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Abstract

When nonlinear dynamical models are used to approximate physical sys-
tems such as the weather, error arises from one of two causes: the initial
condition used by the model, and the model itself. Of these two sources,
model error is the less well understood; yet a knowledge of model accuracy
is essential for reliable error estimates and model optimisation. This thesis
develops a technique for measuring model error in the context of nonlinear
systems, and explores the link between model error and the ability of the
model to shadow the true system. The methods are tested on a variety of
model /system pairs in Chapters 2, 3 and 4. In Chapter 5, issues related
to longer term behavior are studied, and connections with short term pre-
dictability explored. In Chapter 6, the model error techniques are applied
to operational weather forecast models. It is seen that the component
of forecast error due to model error tends to grow as the square-root of
forecast time, and for the days tested is the dominant source of error out
to three days. The results are summarised, and the implications further

explored, in Chapter 7.
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What a chimera, then, is man! what a novelty, what a monster, what
a chaos, what a subject of contradiction, what a prodigy! A judge of
all things, feeble worm of the earth, depositary of the truth, cloaca of

uncertainty and error, the glory and the shame of the universe!

Blaise Pascal (1623-1662)

Mankind always sets itself only such problems as it can solve ...

Karl Marx (1859)



Chapter 1
Introduction

Nonlinear dynamical systems are frequently employed to model complicated phenom-
ena, be they an electronic circuit, the trajectory of a spacecraft, or the lifecycle of
beetles. One of the most important applications, in terms both of financial expendi-
ture and impact on people’s lives and businesses, is the forecasting of the weather.
The models in this case contain up to tens of millions of variables, which calculate the
future state of the atmosphere from its present measured state to give us our daily
forecast.

The models essentially represent an understanding of how the atmosphere oper-
ates. Since certain aspects of the weather, such as cloud formation, are too compli-
cated or fine-scale to represent, a parameterisation must be employed. The modeler
is also constrained by computer resources; even with the world’s most powerful su-
percomputers, resolution in space and time is still limited. For example, the spacing
of the horizontal grid is of the order of 50 kilometres, which is large compared to a
thunder storm. As a result, all weather models have one feature in common: they
are different from the real weather. In other words, they all contain model error.

Until now, there has been no satisfactory method to calculate the effect of model
error on predictability. Techniques which offer partial solutions include measuring
the divergence of the model trajectory from observations, and comparing different
models. The first approach suffers from the problem of entangling model error with
initial condition errors, since as soon as the model diverges slightly from observations,
the two are hard to distinguish. This is especially an issue in chaotic systems, where
sensitivity to initial condition may be large. The second approach is useful for a
comparison of specific models, but fails to give a bound on model error because it
doesn’t fully sample the space of available models. Models are built up from broadly

similar principles, so the fact that a European weather model agrees well with an



American model doesn’t imply that they are both accurate - they could both be
wrong in similar ways. (A third approach is to randomly perturb model parameters
to give an idea of the likely spread, but this is just a variation on the second method,
and it isn’t clear that any of the perturbed models need be close to the real weather.)

This difficulty in measuring model error is a problem. Measurement of error is
fundamental both in science and engineering. Without it, the modeller must rely on
intuition or guesswork to improve the models [60]. The problem is especially striking
in the context of weather forecasting - a multi-billion dollar industry, yet one, it might
be said, without the means to control the quality of its own product; and, as a result,
plagued by more than one company which claims to be able to predict the weather
out to a year or beyond.

The aim of this thesis is therefore to provide a method for measuring model error
in nonlinear dynamical systems and assessing its effect on predictability. To this end,
we will address three practical topics, primarily in the context of short to medium
range prediction. The first topic is, how do we define model error? For example,
how do we decide which of various weather models is the most accurate? Or, if an
ensemble of models is being used, with the results in some way averaged over all of
them, how do we assign weights to the different models? And how do we compare
the magnitude of model error with the likely error in initial condition?

The second topic is, how can we estimate how long a model will shadow (stay
close to) a system or set of observations? Many techniques in weather prediction
implicitly assume that there exists a model orbit which shadows the true system
for some specified time. For small systems it is easy to find actual shadow orbits
using optimisation techniques, but for large atmospheric models the computation
is difficult, and shadow times are unknown, with expert opinions ranging between
several hours and many months. Therefore, how can we cheaply estimate shadow
times for a particular model? Can we tell if the model is good enough for ensembles,
comprised of a collection of perturbed forecasts, to encapsulate reality?

Finally, given a model with a number of parameters which can be varied, what
criterion should be used to optimise the parameters, so that predictability is max-
imised? How do we know the model is the best that can be achieved, up to a change
of structure? And, armed with a knowledge of model error, can forecast accuracy be

improved by other means?



1.1 Outline

We will study model error over a range of systems, ranging from simple 3D systems,
to the higher dimension Lorenz '96 [40] systems, right up to operational weather
models with dimensions of the order 107. The first chapter introduces the problem
of weather prediction, and the interaction between model error and initial condition
error in the context of nonlinear dynamical systems. It also provides some back-
ground on nonlinear systems, and introduces the spectral bifurcation diagram. This
is a new method of visualising system behaviour through the use of spectral analy-
sis of time series, which will be useful for the higher dimension systems encountered
later. Chapter 2 presents the Lorenz '96 systems, which can be viewed as highly
idealised atmospheric models, and their behaviour over a range of parameter values
is explored using spectral bifurcation diagrams and other tools. The Lorenz systems
are particularly suited to the study of model error, and this is a feature exploited in
Chapter 3, which develops a formal theory of model error, building up from observed
behavior of the Lorenz systems, and arriving at a new measure of model error which
is applicable for any model/system pair. In the fourth chapter, a computationally
inexpensive technique for estimating shadow times, based on the model error work,
is developed, and a shadow law, which underpins the link between model error and
shadow times, is presented. The fifth chapter investigates climatological considera-
tions and stochastic models. Links between the optimisation of model climatology
and of short term predictability are also explored.

In Chapter 6, the theoretical results developed thus far are applied to weather
models at the European Centre for Medium-Range Weather Forecasts (ECMWF).
A range of model error and shadowing results are presented for different resolution
models, including the operational model. A simple formula for forecast error, which
predicts the magnitude of the error for times up to three days, is developed. Finally,
in Chapter 7, some future directions of research in this area are proposed, including
the possibility of improving forecasts through a greater understanding of model error.

Most of Chapters 3 through 6 represent new work. A summary of the main

contributions is as follows:
e A new method of presenting bifurcations using the power spectrum
e A detailed bifurcation analysis of the Lorenz '96 systems

e A method to measure model error independent of initial condition error



A technique for estimating shadow times

A simple method to determine an upper bound on shadow times for dissipative

models

Methods for comparing the relative magnitudes of model and initial condition

error

Proofs of fundamental results concerning climatology of the Lorenz systems

The first estimate of shadow times for weather models

A formula for predicting the magnitude of forecast error up to three days

1.2 Model error vs initial condition error

A recurrent theme of this thesis will be the relationship between model error and
displacement error, defined as the error due to the model equations being evaluated
at the wrong point. When displacement error occurs at initial time, it is referred to
as initial condition error. To successfully measure model error, it must somehow be
isolated from displacement error.

The influence of the two types of error was cited in the context of weather models
by Bjerknes [4], who pointed out in 1911 that the ability to successfully predict the
weather requires two things: a sufficiently accurate model, which, given an initial
condition, will correctly compute the atmospheric state at the future time; and a
knowledge of what that initial condition is. These statements reflect the Laplacian
ideal [42] that, if we knew the present state space coordinates of a system, and the
forces acting on it, we could predict its future.

A typical atmospheric model can be written as a differential equation of the form

C(li—}; = G(x), x(0) = xp (1.1)
where the vector x represents atmospheric variables, the initial conditions at time
t = 0 are xp, and the velocity of x at any time is governed by the function G.
Analytical solutions for (1.1) are not generally available, but a numerical solution can
be determined by integration. The problem of weather prediction then reduces to
knowing the correct initial conditions xq, and having an appropriate model G.

Now, the equations governing the atmosphere are nonlinear, and therefore ca-

pable of showing chaotic behaviour. The hallmark of chaos is sensitivity to initial



conditions, so small variations in xq can quickly lead to radically different solutions.
This was famously illustrated by Lorenz [37], who encountered it when he discovered
that rounding off the initial conditions of his truncated convection model completely
changed the solutions. The idea that the atmosphere was a chaotic system soon be-
came enshrined in public lore (somewhat conveniently for forecasters!). What hope is
there to know if it will rain on the weekend, if a butterfly somewhere in Brazil could
flap its wings and stir up a storm?

It is certainly true that all observations of the weather have a degree of error, and
since only a finite number of observations are possible, we never know the exact state
of the atmosphere at any given time: the vector xq is known only to within a certain
tolerance. Therefore, becasue of sensitivity to initial condition, a single run of the
model will soon stray from the true path as it is integrated forward in time.

Much effort has gone into addressing the problem of sensitivity to initial condition,
and the major weather centres have developed methods of generating ensembles of
initial conditions, comprised of perturbations around the observations, all of which
are run forward using the model [44, 67, 49]. Statistical statements about the future
weather can, in theory, be deduced by examining the ensemble of final states [7].

While chaos makes prediction difficult, it also obscures the effect of model error.
As soon as a forecast state diverges from the true weather state, displacement error
kicks in. And since there is always some uncertainty about the initial condition, due
to observation error and truncation to model resolution, it is hard to separate model
error from displacement error even for small times. But that doesn’t mean that its
contribution can be ignored.

For example, confidence in the ensemble approach would be improved if the model
could shadow [23] the true solution, i.e. if there existed some initial condition within
the ensemble radius € around xg which remained within a tube of radius € of the true
solution as it was integrated forward. This would certainly be the case if our model
(1.1) was a perfect description of the atmosphere. Suppose, though, the model is
flawed (a more likely possibility!), and no such shadowing orbit exists past a time 7.
Then no matter what technique we use to generate an ensemble, statistical conclusions
drawn by examining the behaviour of the ensemble past that time will be affected, if
not made invalid, by model error.

The problems of initial condition error and model error are therefore coupled, and
it is impossible to discuss predictability of any system without assessing the effects of

model error. We know what happened when Lorenz rounded off his initial conditions,



but how about when he truncated his equations from the full convection model in the
first place?

Matters are further complicated by the fact that we are dealing with nonlinear
systems. Even simple nonlinear systems are capable of showing highly complex be-
haviour, and the effect of altering a particular parameter (which is one example of
model error) can be hard to analyse. It is therefore necessary to understand some
basic properties of nonlinear systems before exploring the topic of model error. Be-
cause the systems to be studied are high dimension and fairly complicated, we shall
first illustrate some properties of nonlinear dynamical systems, as well as the tools

which are used to analyse them, in a simple system due to Rossler.

