘model’ for the random string. We toss the coin, and take
that as the prediction. In the long-term, the model would
perfectly replicate the climatology of the system, in that it
would give 0’s half the time and 1’s half the time. However
the expected RMS error for a single prediction, which is1p2 ,

has increased by a factor
p2. This corresponds to the case
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Fig. 11. Plot showing the effect on ensemble performance of adding stochas-
tic terms to the model. Left panels show errors inx variables, right panels
show errors iny variables. Upper panels are ensemble errors, lower panels
show Talagrand diagrams of a 2-day forecast. While the addition of stochas-
tic terms increases the spread of the ensemble, and yields a perfect Talagrand
diagram, it actually detracts from overall accuracy.

where we added stochastic terms to the model.

For the model of a random string, it is at least the case that
an ensemble with spread equal to the mean error, e.g. that
consisting of 0 and 1, is guaranteed to contain the true value.
In a high dimension space, the situation is worse. Any ran-
dom perturbation is expected to be orthogonal to the model
error, so will not correct it. The spread will increase, but
so will the mean error. Therefore the ensemble’s chance of
containing shadow points will probably not improve.

In any case, the existence of a shadow orbit is a necessary,
but not a sufficient, condition for ensembles to be effective.
An ensemble consisting of all possible two-level states would
contain a shadow point, but no useful information. The goal
of ensemble forecasting is not to increase the spread by any
means possible, since the usefulness of the resulting proba-
bilistic forecast will vary inversely with the range of possi-
bilities portrayed.

Perturbing, or changing, the model may well work better
for weather models than for the two-level system, which is
perhaps a worst-case example since the errors are entirely
random. However, there remain some additional theoreti-
cal questions. Ensembles are suitable for simulating the ef-
fects of initial condition error because we know certain things
about that error source. For example, the ‘true’ initial con-
dition (i.e. the weather) is expected to exist within a certain
distance of the analysis. Also, perturbations can be chosen
in the direction of rapidly growing modes, to give the maxi-
mum spread. Model error is a completely different situation.
There is no obvious ‘model space’ counterpart to singular
vectors or bred vectors. There may even be no accessible set
of equations that perfectly mimic the dynamics of the system
(Smith, 2000; Judd and Smith, 2001). The ensemble method-
ology, which was designed to handle initial condition error,

cannot necessarily be transplanted to deal with model error-
at least until we know more about the nature of this error.

For ensembles to provide a reasonable probability distri-
bution, model error should ideally be reduced below some
threshold. It is interesting to ask, again in the somewhat ide-
alised context of the two-level system, how good the model
needs to be. It was seen with the inter-model case study that
model error had a significant effect on ensemble performance
when the model error in the two-level system was reduced by
a factor 4. The two-level model was therefore again run with
the stochastic model error terms this time reduced by a fac-
tor of 10. The upper panels of Figure 12 show errors of a
typical ensemble; note the different vertical scale. The ex-
pected shadow times at a radius0:5ms�1 are in the region
of 4 days. The ensemble will therefore contain a shadow
orbit for around this time: however, it still does not func-
tion very well as a probabilistic forecast. It appears that even
a small amount of model error is capable of disrupting the
performance of ensembles. The middle panels show the Ta-
lagrand diagrams at 2 days. The statistics are worse than for
the stochastic model discussed above, even though ensemble
accuracy is far improved! The lower panels show the results
of the mean projection test applied every 12 hours over a 7-
day period. The ensembles in eitherx or y variables cease
to contain shadow points after about 4 days, as indicated by
the fact that the projections onto the mean error are greater
than the shadow tolerance (dotted line) past this time. Note
that, if model error is reduced by a factor 10, then forecast
error growth will be as shown in Figure 1, so the model has
excellent predictive skill.

8 Conclusions and future work

The aim of ensemble schemes is to provide a probability dis-
tribution function of the weather’s future state. If this isto
occur, then a reasonable condition that must be satisfied is
the existence of a shadow orbit. In this paper we have dis-
cussed independent tests for estimating shadow times. The
first is based on the currently existing sensitivity code, which
can be used to produce candidate shadow orbits. The sec-
ond is based on the shadow-drift law, which relates expected
shadow performance to model error as measured by the drift.
Both these techniques have already been tested in inter-model
experiments at ECMWF. By plotting a curve of shadow ra-
dius versus shadow times using both methods, the chances
of the two agreeing by accident can be mitigated. The sen-
sitivity code can also be improved by including the initial
constraint, as in the pinch method. A third technique, the
mean projection test, is a simple method to check whether a
particular ensemble, however generated, contains a shadow
point after a period of time. It can also serve as a method to
determine, through ensemble behaviour, the effects of model
error.