1.3 The Rossler system

The Réssler system [58] is given by the equations

e .

a 7

d

d—?Z = r+ay

A (1.2)
dt = X C)z. .

The constants a and b are here set to 0.1, while ¢ will be treated as a parameter which
can be varied. An advantage of this system is that it is very simple - there is only one
nonlinear term - and is easier to visualise than the higher dimensional systems which
we will come to later. It will also serve as a basis for comparison for those systems,
in terms of both similarities and differences.

A standard method of studying the behaviour of dynamical systems is to look for
attractors, which can either be a fixed point, a periodic orbit, or a chaotic ‘strange
attractor’ [26]. Some of the attractors for the system (1.2) for various values of ¢ are
shown in Figure 1.1. The left hand column is a time series of x, the centre column is
y versus x, and the right hand column is a power spectrum of z. Note that not all of
the three dimensions are shown: it isn’t always necessary to plot the attractor in the
full dimension of the space to understand its structure. This will prove useful when
we go on to look at 40 dimensional systems! Computations were performed using a
fourth order Runge-Kutta scheme [52] with step size 0.01.

For low values of ¢, such as ¢ = 3, the attractor in the zy plane is a periodic

orbit consisting of a single loop. The power spectrum consists of a base frequency of
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about 0.16, plus its integer multiples (as required for periodicity). As c is increased,
the system passes through a bifurcation point, and the single loop becomes a double
loop, as shown for ¢ = 6. The power spectrum picks up an extra base frequency of
about 0.08, and its multiples. Further period doubling bifurcations ensue, at smaller
and smaller intervals, until by ¢ = 9 the system is chaotic, so there is no periodic
orbit. The power spectrum contains a full range of frequencies. This route to chaos,
consisting of an infinite number of consecutive period doublings, appears in a wide
variety of nonlinear systems [26].

For higher values of ¢ there are occasional windows where the system ceases to be
chaotic and reverts to periodic behaviour. For example at ¢ = 12 there is a period
3 orbit, and once again there is regular structure in the power spectrum. As c is
increased the system again period doubles to chaos. By ¢ = 17 the chaotic attractor
has grown in size.

Clearly the behaviour of the system depends in a vital way on the parameter
c. Rather than examining individual values of ¢, it is desirable to try to picture
how the system changes, and particularly where bifurcations occur, as c¢ is varied
continuously. One method to do this is analogous to the bifurcation diagrams of
maps such as the logistic map, which simply record the points on the attractor as
the bifurcation parameter is increased, either by a scatter plot or a density plot. For
example, the top panel of Figure 1.2 shows a density plot of the z variable. For each
value of ¢, it records the density of the x time series, of the sort shown in the left
column of Figure 1.1.

While the resulting diagram is interesting and captures much of the behavior, a
disadvantage of the method, which doesn’t occur with maps, is that because x is
a continuous variable, the periodic orbits appear as a continuous band rather than
discrete points, and it is hard to distinguish areas of chaos. This is improved in the
middle panel, which is again a density plot, but only includes those values of x which
are either a local maximum or a local minimum. It is now much easier to distinguish
between the areas of chaos, such as ¢ = 11, and the periodic window beginning after
¢ = 12. A period p orbit produces p separate local maxima, while in a chaotic region,

we expect an infinite number of such maxima.

1.4 Spectral bifurcation diagrams

The lower panel of Figure 1.2 is a new kind of bifurcation diagram, dubbed the

spectral bifurcation diagram. It was inspired by a technique used to do on-the-fly



measurements of field harmonics in superconducting magnets while the current is
being ramped [45]. The diagram is composed by combining the power spectra at
different values of ¢, as shown in the right column of Figure 1.1, into a continuous
power histogram. The vertical axis shows frequency, while the greyscale indicates
the power at that frequency. For example, at ¢ = 3 the heavy line at frequency 0.16
corresponds as before to the periodic orbit with that frequency, and the period double
at ¢ = 6 is indicated by the appearance of a lower frequency line. Chaotic regions
display a smear of frequencies. The periodic window after ¢ = 12 appears as a clear
band, with lines present only at multiples of the base frequencies. Another, smaller
periodic window is also visible just after ¢ = 10. The advantages of the spectral
bifurcation diagram will become particularly evident in the next chapter.

From the bifurcation diagrams, it is evident that chaotic systems such as the
Rossler system are sensitive not just to slight variations in initial conditions, but also
to slight variations in parameters. This is one kind of model error, and perhaps the
most basic. Below we present two other systems which will be useful in our later

investigations into model error.

1.5 Other low dimension systems

1.5.1 The Lorenz ’63 system

The story behind this classical system [37] is well known, but worth repeating here.
In 1961, Lorenz, a meteorologist with MIT, visited Barry Saltzman of the Travelers
Insurance Company Weather Centre in Hartford. Saltzman had been studying the
convective motion of a fluid heated from below and cooled from above, a problem
first examined by Lord Rayleigh. By considering variations in only two dimensions,
Saltzman expanded the solution functions in a Fourier series, substituted this series
into the original partial differential equations, and truncated the resulting infinite
sum to a set of seven terms (the equations are presented in Chapter 4). In an effort
to further simplify the system, and noting Saltzman’s comment that under certain
conditions all but three of the Fourier coefficients went to zero, Lorenz retained only

those terms, and rescaled to obtain the following set of equations:

dzx n

- — —ox

7 o oy
dy n

- = zz+rx—
dt y
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Rossler

Figure 1.2: Bifurcation diagram for x as a function of ¢ in the Rossler system. Upper
panel is a density plot, middle panel is density of local max/min, and lower panel

shows power spectra.
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dz
dt

The classical values are o = 10, b = 8/3, and r = 28. The approximation is actually

= xy— bz (1.3)

only valid for certain (low) values of r, and the behaviour of these reduced equations
no longer says much about convection between plates. However they yield a mathe-
matically very interesting system, whose butterfly-shaped attractor is something of a
chaos icon. Staying with the original spirit of ignoring physical reality, we show the
bifurcation behaviour for r between 25 and 275 in Figure 1.3 for the z variable. In

Chapter 4, we will compare the Lorenz system with the original Saltzman equations.

1.5.2 The Rulkov Circuit

Another system we shall consider later, as an example of a low dimension system which

actually approximates a physical system, is given by the Rulkov Circuit equations [59]:

dz

dt

dy

dt

dz

dt
where v = 0.2, § = 0.534, 0 = 1.52, and « is a parameter to be varied in the range
10 to 30. The function f(z) is given by:

Vi(fi(z) —a)?+c—a

=Y
= —zr—0y+z

= Y(af(z) —z) —oy. (1.4)

f(z) = —sgn(z)( y ) (1.5)
and
file) = =lif[[z]| < a (1.6)
= —q(lzl = p)ifa <[z[] <b (1.7)
= —aif[|z]| > b (1.8)
where d = ‘12&;6, q= b2_—“a, p= “T“’, a=0.5,b=1.8, and ¢ = 0.03.

The bifurcation behaviour of the circuit equations is shown in Figure 1.4 for « in
the range 18 to 23, which is where most of the interesting changes occur. Figure 1.5
is a zoomed view of the spectral bifurcation diagram, showing the existence of many
small periodic windows. A possible application of the spectral bifurcation diagrams
is to search for periodic or quasi-periodic orbits which are difficult to spot using other

techniques.
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Figure 1.5: Zoomed view of bifurcation diagram for the circuit model.

1.6 The danger of low dimension systems

At this point, one might object that the Rossler, Lorenz or circuit systems have little
in common with atmospheric models. The Lorenz '96 systems, presented in the next
chapter, are higher dimensional, but in general, if we only do our experiments on
‘toy’ models, how do we know whether the results will generalise to real atmospheric
models?

A similar point was raised at the Newton Institute in Cambridge during its 1996

discussion of atmospheric predictability [64], where it was put as follows:

Many linear-dynamics-based intuitions are violated in low-dimensional
nonlinear systems, like the Lorenz 1963 model; yet these NWP models
appear to behave consistently with these intuitions. Is there some princi-
ple which indicated that there are pathologies which happen only in low

order systems. Do these occur ‘Even In, Or Only In’ low order systems?

Toy models are at their most effective when used as a kind of thought experiment.
An example is James Lovelock’s Daisyworld model [41] which proposes an imaginary
planet populated with white and dark daisies. As a result of their growth rates, it
is seen that they effectively regulate the temperature of the planet. No one thinks

this is an accurate model of the real world, but it succeeds in demonstrating a simple
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principle which otherwise may not have been evident. It captures the imagination,
and its impact is as much rhetorical, like a good analogy, as scientific.

Simple models, however, can easily be misapplied. For example, in many low
dimension models, the model error is localised to particular regions of the attractor.
If we were to conclude that the atmosphere shares this principle, so that model error
varies greatly from day to day, then we may well be mistaken. There is no rule
which says that nonlinear dynamical systems have to behave like one another. The
problem is exacerbated when results are interpreted graphically; for example, it is
easy to argue that the attractor or error pattern of one system might ‘look like’ that
of another, an activity which is more sport than science.

For this reason, the results here are stated wherever possible in such a way that
they can be applied to as broad as possible a class of model/system pairs. The new
method for measuring model error, for example, is system independent, and we apply
it equally to low dimension systems, or, in Chapter 6, operational weather models
containing millions of variables.

There is one key difference between low and high dimensional systems, which has
an immediately visible effect when comparing the two, and that is related to the
concept of orthogonality. Pairs of randomly chosen vectors in a high dimension space
have a high probability of being nearly orthogonal. More precisely, the variance of the
angle between such vectors in a dimension n space is % (To see this, let x and y be
vectors. Since we are only interested in the angle, we can assume that each vector has
magnitude 1. By symmetry, we can also choose x to be any vector we want. Choose
X to be the vector with first coordinate x; = 1 and all other coordinates zero. Then
X-y =y. But 3%, 42 = 1, so the variance of y; is %, which proves the result.) For
full weather models, where n is around 107, two uncorrelated vectors can therefore
be treated as if they are orthogonal. This simple observation accounts for much of
the difference in behaviour that we will experience here between weather models and

low dimension systems.

1.7 Summary

In this section we have seen that even simple, low dimension systems such as the
Rossler, Lorenz or Rulkov Circuit Equations show a rich mix of behaviour, which
depends in a highly sensitive fashion on model parameters: slight alterations can
throw the system from a periodic orbit into chaos, or vice versa. Since incorrect

parameters are just one example of model error (if the model is structurally different
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from the true system, then no setting of the parameters need remedy it), in order to
understand model error we must be able to visualise model behaviour over a range of
parameter values.

Spectral bifurcation diagrams are an excellent tool for this purpose. They clearly
indicate when a model is in a chaotic, periodic, or, as we see in the next chapter, a
quasi-periodic orbit. The diagrams also give information about the model’s attractor,
or ‘climatology’, in terms of the principle frequencies.

Because of the complexity of nonlinear systems, it might seem that comparing
two different systems would be a hopelessly complicated task. Fortunately, we will
see in chapter 3 that the problem can be made easier by certain emergent properties
of the systems. In fact, one unanticipated result for the Lorenz ’96 systems is that
the question of whether they are chaotic or not has little bearing on the subject of

model error.
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Chapter 2

The Lorenz 96 systems

2.1 The one and two level system equations

The Lorenz ’96 systems were first introduced as idealised one-dimensional models of
the atmosphere [40, 27]. They produce time series which are qualitatively similar to
the behavior of variables such as temperature. Another useful property, encountered
in Chapter 6, is that, if the parameters are chosen correctly, the model error is seen
to resemble that encountered in weather models, in terms of its variation with time
and its magnitude compared with displacement error.

The first system, which we shall refer to as the one level system, contains n

variables x1, x2, ..., ,, and the equations are

dl’i
dt

= xi,1($i+1 — xifZ) —Z; + F7 1:17 -0 (21)

where F'is a constant, and the index i is cyclic so that z;_,, = x;1, = x;. The z;’s can
therefore be viewed as variables around a circle, as shown in Figure 2.1(a). In physical
terms, they could be values of some atmospheric quantity such as temperature at n
equally spaced latitudes around the globe. The constant term F' in the equations
is external forcing, the linear term is internal damping, and the quadratic terms,
which introduce information about the spatial variation of x, represent advection. Of
course, the system is only meant to be evocative of atmospheric behaviour, not an
accurate model. A typical time series of the system is shown in Figure 2.2, which
plots z; versus time for F' = 10, for which the system is chaotic, as seen below. Note
the equations are the same for each z; regardless of index, so each variable has the

same statistics.
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Figure 2.2: Time series of x; for the one level system given by equation 2.1 with
F =10.

The other system to be discussed will be referred to as the two level system, and
incorporates smaller scale motions with shorter time scales. There are n variables z;,
together with an additional nm variables ; ; which can be viewed as sitting inside

the Z’s as shown in Figure 2.1(b). The equations [40] are

dfi'z he &
= fﬁi_ fﬁz — j:i— — i‘z F—— ~i i
o 1(Zis1 2) + 2 ];y,a
dij _ . _ he
—2 = bliga(Jig1 — Jige2) — iy + - Ti (2.2)
dt b
fori=1,...,nand j =1,...,m. Again the variables are cyclic so that y;1,; = i,

and ¥; j—m = Ji—1,;. Following Lorenz [40], we set b = ¢ = 10, which has the effect of
making the ¢’s fluctuate ten times more rapidly than the Z’s. The ¢’s can be thought
of as convective scale quantities in the atmospheric analogy. The coupling coefficient
h is set (except when otherwise specified) to 1. For this thesis we have primarily used
n = 8 and m = 4, though Lorenz originally looked at higher dimensional systems
[40].

Figure 2.3 shows a two level system time series of Z; and y; for F' = 10 which
can be compared with Figure 2.2. It can be seen that a large local value of & tends
to excite the ¢ variables, due to the feedback between the two (this is a relationship
that will prove useful in Chapter 3).

Our motivation for studying these systems is to examine the effect of model error.

Suppose that we consider the two level system to be ‘truth’, and the one level system
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Figure 2.3: Time series of Z; and y; versus time for the two level system given by

equation 2.2 with F' = 10.

to be a model. If we compare the x equations with the z variables, we see that
the model contains a constant forcing, while in the true system the forcing depends
on the local § variables. In Section 3, we will consider the constant forcing of the
one level system to be a parameterisation of the two level system forcing, just as
real atmospheric models incorporate parameterisations of complicated, small scale
physical processes. First, though, it is necessary to see what role the forcing has in

the structure of the solutions for either system.

2.2 Behaviour of the one level system with n =4

In this section we will consider the one level system with n = 4, which is the simplest
non-trivial variant. We will derive some of the basic properties of the system, before

embarking on a numerical study of the bifurcation behaviour. The equations are:

dz

d—tl :$4($2—$3)—$1+F

dz

d—; :$1(£U3—1'4)—ZE2+F

dz

d—; :$2($4—$1)—$3+F

d

% = ZE3(£L’1 — 1'2) — T4+ F (23)

By substituting into the equations, it is easily seen that x1 = 2o = x3 =24 = F
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is a fixed point for all F'. The stability of this fixed point can be determined by

considering the Jacobean [26], which is:

—1 T4 —I4 To — T3
T3 — T4 —1 T —T1

—XT2 Tyg — T —1 T2

X3 —X3 1 — X2 —1

For ' = 0, the Jacobean at the solution z; = z9 = x3 = x4 = 0 is minus
the identity, and the only eigenvalue is -1 which ensures stability. For F' = 1, the

Jacobean at the solution r;1 =29 =23 =24 =118

-1 1 -1 0
0 -1 1 -1
-1 0 -1 1
1 -1 0 -1

An eigenvector of this matrix is (i,-1, —i, 1), with associated eigenvalue i. At F =1
an eigenvalue passes through the real axis in the complex plane. This is associated
with a Hopf bifurcation [26], where a periodic orbit is produced from a fixed point.
Indeed, in Figure 2.4 we see that for F' just above 1, the system attractor plotted as x;
versus s is a near circular stable periodic orbit with period of approximately 27. The
variables zo, 3 and x4 (not shown) also follow periodic orbits but are out of phase
with z1 by 7/2, m and 37/2 respectively. Viewed as variables on a circle, the solution
can then be seen as a wave propagating in a clockwise direction. This direction
of propagation is noticeable even when the system is chaotic, and is a consequence
of the advection term. The power spectrum of the time series of x; shows a peak
at frequency 1/2m, as expected, but also reveals a number of higher harmonics at
multiples of the base frequency.

As F' is increased, the z; time series picks up extra local maxima due to the
presence of higher harmonics, but there is no sign of period doubling. In the log scale,
the power appears to decrease more or less linearly with frequency. This implies that
the coefficients in the power spectrum decrease exponentially with frequency. Near
F = 12, the system becomes chaotic. Around F' = 14.7 there is a periodic window
before becoming chaotic again. The orbit shown in the lower panels has a period of
11.365 time units.

Some of the system behaviour is expressed in the upper two panels of Figure 2.5,

which show the density and max/min bifurcations of z; (again, it doesn’t matter
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Figure 2.4: Plots of x; versus time, z, versus x; and log (base 10) power spectra

versus frequency for various values of F' for the single level system with n = 4.
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which z; is chosen). It can be compared with Figure 1.2. The line which appears
at F' = 1 represents the nearly linear growth in frequency of the solution as F' is
increased. The new lines which appear around F' = 3 and F' = 8 reflect the higher
harmonics which appear for higher F'. Unlike in Figure 1.2, however, these lines do
not indicate period doubling. The system becomes chaotic around F' = 12, and the
periodic window at F' = 14.7, as well as a second window just before F' = 16, can be
clearly seen.

While the bifurcation diagrams give useful information, new lines representing the
growth of higher harmonics appear out of nowhere, and don’t indicate any bifurca-
tion. Because the system picks up progressively higher harmonics as F' increases, the
more natural approach is the spectral bifurcation diagram in the lower panel. This
method also has the advantage of showing which spectra are present in the long-term
‘climatology’ of the system.

Comparing the spectral bifurcation diagram with Figures 2.4 and the upper two
panels, we see that the lines beginning at and after F' = 1 and continuing to F' = 12
represent the periodic orbits. These lines are equally spaced in frequency, which
means that the orbit for F in this region only contains harmonics which are multiples
of its lowest frequency (this ensures periodicity). Around F' = 12 the chaotic regime
begins. The periodic windows, such as the one near F' = 16, appear as bands of
horizontal lines. The period of the orbit at F' = 14.7 may be estimated from its
lowest frequency of about 0.88, which agrees with the observed period 11.365.

2.3 One level systems with dimension 8 and 40

Higher dimension versions of the system display broadly similar behaviour, with some
additional complications. One feature of the n = 8 system is that it has at least two
attractors: a symmetric attractor (x5 = x1,26 = 9,27 = x3,23 = x4) which is
a copy of the n = 4 attractor, and a second attractor containing no such points.
This symmetric attractor will attract any initial condition which has the required
symmetry, while other points are drawn to the other attractor [27]. Therefore periodic
orbits corresponding to those in Figure 2.4, even the one at F' = 14.7 where most
orbits are strongly chaotic, all exist in the n = 8 system. The analysis below is
concerned with the second (asymmetric) attractor.

Figure 2.6 shows bifurcation diagrams for the n = 8 case. They are similar to
the attractor for the n = 4 system, but become chaotic much earlier. Prior to about

F = 2.8, the attractors for n = 4 and n = 8 correspond, in the sense that trajectories
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Figure 2.5: Bifurcation diagram for the one level system with n = 4. Upper panel is
a density plot of 1, middle panel is density of local max/min, and lower panel shows

the spectral bifurcation diagram, as introduced in the text.
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in the n = 8 system are drawn to the symmetric periodic orbits. However around
F' = 2.8 a period-doubling bifurcation occurs, as shown in Figure 2.7, and we will no
longer have z; = x5 and so on. By F = 3.8, the system appears to be chaotic. At
this resolution, it is difficult to pick out periodic windows of any width in the chaotic
regime past ' = 4.5.

The spectral bifurcation diagram in the lower panel of Figure 2.6 reveals com-
pletely new features that are not evident from the density and max/min diagrams.
The symmetric periodic orbit is indicated by the line beginning at F' = 1 and fre-
quency 0.16. At F' = 2.8 a line appears at half the frequency, which corresponds to
the period doubling mentioned above. By F' = 4 we see a broad range of harmonics
corresponding to chaos. However from about FF = 4.8 to F' = 5.6 there are large
windows where the system appears to be non-chaotic (or at least not broad band).

Inspection of the spectral bifurcation diagram reveals that more than one fre-
quency, or its harmonics, are present in these windows. The slopes of the diagonal
lines in the range F' = 4.8 to F' = 5.6 are different, so the relative balance of the
frequencies changes with F'. When the frequencies are incommensurate, the result
will be a quasi-periodic orbit. In bifurcation diagrams produced either by the max-
ima method or a Poincaré section method [1], these quasi-periodic orbits appear as a
continuous band indistinguishable from chaos.

It is possible to find orbits in the region F' = 4.8 to F' = 5.6 which appear to
close, as shown in Figure 2.8 for F' = 5.235298. However the number of decimal
places in F' attests that this is not an easy task! The period of this orbit is 36.7,
which corresponds to a frequency of 0.027. Figure 2.9 is a close-up of the spectral
bifurcation diagram. The periodic orbit is located in a region where the spectra are
separated by a frequency spacing of 0.027, as expected.