Ensemble schemes are essential tools for studying the ef-
fects of initial condition error. However, for the two-level
model, it appears that model error must be small in order for
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Fig. 12. Plot showing ensemble performance when stochastic error inthe
two-level model is reduced by a factor 10. Upper left panel isx errors, upper
right panel isy errors. Middle panels show the 2-day Talagrand diagrams:
note the difference in shape from the high-error case. Lowerpanels show
the results of the mean projection test, which indicates that the convex hull
of the ensemble ceases to contain shadow points after about 4days. Shadow
times for ay radius of0:5ms�1, determined by the amoeba method, are
also in the region of 4 days.

ensembles to yield accurate probabilistic forecasts. Similar
effects may also occur with weather models. This is not to
say that, when model error is high, a probabilistic approach
to forecasting is no longer required, or that ensembles will
not be applicable. Even if a model is incapable of shadowing
the analysis, it may still be the case that ensembles are a use-
ful tool for making forecasts, say of temperature in a partic-
ular region (any method of generating an ensemble will pro-
duce a certain spread, and the larger the spread, the greater
the chance that the observed value will fall within the bounds
of the ensemble). However, since in this case the forecast er-
rors are not themselves primarily a result of changes in the
initial condition, it follows that perturbing the initial condi-
tion may not be the most appropriate or efficient way to pro-
duce a probabilistic distribution. And, as discussed in Sec-
tion 6, model perturbations are not without their difficulties.
For these reasons, other techniques, such as the use of past
error statistics, may provide an equally valid, and certainly
cheaper, method to generate probabilistic forecasts.

The two-level system has been used to simulate a number
of different weather models. While it manages to reproduce
many aspects of GCM behaviour, however, it is only a stand-
in for the real thing. As mentioned earlier, for example, the
effect of analysis error, which is a complex convolution of
observation error and model error, is not adequately repre-
sented by the two-level system. Nor does it fully capture the
variability of error growth over different scales. However, the
fact that a system can be produced which agrees reasonably
well with GCM behaviour, but fails to yield accurate ensem-
ble forecasts, demonstrates that weather models need to be
carefully examined to validate the ensemble approach. The
most direct method is to establish the existence of shadow
orbits. Such experiments will reveal the effect of model error
on current ensemble schemes.

Appendix A The two-level system

The two-level system is a scaled version of the Lorenz ’96
system, which was used in (Lorenz, 1996) to simulate error
growth, with stochastic terms added. The equations aredxidt = xi�1(xi+1 � xi�2)� xi + F � 4Xj=1 yi;j +Nx(A1)dyi;jdt = 
2yi;j+1(yi;j�1 � yi;j+2)� 
yi;j + xi + 
Ny(A2)

for i = 1 to 8, andj = 1 to 4. The indices are cyclic, so for
examplexi+8 = xi andyi;j+4 = yi+1;j , and the variables
can be viewed as atmospheric quantities around a circle. The
parameter
 is set to 10. Thex variables are scaled by a
factor 900 to put in units ofm for comparison with GCM
500 hPa results, while they variables are scaled by a factor5:3 to put in units ofms�1 for comparison with total energy.
Time is scaled by a factor 100 to put in days.F = 14 is a
constant forcing term, whileNx andNy are random variables
with variance 2.5 and 7.5 respectively, updated every hour.In
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addition, thex andy variables are observed each hour with
a stochastic errorOx andOy, which have standard deviation1:0m and0:5ms�1 respectively. These terms are meant to
simulate the random component of the analysis errors.

In themedium error system,Nx andNy are reduced by
a factor 4, and the observation errorOx andOy by a factor 2.
In the low error system,Nx andNy are reduced by a factor
10, while observation error is unchanged unless otherwise
specified.

The model has the same equations, but with no stochastic

forcing, soNx = Ny = 0, and no observation error soOx =Oy = 0. The difference between the model and the system
is therefore the stochastic forcing terms, and the observation
error. Equations are solved using a Runge-Kutta scheme with
time step of one hour. A long transient of 100,000 hours is
run before making calculations.
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