Still another way to view, or experience, the bifurcations is to listen to them. A
tape is available which contains a translation of the 8 dimension system into sound.
The z; and x5 variables are interpreted as sound waves using MatLab, and played to
the left and right speakers respectively. Starting from a periodic orbit at F' = 3.5,
the system is ramped upwards. The periodic orbit increases in speed and sound level,
like a motor being accelerated. A distinct change is heard as the system goes chaotic
around F' = 3.8; the sound level drops and becomes irregular, as if the motor is
about to stall. Entering the quasi-periodic region around F' = 4.7, the system once
again settles down, though it doesn’t quite repeat. Only when held at a value of
F' = 5.235298 is a true rhythm established. It seems that the Lorenz systems are a

better model of a car in need of a tune than the atmosphere!
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Figure 2.9: Close up of spectral bifurcation diagram in region of periodic orbit, for
one level system with n = 8. Spacing of the harmonics at F' = 5.235298 is about
0.27, corresponding to a frequency of 36.7

The dimension of the system can be increased indefinitely, but computations
rapidly become expensive. The highest we looked at was n = 40. Figure 2.10 shows
bifurcations for the 40D one level system. It is again quite similar to the other sys-
tems, with the exception that the spectral bifurcation diagram (lower panel) has a
somewhat richer appearance in the transition to chaos.

The systems considered so far have all had a constant forcing term F. Other
variants are possible; one studied is the case where F' depends on the index i. This
is analogous to the weather problem where forcing is different over land and over sea
[27]. Another possibility is to make the forcing a function of the local value of z;, or
all values of x; at the current time, or values of z; at current and previous times, and
so on. The two level system may be considered as one such variant, where the forcing

depends on small scale g variables which are coupled with the large scale & variables.

2.4 Behaviour of the two level system

The equations for the Z variables in the two level system are similar to those of the
one level system, with the difference that the constant forcing is replaced by a term

which depends on the fast scale y variables. We might therefore expect the z variables
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spectral bifurcation diagram.
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to behave like the z’s in the one level system, but with an added degree of fuzziness.
The density and max/min bifurcation diagrams for the n = 8, m = 4 case (dimension
40) in Figure 2.11 bear this out. They are qualitatively quite similar to Figure 2.6.
The lines in the region F' = 4 to F' = 5 have an added thickness, and correspond
to apparently chaotic orbits that are like jostled versions of the periodic orbits seen
in the one level system for slightly lower values of F'. There is an additional period
doubling bifurcation at F' = 1.5, as the fast scale variables become non-zero. Another
noticeable feature is that the § variables tend to decrease the forcing F' on average,
so the whole diagram is shifted to the right compared to Figure 2.6.

The spectral bifurcation diagram for the two level system in Figure 2.11 can be
compared also with that in Figure 2.6. Again it is quite similar to the one level
case, with the difference that a full range of spectra, indicating a completely chaotic
regime, doesn’t occur until around F = 5.5 as opposed to F' = 4. The diagram
only shows to F' = 6, however the system appears to remain chaotic and there aren’t
any periodic or quasi-periodic windows visible past that point. Figure 2.12 shows
bifurcation diagrams for the g variables.

Figure 2.14(a) shows a periodic orbit at F' = 4.6. Of course, for the system to be
periodic the y variables must be periodic as well as the Z’s, and the path traced out
by the §’s in 2.14(b) does in fact close. Figures 2.14(c) and (d) is what happens for
a slightly smaller value of F'. The y variables are chaotic, but the Z orbit is nearly
periodic.

So far we have only considered bifurcations obtained by varying the parameter F'.
There are of course other possibilities, such as varying the coefficient h, which controls
the coupling between the small scale y variables and the large scale & variables. Figure
2.13 shows bifurcations in the ¢ variables as the coefficient h is varied, while the
forcing is held constant at F' = 2. The spectral bifurcation diagram shows intricate
cross-hatching, and a degree of structure that is absent from the other diagrams.

When the coupling coefficient is increased, the two level system is capable of
showing quite complicated behaviour even at ' = 2, where the one level system
is periodic. Figure 2.15 shows the # and ¢ orbits. The Z variables nearly follow a

periodic orbit, while the y variables are clearly quasi-periodic.

2.5 Summary

This concludes the introduction to the Lorenz '96 systems, which have turned out to

be interesting in their own right, showing a rich variety of behaviour. As prototype
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Figure 2.11: Bifurcation diagram for the 40D two level system, & variables. The ripple
effect noticeable in the spectral bifurcation diagram (lower panel) is due to numerical

error in the power spectrum routine.
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Figure 2.12: Bifurcation diagrams for 40D two level system, ¢ variables.
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Figure 2.13: Bifurcation diagrams for 40D two level system, g variables, as a function

of the coupling coefficient h.

34



(a) F=4.6, z2 vs 71 (b) F=4.6, y2 vs y1

(c) F=4.5, 5 vs x1 (d) F=4.5, y vs y1

Figure 2.14: Trajectories of 40D two level system, plotted in ; and g; variables, at
F =45 and 4.6. At the higher forcing, the system is periodic. At the lower forcing,

both variables are chaotic, but this is most evident in the ¢; orbit.
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models for discussions of atmospheric dynamics, they have the advantage of being
higher dimensional and bearing at least a passing resemblance to real atmospheric
systems, both in the equations and the resulting dynamics. Spectral bifurcation
diagrams are a new and useful tool for analysing such systems, and reveal features
such as quasi-periodic orbits which aren’t evident in the usual type of bifurcation
diagram.

We can now use the systems and the tools developed so far to study the effects of
model error. We begin by looking at empirical properties of the error, before making
a more formal analysis in Chapter 4. An advantage of the statistical approach is
that it allows us to buid up an understanding of model error from observations, while
seeing how its behavior is simplified by certain macro-properties of the Lorenz ’96

systems.
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Chapter 3

An exploration of model error

using the Lorenz 96 systems

Accurate measurement of error is a basic plank of dynamical modelling; but as has
already been discussed, the measurement of model error in the context of nonlin-
ear dynamical systems is complicated by sensitivity to initial conditions. Even with
chaotic systems and models, though, the importance, and ease of measurement, of
model error depends on the situation. If the model is enormously wrong, and sensitiv-
ity to initial conditions relatively small, then we should have no problem in measuring
the model error. On the other hand, if the model is accurate, but highly sensitive to
initial condition, it is more difficult to detect what error is due to the model.

The most interesting behaviour occurs when initial condition error and model
error vie with each other for importance, as is the case with the Lorenz 96 models
which we will study in this chapter. Rather than be deterred by the presence of
chaos, we will treat initial condition error and model error as independent entities,
to see what can be learnt about their different properties. The approach is primarily
experimental, taking the 40D two level system as the ‘true system’, and attempting
to model it with variants of the one level system. The results will motivate the
shadow approximation techniques presented in Chapter 4, which incorporate both

initial condition and model error in a more complete description.
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3.1 Model error vs initial condition error (contin-

ued)

Suppose we are comparing a model with a true system, and we wish to assess the
effects of model error. In general, the model and true system will have different state
spaces [61]. Therefore we require the existence of a projection operator P going from
the true state space to the model-state space. For the time being, in the interest of
simplicity, we will assume that the model and system exist in the same state space,

and that we know the equations for the true system to be
— = G(x(t)) true system (3.1)

while the model equations are

dx
pri G(x(t)) model. (3.2)

The difficulty in measuring model error for such systems is that it is coupled with
displacement error. Suppose that trajectories in the model and true systems begin at
exactly the same point, so x(0) = X(0). At time zero there is no displacement error
since the points agree, so the only error is model error. However as soon as a finite
time has elapsed and the orbits have diverged, the model trajectory will differ from

the true trajectory, and displacement error will come into play.

3.1.1 What is initial condition error?

In chaotic systems, error due to displacement of initial condition is blamed for many
woes because it tends to magnify exponentially-on-average [65]. Suppose that the
model initial condition is perturbed by a vector eq(0). We can then estimate the
displacement eq(t) at some future time by considering the linearised dynamics around
x(0) [66, 49].
Theorem. Let x(t) be a solution of the model equation

dx

— =G 3.3

-G (33)
where G is C', and let x4q(t) = x(t) + eq(t) be a solution with a perturbed initial
condition x4(0) = x(0) + eq(0). Define the linear propagator [66] as

M(t) = eo IOt (3.4)
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where J is the Jacobian of G. Then given a reference time 7 > 0, and € > 0, there

exists a radius r such that, if ||eq(¢)|| < r for all t € [0, 7], then
lea(t) — M(t)ea(0)|| < e Vte[0,7]. (3.5)

Proof. The derivation is routine, but will be useful for results developed later.
From the system equations,
deq(t) d(x(t) + eq(t)) B dx(t)

dt dt dt
= G(x(t) +ea(t)) — G(x(1)). (3.6)

Performing a Taylor expansion of G around x(¢), and retaining only the first order

term, we obtain
de;t(t) = J(x(t))ea(t) + Ra(t) (3.7)

where the remainder term Ry(t) is O(|leq(t)||?). Therefore, Ir, >0 > |leq(t)]| <
r, = ||Ra(t)]| < €/7. Pick r to be the minimum such r, (possible since [0, 7] is

a compact set). Integrating from 0 to ¢ for 0 < ¢ < 7 then gives

ealt) = M(t)ea(0) + [ "Ra(t)dt, (3.8)

and . .
lea(t) — M(t)ea(0)|| = ||/0 Ra(t)dt|| < —t<e (3.9)
which proves the result.
The above result implies that the evolution of the error eq(t) can be approximated
by the linearised dynamics

eq(t) ~ M(t)eq(0). (3.10)

Under the linearised dynamics, a ball of initial conditions therefore evolves into an
ellipsoid of final states. The major axes of the ellipsoid and their preimages can be
determined by performing a singular value decomposition [25] of M(#) (which is how
ECMWF determines its perturbations aimed for maximum growth [49]). Note the
approximation only holds for displaced orbits x4 (¢) which remain within a tolerance
r of the reference trajectory x(t).
In the special case of a linear system, where the Jacobian J is a constant matrix,
then
eq(t) = e’leq(0). (3.11)

So long as J has positive eigenvalues, trajectories will experience exponential growth.
In general, and for the systems considered here, the Jacobian is not constant and the

rate of growth can be described as exponential-on-average [65].
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3.1.2 What is model error?

Model error can be analysed in much the same way as initial condition error. As
before, we initially assume that the system and the model share the same state space
(if not, then we require the use of a projection operator from the system state space

to that of the model). Let X(¢) be a solution of the system equation

A& -
= =G (3.12)

where G is C', and let X (t) = %(t) 4+ em(t) be the solution of the model equation
M G (%) (3.13)

where G is C! and e, (0) = 0, so the model orbit begins with zero error relative to

the true orbit. Define the initial velocity error to be

dem(t
vV = dt() |lt=o0 (3.14)
dx(t) dx(t)
= 1
qt |i=0 gt |i=0 (3.15)
Then we have the following simple result.
Theorem. Given € > 0, there exists a time 7 > 0 such that
llem(t) — Vit|| <e Vte|0,7]. (3.16)

Proof. Performing a Taylor expansion of e,,(t) around time zero, we have
em(t) =em(0)+ Vt+ R, =0+ Vt+ R, (3.17)

where the remainder term R,, is O(]|t||?). Therefore, there exists a time 7 > 0 such
that |R.,|| < € for all ¢ € [0, 7] which proves the result.

The linearised dynamics of the model error can then be written as
em(t) ~ Vt. (3.18)

Since the initial velocity error V is generally non-zero, it follows that, in general,
the model error will experience an initial linear growth. This contrasts with the
exponential-on-average growth of initial condition error, and implies that, for small
times and displacements, model error will dominate initial condition error, as shown

in the following corollary.
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Corollary. Let the model and system be as above, and assume that the model
error em,(7) at some time 7 > 0 is non-zero. Then there exists a radius r > 0 such
that, if ||eq(0)|| < r, then |leq(7)|| < |lem(7)]|-

This follows simply from the fact that displacement error can be reduced arbritrar-
ily close to zero by choosing a sufficiently small initial displacement. An illustration
of how model error can dominate error due to displacement of the initial condition is
provided by Figure 3.1. Model error grows roughly linearly for small times, and soon
overwhelms the error due to initial displacement. (Results are for the constant model
which we define next - see also Figure 3.4.)

Our definition of velocity error is essentially the same as the definition of tendency
error used in [33] in the context of weather models, where the velocity errors were
studied in an attempt to isolate their sources in the model, or in [60], which proposed
a statistical technique for assessing errors. A similiar term also appears as a residual
in the data-fitting technique known as four-dimensional variational assimilation (4D-
VAR) [13]. The observation that model error dominates initial condition error for
small times is quite trivial, but often overlooked (for example, the comparison of
both types of error in [12] for the Lorenz ’63 system considered time scales of 50
units, and the initial effects are invisible). It points to an important property of
model error which we will exploit in the remainder of the thesis, namely that model

error is best measured over small deviations from the true orbit.

3.2 Modelling the two level system - the constant
model

The above ideas about model error and displacement error can be demonstrated using
the Lorenz ’96 systems, with the two level system as truth. Suppose that, in the two
level system, only the = variables are known, and the values of the y variables are not
known. More formally, we project from the full system state space to the model state
space using an operator T which truncates the vector (X,¥y) to T(X,y) = (X). The
situation is analogous to real atmospheric systems, where the true system depends
on an infinite number of variables that we can only parameterise.
In this case we can write the true system equations as
dz;

ol Fi1(Fip — Tig) — & + Fi(t) true system (3.19)
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Figure 3.1: Plot showing how model error (dashed line) dominates error due to dis-
placement of initial condition (solid line) for small times, providing the initial error
is sufficiently small. Results are RMS errors for an actual model and system (see also
Figure 3.4).

for =1, n, where
~ he <
F(t) = F =2 8is(0) (3.20)
j=1

is treated as a forcing which varies in a complicated manner with time. Our goal is

to approximate this system using models of the form

d.fL'i
dt = xi—l(xi—l—l — .%'i_g) —x; + R(t) (321)
where the n-dimensional vector P(t) with components P;(t) is some parameterisation

of F(t).

The simplest parameterisation scheme is to set P;(t) equal to a constant for all i
(this is the same as the one level Lorenz system). A sensible choice of constant would
appear to be the mean forcing (we will see in chapter 4 that it is optimal in at least

one sense). We therefore define the constant parameterisation as

P¢ = (F) (3.22)
where the mean is calculated over a long orbit on the two level system attractor.
In general P¢ is smaller than F' by a small amount, so for example if ' = 10 the
corresponding value of P¢ is found to be 9.62. The model is then:

dz;
dt

=z;_1(zip1 — Ti_9) — x; + P° constant model (3.23)
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Figure 3.2: Forecast errors for Lorenz model/system, x; component. A number of
short term model forecasts were initiated at regular intervals along a true trajectory.
The errors have been scaled by a factor 20. The total error magnitude over all z;
is also shown, again scaled by a factor 20. Because it contains all components, it is

larger than the x, error.

Figure 3.2 demonstrates the kind of errors that result when we approximate the
true system with the constant model. The solid line is the Z; variable for a trajectory
of the true system. At regular times (with spacing of 0.04 on the bottom scale)
model trajectories were initiated, starting on the true trajectory. The resulting x;
trajectories, shown protruding like ribs from the solid line, soon diverge from truth
- the errors here have been scaled by a factor 20 to aid visibility. The total error
magnitude over all x;’s is shown as the series of diagonal lines, again scaled. Because
it contains all components, it is larger (and more constant) than the z; component
alone. Our aim in this chapter will be to quantify the growth of the model error when

averaged over a large number of points.

3.2.1 Measuring initial condition error

One way to quantify an average sensitivity to initial conditions is to measure the
root mean square (RMS) error growth over a number of perturbations and a number
of starting points on the attractor. Suppose that X¥(¢) is a family of K solutions
of the true system starting from different initial conditions on the attractor. For

each k=1 to K, we perturb the starting point X(0) by a randomly oriented vector
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Figure 3.3: Ensemble with initial Z displacement standard deviation 0.01 for F' = 10

true system. The gy variables are not perturbed.

whose magnitude has mean 0 and standard deviation e. As an example, Figure 3.3
shows an ensemble of perturbations for the true system (3.20) with F' = 10 about a
single starting point. The standard deviation perturbation size on the Z variables is
e = 0.01.

k

The displaced solution X§(¢) will diverge from the true orbit by a vector

ea(t) = y/{ea(t)?) (3.24)

where the mean is taken over the K initial conditions. Then e4(t) is the RMS error
growth due to displacement after a time ¢.

For the particular starting point in Figure 3.3, the trajectories disperse around
t = 3, then appear to regroup at t = 5.5 before diverging again. When averaged over
different starting points, however, the behaviour is more uniform. The lower curve
in Figure 3.4 shows the RMS error e,4(t) for the true system, while the middle curve
is eq4(t) for the constant model. The error growth is characterised by an initial expo-
nential growth, as we would expect from the linearised dynamics, which eventually

saturates due to the finite diameter of the attractor.
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Figure 3.4: Bottom line (solid) shows initial condition displacement error e4(t) for
the true system with ' = 10. Middle line (long dash) shows e4(t) for the constant
model with P¢ = 9.62. Top line (short dash) shows model error e,,(t) for the constant
model. Note that displacement error grows exponentially at small times, while model

error grows linearly.

3.2.2 Measuring model divergence

Divergence of model trajectories can be measured in an analogous manner. Let X¥(¢)
be a family of K true system solutions on the attractor as before, and let x(¢)
be the model solutions with corresponding initial conditions, so for each k we have
x¥(0) = %¥(0). The model solution will diverge from the true orbit by a vector

ek (t) = x*(t) — xX(t), with magnitude e* (¢). Define

m

em(t) = \/((ef(8)?) (3.25)

where the mean is taken over the K initial conditions. Then e,,(t) is the RMS model
divergence after a time t¢.

The divergence of the model from truth follows a somewhat different pattern than
displacement error, as shown by the upper curve in Figure 3.4. The error starts at
zero, by definition, and increases linearly in the early stages. This is shown more
clearly in Figure 3.5, which is a close-up of the initial growth. Between 0.5 and
1.5 time units, the error then enters a phase of exponential growth. Finally, the
error saturates as the true solution and the model solution settle on their respective

attractors. Therefore, the model error manifests itself at low times as an initial linear
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Figure 3.5: Initial linear growth of model error for constant model, P¢ = 9.62, with

respect to true system with F' = 10.

error, and at longer times as a difference between the attractors of the model and the
true system. The latter is a subject we will return to in Chapter 5.

Figure 3.6 shows how the model error varies with different values of F'. At each
F, the parameterised model forcing P¢ is the mean forcing (F ). For all values of F,
initial growth is fairly linear. The extent of the linear growth phase decreases for

increasing F'.

3.3 Model error for the constant model

3.3.1 Velocity error

In the same way that displacement error is quantified by the initial exponential rate
of growth, it seems natural to quantify model error by the slope of the initial linear
phase of the model error curve, which gives the velocity error, or rate of model error
growth, near time zero. Figure 3.7 shows the initial slope as a function of F. It
increases fairly smoothly, and appears to vary, for F' above 2, with the square root of
F. Note that the constant model is near-perfect for F' < 1.3. !

At time zero, the slope of the RMS model error curve can also be determined

directly from the model equations, as in the linearised dynamics of the previous

LAt these values of F the § variables of the true system are periodic, as shown in the bifurcation

diagram 2.12.

47



Figure 3.6: Model error curves for constant model. Order from bottom line to top

line is F' = 4,6,8,10. Error is roughly linear in the early stages.
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Figure 3.7: Initial slope of model error as a function of F. The constant model is near-
perfect for F' < 1.3, for which the y variables are periodic. Computational errors are

estimated to be about 0.02 in the vertical scale.
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section. To make this explicit, suppose X¥(¢) for k=1 to K is a family of solutions
for the true system with initial conditions on the attractor, and x*(¢) are the model
system solutions with the same initial conditions. The model error vectors are then
ek (t) = xk(t) —xX(¢). Since x*(0) = %¥(0), subtraction of the model equations (3.21)

from the true system equations (3.20) with ¢ = 0 give

def,(t) dx () dx(t)

dt |t:0— dt |t:0 —7 |t:0: Fl; (326)

where

FX = PX(0) — F¥(0) (3.27)

is an n dimensional vector of the forcing difference between the model and the true
system, as calculated at the initial condition X¥(0). For the constant model, each
component of the vector P* is equal to P¢ independent of k. The vector % lt—o is
the difference between the model velocity and the true velocity on the true attractor,
which is just the velocity error. With the Lorenz system, velocity error is caused by,
and equal to, the forcing error Fe, since the other terms are identical.

Now, referring to Figure 3.5 and equation (3.25), the slope of the RMS error curve

at time zero is

tim 1 /(e (0)%) = tim /(=) (3.25)
where e” (t) = ||ek (¢)||. By (3.26) this is just
(FP) (329)

where F¥ = ||F¥||, and the average is taken over the K initial conditions on the true
attractor. Since P was chosen to be the mean of F (0) over the attractor, the initial
rate of RMS model error growth for the constant model is equal to the standard
deviation of the forcing error, and initial model error can be determined directly
through the properties of the forcing error. More generally, the initial slope of the

error curve is given by the velocity error on the true attractor.

3.3.2 Forcing error for the constant model

The forcing F in the true system shows a mix of periodic, quasi-periodic and chaotic
behaviour for different values of F', as we might expect from Section 2. Figure 3.8 is a
spectral bifurcation diagram for the difference in forcing F (equation 3.27) between
the model and the true system. Again, the analysis is for one component only of

F.; behaviour of the other components is the same by symmetry. Because the model
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Figure 3.8: Spectral bifurcation diagram of forcing error F, for the constant model.
Calculations are for one component only; other components are the same by sym-
metry. As for model variables x, the forcing shows a mix of periodic and chaotic

behaviour.

forcing is the mean forcing in the true system, the average forcing error will vanish,
and the constant term in the Fourier expansion is zero. Other components, however,
remain unchanged.

The forcing error again shows a mix of behaviour, and one might conclude that
model error will depend in an irregular way on the parameter F. Actually, this isn’t
the case; for what interests us is not whether the forcing error is chaotic, but merely,
from 3.29, its standard deviation. This can of course be calculated directly, but it is
also illustrative to note that, by definition of the power spectrum [53], the sum of the
powers over all frequencies is just the variance. Therefore the sum of the spectra for
a particular F' gives the forcing error variance at that F. When this calculation is
performed, the complexity of the bifurcation diagram disappears, revealing a simple
pattern: the almost straight line in Figure 3.9.

Comparing Figures 3.9 and 3.7, we see that the standard deviation of the slope
agrees with the standard deviation of the forcing, as expected. The standard deviation
(square root of the variance) is also plotted in Figure 3.9. Because the variance of

the forcing grows approximately linearly with F'| for F' > 2, we can say that, for the
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Figure 3.9: Total power (variance) and standard deviation of forcing error for the

constant model.

constant model, the velocity error as expressed by the slope of the error curve near
time zero tends to increase with the square root of F'. This is a result that wouldn’t

be obvious by perusal of the forcing error spectral bifurcation diagram, Figure 3.8.

3.3.3 Shadowing

An important test of a model is that it be capable of shadowing the true system for
a specified prediction period. Various closely related definitions of shadowing exist
in the literature. The main one is e-shadowing from the Anosov-Bowen shadowing
lemma [2, 5]. A concern in modelling chaotic systems is that, due to sensitivity
of initial conditions, a numerical solution may rapidly diverge from the true system
trajectory. The shadowing lemma proves that, given certain restrictions on the system
such as uniform hyperbolicity and invertibility, there at least exists a true solution,
starting from a slightly displaced initial condition, which e-shadows the numerical
trajectory. To take just the definition of e-shadowing from the lemma, it is as follows:
given € > 0, a series of discrete times ¢; with a < t; < b, and a numerically generated

model orbit p(¢;), then a system trajectory s(t;) e-shadows p(¢;) if

Is(t:) — p(t:)]| < e (3.30)

for every a <t; <.
Note that the shadowing lemma itself addresses a different problem to the one

that we wish to solve: it states that a true trajectory shadows a numerical model
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trajectory, while we wish to do the opposite, namely determine whether model tra-
jectories shadow the true orbit. The lemma also assumes that we know the true
system trajectory, which isn’t the case when the system is the atmosphere.

A distinct shadowing problem was phrased in [23] to address the more practical
question of modelling a system which is only known through a series of observations,
each with observational uncertainty. This led to the definition of (-shadowing: a
model is said to t-shadow the observed system for a time 7 at radius r if it stays
within a radius r of the observed time series over that time. Further, the model is
said to be consistent with the observations if it (-shadows with the shadow tolerance
e equal to the observational uncertainty (this can also be phrased using a Gaussian
observational uncertainty).

The definition we will use in this thesis is the same as (-shadowing, with the
sole difference that we treat the shadow tolerance as a variable that is set indepen-
dently, rather than derived from some error distribution (we discuss observation error
separately). We therefore have the following definitions.

Definition: Given a true orbit X, and shadow radius r,;, we say that a model

orbit x shadows X for a time 7, if

T =sup(ts : ||x(t) —x(t)|| <rs VO<t<ty). (3.31)

Such a model orbit is called a shadow orbit. There is also a corresponding definition
for discrete time series ;.

Definition: Given a true trajectory, starting from a specified initial condition,
and a shadow radius r,, the shadow time of the model for that initial condition is the
maximal time 7 for which a model trajectory shadows the true trajectory within the
specified radius. More loosely, when shadowing is simulated numerically, the shadow
time is the longest time found by the numerical technique. Which of these definitions
apply will be clear from the context.

Figure 3.10 is a schematic diagram which illustrates the definition of a shadow
orbit. The true trajectory is shown as a solid line starting at x5. The tube of radius
rs is shown as a shaded region. The model shadow orbit, the grey line starting from
S0, stays within the tube for a time 7. The model trajectory starting at zy, however,
shadows a shorter time.

The shadowing process depends on an interplay between model and displacement
error, and for this reason is a necessary, rather than sufficient, condition for a good
model. For example, if the model is sufficiently sensitive to displacement, it may be

possible to find a perturbed initial condition which offsets a large model error for a
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Figure 3.10: Schematic diagram showing true orbit (black line starting from z() with
model shadow orbit (grey line starting from sy). The model shadows for a time 7. A

model trajectory starting at xy, which shadows a shorter time, is also shown.
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Figure 3.11: Plot of x; for a typical constant model shadowing orbit. The shadowing
radius is 0.4. The orbit ceases to shadow at ¢ = 0.5 (note the radius is over all

components of x, not just z).

certain time; however the majority of initial conditions will most likely diverge quickly
from truth (a badly controlled shot gun may hit its target, but only by spraying pellets
in every direction). Therefore it would be unsafe to conclude that the model is a good
approximation to the real system - it may be, or it may not.

An example of a shadowing orbit for the constant model is shown in Figure 3.11
(a longer one, for an improved model, is Figure 3.22). It was computed by an opti-
misation routine which searches over the possible perturbed initial conditions within
a radius g, here 0.4, for the one with the longest shadowing time. The shadowing
capabilities of a model depend on the particular initial condition. A histogram of the
results over 200 points is shown in 3.12.

Figure 3.13 shows average shadowing times for the constant model, evaluated at
integer values of F'. The shadowing radius r, has been scaled with F', in order that
it stays in proportion with the size of the attractor. Two sets of results are shown,
with the scaled radius r;, = 0.2 for F = 10, and r, = 0.4 for F' = 10. From the
difference between the two radii, there appears to be a roughly linear relationship
between shadowing radius and mean shadowing times.

One might also expect a relationship between initial state space velocity error,
as computed from the forcing error, and shadowing times. Figure 3.14 shows the
total RMS forcing error accumulated over the average shadow time, normalised to

shadowing radius. It is calculated by taking the standard deviation of the forcing
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Figure 3.12: Histogram of shadowing times for the constant model with F' = 10 over

200 starting points.

0.8

0.7 E
06 - e

05 | i

time

04 N\ g

0.2 | o

0.1 | ,

Figure 3.13: Mean shadowing times for constant model at integer values of F', with
shadowing radius rs = 0.2 and 0.4 at F' = 10, and scaled for other values of F.

Averaged over twenty initial conditions.
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Figure 3.14: Total shadow forcing errors for the constant model for integer values of

F', normalised for shadowing radius (dimensionless).

error, multiplying by the shadow time, and dividing by the shadowing radius rs. The
result is a dimensionless number. For this model, the numbers are fairly constant at
about 2 over a range of forcing. It therefore appears that, for the constant model,
shadow times vary inversely with initial model error and linearly with shadowing
radius. Since initial model error depends on the square root of F' for this model, we
can also say that shadowing times vary inversely with the square root of F'.

Of course, these simple, empirically deduced relationships between shadow time,
shadow radius and initial model error won’t necessarily generalise to other model /system
pairs. In the next section we will go on to look at more sophisticated models which
will reduce forcing error, and therefore lead to improved shadowing times. We will
also refine our technique of calculating total forcing error so that it holds for these

more general cases.

3.4 An improved model - the linear model

There are many different ways that one could go about refining the constant model so
that it better approximates the true system, but in this chapter we shall look at just
two further models: a simple model that makes the forcing a function of the local z;
variables, and a more sophisticated approach which utilises the fact that the system
exists on a low-dimensional attractor. In Chapter 5 we will also look at two models

designed to reproduce the general ‘climatological’ behaviour.
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Figure 3.15: Scatter plot of local forcing versus local  at F' = 10. Also shown is the

linear interpolation used in the corresponding linear model.

One of the first things to be noted about the true system in Section 2 was that
the magnitude of the g; ; variables tends to be greater in regions where the local Z;
variable is also larger (see for example Figure 2.3). It is therefore reasonable to look
for a connection between the local #; component and the forcing F; experienced by
that component, which depends on the local g; ;’s. This is shown more clearly by

Figure 3.15, which is a plot of pairs (Z;, F;) where #; is the value of a particular

component and
- he
Fi=F -3 0 (3.32)
j=1

is the local forcing. There is a definite linear tendency to the data, which can be fit

using linear regression, leading to a formula
Pi(%;) = o + on ;. (3.33)

We can then define a new model

dz; :
d—gi = 2, 1 (T — Ti_o) — x; + Pl(;) linear model (3.34)
and apply our various tests of model error. The constant oy and slope a; must be
calculated for each value of F. Figure 3.16 shows how they vary as a function of F'
There is a peak around F' = 1.3 when the y variables become non-zero, but apart

from that they are fairly constant.

o7



0.4 T T T T

aI}:haO-F
alphal -------

02t ]

-0.2

0.4

0.8 ! ! ! ! !

Figure 3.16: Values of constant oy minus F', and slope a4 for linear model as a function

of F. The spike around F' = 1.3 occurs when the ¢ variables become non-zero.

3.4.1 Forcing error for the linear model

Figure 3.17 shows model error for the linear model for F' = 10, along with initial
condition displacement error. The errors are calculated in the same RMS manner
as was used for the constant model errors in Figure 3.4. Figure 3.18 is a close-up
of initial model error near time zero, compared with model error for the constant
model. The model error slope is lower for the new model, and error doesn’t grow at
as constant a rate (the growth curve has negative curvature). The standard deviation
of forcing error, which gives the error slope at time zero, is shown in Figure 3.19 as a
function of F'. The graph is obtained as follows: at each value of F'| the true system
forcing is determined, the correct values of constant ag and slope «; are determined
by linear regression, the linear system forcing is subtracted from the true forcing, and
the standard deviation of the result is then calculated by sampling over the attractor.
When compared with the constant model forcing errors, we see an improvement of

slightly more than 50 percent.

3.4.2 Shadowing for the linear model

If forcing error is a good measure of model quality, then one might expect that a
50 percent improvement in forcing error would translate into a similiar improvement
in shadowing times. In fact, the improvement is considerably greater. Figure 3.21

shows the shadowing results where the shadowing radius is 0.2 and 0.4 at F' = 10,
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Figure 3.17: Model error and displacement error for linear model with F' = 10.
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Figure 3.18: Model error near time zero for constant
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Figure 3.19: Forcing error standard deviation for constant and linear models as a

function of F.

and scaled for other values of F' as before. At F' = 10, for example, the 0.4 radius
shadowing times have been improved by a factor of more than 4. Figure 3.22 is a
shadow orbit for F' = 10, which compares with Figure 3.11. The particular shadow
time here is 2.49 as opposed to 0.5 for the constant model case. A histogram of the
results over 200 points is shown in Figure 3.20.

The reason for this dramatic increase in shadowing ability is that the forcing error
gives the initial slope of the model error, but for the linear model the slope of the
error curve decreases with time. In order to get a better measure of forcing error over
the shadow period, we must take into account the fact that it increases nonlinearly

with time.

3.5 The integrated forcing error - a spectral ap-

proach

The forcing error contains power over a range of frequencies. However, the con-
tribution to error e,,(t) of the model relative to the system over a certain time 7 is
frequency dependent, since higher frequencies will tend to cancel themselves out. The
definition of which frequencies are high and low will depend on the reference time 7.
In terms of the linearised model error dynamics, equation 3.18, we could say that the

model error after a time 7 depends on the vector integral of the velocity error, not
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Figure 3.20: Histogram of shadowing times for the linear model with F' = 10 over
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Figure 3.21: Shadowing times for linear model at integer values of F. Shadowing
radius is 0.2 and 0.4 at F' = 10, scaled at other values.
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Figure 3.22: Plot of z; for a linear model shadowing orbit, with /' = 10 and shadowing
radius rs = 0.4. The orbit cease to shadow at 7 = 2.49. Note the shadowing radius

is over all components of x, not just z;.

just its initial value.

We therefore need a way to compute the total forcing error as a function of time.
One way to do this, given a specific time 7, is to calculate the integral of the forcing
error along a number of segments of the true attractor, all of which have length 7,
and then derive the standard deviation of the resulting integral. This will be the
standard deviation of the total forcing error experienced over that time, and is the
approach we will adopt in the next chapter.

Another method, which is instructive and aids interpretation of general classes
of error, is to use a power spectrum approach. For the constant model, we summed
the terms of the forcing error power spectrum to get the variance. Since the forcing
error increased linearly with time, multiplying by a time 7 gave the variance of the
integrated forcing error over that time (see Figure 3.14). We can do something similar
in the nonlinear case, by correctly weighting each term of the spectrum to reflect its
contribution to the integral. This will allow us to obtain the integrated forcing error
from the forcing error spectrum, but, more importantly, will show which terms in the
spectrum contribute most to model error.

The correct weighting for each term in the power spectrum is determined by
considering the contribution of the corresponding sine wave to the total forcing error
integral. The constant term py will integrate over a time 7 to po7. However the power

P at frequency w corresponds to a cosine wave of the form cos(wt + ), where 6 is a
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Figure 3.23: Weighting function W (w, 7) versus frequency w for constant model with

shadowing time 7 = 27.

particular angle at time zero. The integral of the wave over the shadowing time is

/OT cos(wt + 6)dt = Ci(sin(w' +6) — sin(0)) (3.35)

The correct weighting for this term of the power expansion, which is the square of

the Fourier coefficient, is therefore

%%((sin(uﬁ +6) — sin(6))?) (3.36)

where the expectation is over all initial angles §. The resulting weight is

4

(wr)?

sinz(ﬂ). (3.37)

W(w,T) = 5

Figure 3.23 shows a plot of the weighting function W for 7 = 27. It is 1.0 for frequency
zero, and effectively cuts off powers with corresponding periods smaller than 27 /7.
The implication is that only forcing error frequencies with periods greater than 27 /7
will contribute significantly to total forcing error, and therefore to expected shadowing
times (subject to the caveat that the magnitudes of high frequency spectra are small
compared to the shadowing radius r,: even high frequencies will prevent the system
from shadowing if the resulting oscillations are larger than the shadow radius).

In Figure 3.24 the total forcing error experienced by a typical shadow orbit for
the linear model is shown. Shadow radius r, is 0.2 and 0.4 at F' = 10, and scaled at

other values. The results have again been normalised by dividing by the shadowing
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Figure 3.24: Total shadow forcing errors for linear model, normalised to shadow radius

(dimensionless). Shadowing radius is 0.2 and 0.4 at F' = 10, scaled for other values.

radius rs, and the numbers are again near 2, except at higher values of forcing. The
relationship is less exact than it was for the constant model, but it seems fair to say
that the main reason the linear model shadows so much better than the constant
model is because it reduces the low frequency forcing error.

This is indicated more clearly in Figure 3.25, which is a plot of the forcing error
for the two systems. Forcing error for the constant model is equal to the true system
forcing, minus the constant term at zero frequency (the constant model forcing doesn’t
vary with time). The linear model, however, reduces the low frequency spectra up
to a frequency of about 3.0, while leaving the higher frequencies unchanged. We
conclude that, at least in this example, the key to improving shadowing is to reduce
the low frequency forcing error. The improvement in shadowing can be large, even if
the reduction in total forcing error is modest.

If the forcing error has a white noise spectrum, so there is equal power at each
frequency, then the integral of the forcing error will increase with the square root of
time, as for a random walk [11]. Another way to interpret the success of the linear
model over the constant model is therefore to say that its power spectrum is less ‘red’.
This will be of interest in Chapter 6 when we come to look at weather models, where

errors have in the past been modelled as white or red noise.
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Figure 3.25: Power spectra of forcing error for constant and linear models at F' = 10.

3.6 A local linear predictor model

A more sophisticated approach to modelling the true system is to take advantage of
the fact that the true system forcing may exist on a low dimensional attractor. Two
cases were examined, the normal system with F' = 10, and a modified system where
the coefficient ¢ which determines the coupling between the & and g variables is set

to a higher value of 1.2 and F' is reduced to 2, as was done in Figure 2.15.

3.6.1 Predictor model at low forcing and high coupling

Referring to the bifurcation diagram Figure 2.13 and the system trajectories in Figure
2.15 for coupling coefficient 1.2 and forcing 2, we see that the two-level system with
these parameter values is in a quasi-periodic state. If we attempt to model this
system with the constant or linear models, we run into the problem that at the low
level of forcing these systems are periodic and have either the wrong amplitude or the
wrong frequency (or both). Figure 3.26 shows the best matches that we could find
by varying the parameters. The constant model has P¢ = 1.5, while the linear model
has constant term oy = 1.8 and slope a; = —0.2. Neither of them shadow for the
initial condition shown as long as 3 time units.

Figure 3.27 is a plot of local forcing F; vs #; for the true system, and can be
compared with Figure 3.15. The linear model uses the information in the figure by
drawing a straight line through the data and deriving a relationship between Z; and

the local forcing F;. However for this system it is possible to do much better, because

65



2.2

system —

constant ----” |
linear ---#

predictor

18 | 7
16
14

12

x1

0.8

0.6

0.4

02

Figure 3.26: Shadowing orbits for constant, linear and predictor models with ¢ = 1.2
and F' = 2.

the forcing exists on a low-dimensional attractor: in this case, a quasi-periodic orbit.
If we specify all the z;’s then we can determine the forcing to arbitrary accuracy.

The technique used to do this is local linear prediction [61]. The first step is to
construct a learning set, consisting of points X on the attractor of the true system
(projected into model space) and corresponding local forcing values. The learning set
is built incrementally. For each new X, the existing learning set is used to predict
the forcing. If the prediction fails to land within a prescribed tolerance of the true
forcing, the point is added to the learning set. Predictions are made using the local
linear method: nearest neighbours to the point in question are selected and a linear
interpolation performed to estimate the corresponding forcing. The number of nearest
neighbours used is variable, but here was set to 16. Should the forcing exist on a low
dimensional attractor, the process will almost certainly converge so that the learning
set effectively spans the attractor in an efficient way.

Figure 3.28 is a plot of the learning set as 5 versus Z;, which can be compared
with the orbit in Figure 2.15(a). Figure 3.29 is (&;, F}) pairs, which compares with
Figure 3.27. We see that the learning set just consists of points distributed fairly
regularly over the quasi-periodic attractor.

Once a learning set has been constructed, we can define a predictor function P(x)
as follows: given a vector x, look up the nearest neighbours in the learning set. Each

of those points has an associated forcing. Perform a linear interpolation to give the
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predicted forcing for the new point. We thus arrive at the model

d.%'i
dt

=x; 1(Ti1 — T 2) — z; + PF(x) predictor model. (3.38)

Shadowing results for this system are excellent, as we would expect. The shadow-
ing orbit in Figure 3.26 for the predictor model is nearly indistinguishable from the

true system, and appears to follow the true quasi-periodic orbit indefinitely.

3.6.2 Predictor model at high forcing and regular coupling

The local linear predictor method was applied to model the true system with the
normal coupling coefficient of 1.0, and F' = 10. The prediction ability of the local
linear method doesn’t converge as well as for the previous case, so with a learning set
of 4096 points the variance of the forcing error is about 0.6, which is the same achieved
by the constant model. Much of the variance, however, is in higher frequencies, which
have reduced effect on shadowing times. Figure 3.30 shows the model error curve
compared with the other systems. The slope at time zero is the same as for the
constant model, due to the high frequency variance, but the curve soon flattens out
and the slope becomes closer to that of the linear model. We would therefore expect
shadow results to be somewhere between the results for the other two models, i.e. in
a range [0.23,0.8] at a shadowing radius of 0.2, and [0.5,1.9] for shadowing radius 0.4.

It is possible to improve this estimate by plotting the integrated forcing error as a

function of time, which is done in Figure 3.31 for all three systems. As expected, the
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Figure 3.30: Model error for predictor model in early stages, compared with constant

and linear models.

predictor model accumulates forcing error over a shadowing orbit at a rate somewhere
between the two other models. Also shown are lines joining the points where the
constant and linear models fail to shadow at shadowing radius 0.2 and 0.4. From this
graph we would expect the predictor model to shadow for about 0.55 time units at
shadow radius 0.2 and 1.2 time units at shadow radius 0.4.

Actual shadowing calculations give shadow times of 0.65 time units at radius 0.2
and 1.3 time units at radius 0.4. These are in the right range, and show that the
forcing error curves give a good indication of shadowing times, even though the models
being compared are quite different. Forcing error has the advantage of being much
faster to calculate than explicit shadow orbits, which can be a factor for complex

models such as real atmospheric models.

3.7 Summary

In this chapter we have investigated model error from a mostly empirical point of
view, using the Lorenz system and its various models to explore issues such as ve-
locity error, displacement error, and shadowing. The principal finding has been that
short to medium range predictability, as measured by shadowing times, depends to a
large extent on integrated forcing error, which in turn depends on the forcing error
frequency spectrum. For the constant model, the integrated forcing error increases

roughly linearly with time, at a rate determined by the square root of the forcing. The
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fact that this holds despite the complexity of the forcing error’s spectral bifurcation
diagram is an unanticipated emergent property of the model.

One way to view the forcing error is like the tiller of a boat. If the tiller is held
first too far to one side, then too far to the other, but with frequent corrections - as
in high frequency forcing error - then the boat will tend to stay on the right path.
If, however, the tiller is held too long to one side before correcting - as is the case
with low frequency forcing error - then the boat will drift far off course. This is the
case even if the average error over all time is zero. The constant Lorenz model has
zero average forcing error, but still gives significant short to medium range prediction
errors. It therefore seems possible that a weather model which also has zero average
forcing error, and produces long term forecasts in balance with the climatology, may
still fail in the short term.

Because of the important role of low frequency velocity error, any change to the
model which addresses this will improve performance. It was shown with the lin-
ear model that relatively minor improvements in parameterisation, which succeed
in reducing low frequency velocity error, can have an amplified effect on shadowing
times.

While shadowing times for the constant model varied almost linearly with shadow
radius and velocity error, the relationship was less clear cut for the linear model. It

appears that velocity error in itself is not sufficient to predict shadow times. Since
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shadowing is the result of an interplay between initial condition error and model error,
this isn’t surprising.

In the next chapter, we will change our approach from an experimental one -
looking from the outside in - to a more detailed one, where we analyse the combined
dynamics of model and initial condition error. In doing so, we develop a more sophis-
ticated way to estimate shadowing times, which will be applicable to any dynamical

model of any system.
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Chapter 4

Linearised dynamics and the

shadow law

For the Lorenz ’96 systems, it was found that shadowing times depended largely
on the velocity error of the model relative to the true system. In general, though,
shadowing performance will also depend on other characteristics of the model. In
effect, there is a trade off between displacement error and model error, and a shadow
orbit can loosely be viewed as one which succeeds in offsetting the effect of model
error by a good choice of initial displacement.

In this chapter we will further investigate these two types of error, and study how
they interact. Our first aim is to develop a robust measure of model error, motivated
by the results of the previous chapter. By considering the linearised dynamics, we
develop a hierarchy of techniques for estimating shadow times, without the need to
produce explicit shadow orbits. A shadow law, which gives a lower bound on shadow
radius in terms of the model error, is derived. The methods are tested on a variety of
systems, as preparation for the application to weather models in Chapter 6. Finally,
we use the insights gained to propose fast methods of producing shadow orbits.

One of the main goals of this thesis is to quantify the effect of model error on
shadow times. When we consider the complexity of a typical shadowing orbit, it might
seem unlikely that shadow times can easily be predicted just from some measure of
model error, without actually searching for shadow orbits as was done in Chapter
3. For example, Figure 4.1 is another view of the shadow orbit for the linear model
shown previously in Figure 3.22. It is an attempt to picture what is going on in
8 dimensional space. The displacement vectors have first been projected onto the

hyper-plane normal to the true orbit. The radius of each point is then calculated as
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Figure 4.1: Shadowing orbit for linear model, in polar coordinates with radius the
displacement from true orbit, and angle with respect to initial offset. The circle of
radius 0.4 represents the shadowing radius. The shadow orbit starts near the extreme
radius 0.4 on the right hand side, then exits on the upper left hand side after 2.49

time units.

the displacement of the shadow orbit from truth, while the angle is the angle of the
displacement at that time with the original displacement. The shadow orbit starts
near the extreme radius 0.4 on the right hand side, then exits on the left hand side
after 2.49 time units. (As an aside, if we could search for the longest shadowing orbit
over all possible starting points, it would always start near the outer radius. This
is because, if the longest orbit started at some other radius, then we could run time
backwards until the orbit exited. Using the exit point as an initial condition would
then produce a longer orbit, contradicting our assumption that the original orbit was
longest.)

It is clear from Figure 4.1 that the ability of a model to shadow will depend
not only on model error, but on a complex interaction between model error and
displacement error. A model with large sensitivity to initial condition, for example,
may stand a better chance of producing an orbit that shadows, simply because nearby

orbits tend to diverge out in all directions (the machine gun analogy). A model’s
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sensitivity to initial conditions need not be a bad thing if it is shared by the real
system, but the point is that an estimate of shadow times based on model error alone
couldn’t take this effect into account.

A theme of this thesis (and other studies of complex systems), though, is that the
systems are sometimes more complicated in the details than in their overall behaviour.
For that reason, as well as the results of Chapter 3, there are grounds for optimism
that even complicated shadow trajectories can, at least in an average sense, show
certain predictable properties. We begin the search for such properties, though, by
considering, not macroscopic behaviour, but what one might consider the opposite:

the linearised dynamics of error evolution.

4.1 The linearised dynamics

It was found in the previous chapter that a useful indicator of shadowing ability was
the integrated velocity error, which was calculated by linearising the model error
and integrating. Motivated by that result, we now apply the same technique to the
interaction between displacement error and model error, by linearising both types of
error around the true orbit. The following theorem states that, even in the presence of
model error, the evolution of errors can be approximated by the linearised dynamics.

Theorem. Let X(t) be a solution of the system equation

%
— =G, (4.1)

and let x(¢) be a solution of the model equation

dx
i G(x), (4.2)

where G and G are C'. If the true system and the model system exist in separate
spaces, then as before we implicitly assume the existence of a projection operator
taking the true system into the model system space, but omit it from the equations
below for clarity. Define e(t) = x(t) —%(t), Ge(X(t)) = G(%(t)) — G(X(t)). The linear

propagator of the model around the true orbit is
M(t) = elo F&DE (4.3)
where J is the Jacobian of G. We also define the propagator from time s to time ¢ as

M, (1) = els I&@)dt (4.4)
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Then given a reference time 7 > 0, and € > 0, there exists a radius r > 0 such that,
if ||e(t)|| < r for all t € [0, 7], then

le(t) — M(t)e(0) — /Ot M, (t)Ge(X(t))dt| < € Vit € [0,7]. (4.5)

Proof. From the system equations, we can write

de dx dx
dt dt  dt

= G(x(t) — G(x(t))
= G(x(t) — G(X(t)) + Ge(x(t))
= G(X(t) +e(t)) — G(x(t)) + G (X(1)). (4.6)

Performing a Taylor expansion of G around X(t), and retaining only the zero and
first order term, we obtain
de - -
- = J(X(t)) - e(t) + Ge(X(t)) + R(2) (4.7)
where the remainder term R(t) is O(]|e(t)||?). Therefore, Ir, >0 > |le(t)| < r
= ||Ra(?)|| < &. Pick r to be the minimum such r; (possible since [0, 7] is a
compact set). Integrating from 0 to ¢ for 0 < ¢ < 7 then gives [48]

e(t) = M(t)e(0) + [ "ML (1) Ge (R (1)) dt + / "R(t)dt, (4.8)
and
Jeft) - Mit)e(0) — [ Mat)Gels)at] = || [ Riitl < St<e  (a9)
which proves the result.
Now
/ ML ()G (R(1))dt = / " Go(R())dt + / (1= ML()Ge(®(D))dt.  (4.10)
Let

t
d(t) = / G.(x(1))dt. (4.11)
0
Since the linear propagator approaches the identity matrix as time (or shadow radius)

goes to zero, it is easily seen that the term

/ (1= ML (1) Go(R(1))dt (4.12)

is O(r?), and acts as a relatively small perturbation on d(t). We will therefore neglect

this higher order term, but return to estimate it for weather models in Chapter 6.
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Therefore the evolution of the error e(t) can be approximated by the linearised
dynamics
e(t) = y(t) +d(t). (4.13)
where

y(t) = M(t)e(0). (4.14)

Note the approximation only holds for model orbits x(¢) which remain within the
tolerance r of the reference trajectory X(t¢). In other words, it only holds for orbits
which shadow at that radius. The size of the radius will depend on the system, the
model, and the allowed error e.

Note also that the linear propagator M(¢) is now calculated along the true trajec-
tory X(t), rather than the model trajectory. It can determined by directly integrating
the model Jacobian along the true orbit, but this is a lengthy procedure. A commonly
used alternative is to estimate the linear propagator by computing the trajectories of
(n+1) (or more) slightly displaced orbits. In this case, though, the technique cannot
be applied directly since the orbits will be incorrect. A way round this problem is to
consider the modified system

dx -

= = G(x() - GL(x() (115)
where X(¢) is the true orbit which we are trying to shadow. The function G.(x(t)) is
a function only of £, and the Jacobian of G — G, is exactly the same as the Jacobian
J of G. However the modified system 4.15 also has the property that X is a solution.
Therefore the linear propagator for this system, evaluated on the X orbit, is the
integral of the Jacobian over that orbit, as required.

Since G and G specify the state space velocities of the model and true system
respectively, the function G, is just the velocity error. The vector d(t) in 4.11 is
therefore the integral of the velocity error along the true orbit, and has the dimension

of distance. Setting e(0) equal to the zero vector in (4.13), we have
e(t) ~ d(t) (4.16)

so d(t) is the approximate displacement of a model solution, which is started on the
true initial condition, from the true solution after a time ¢. Define the local model
drift after a time t to be

d(t) = |ld(?)] (4.17)

(the drift is of course also dependent on the true orbit X which is taken as set). The

model drift is then a good indicator of the model’s predictive capacity: the smaller
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Figure 4.2: Forecast errors for Lorenz model/system, x; component. As in Figure
3.2, a number of short term model forecasts were initiated at regular intervals along
a true trajectory. The errors have here been scaled by a factor 10. The total error
magnitude over all z; is also shown, again scaled by a factor 10. Because it contains
all components, it is larger than the z; error. The drift, also shown scaled by a
factor 10, is the vector sum of the total velocity errors. The almost linear increase
up to t = 0.6 indicates that the error vectors are accumulating, and are therefore in
a similar direction. Above t = 0.6, however, the drift begins to reduce because the
velocity error has rotated away from its original orientation, and projects negatively

onto the drift.

the drift d(t), the better the prediction of the true system’s position after the elapsed
time ¢. In the Lorenz '96 systems, velocity error on the true orbit is due entirely to
forcing error, so for those systems the drift is the same as integrated forcing error.
Figure 3.2 in Chapter 3 showed the velocity errors for the Lorenz system. Figure
4.2 is similar, but the scaling of the errors has been reduced from 20 to 10, and the
drift, which is the vector integral of the velocity errors, is also shown. Because the
drift is state dependent, it is not necessarily systematic over long periods, but it may
tend to accumulate in the short to medium term. In the figure, the drift increases
steadily at first, which one would expect if the velocity errors were in roughly the
same direction. Above t = 0.6, however, the drift begins to reduce, implying that the

velocity error has now rotated so that its dot product with the drift is negative.
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4.2 Model error vs initial condition error (contin-

ued)

The linearised dynamics provide a conceptual framework which helps to separate out
the respective roles in the shadow process of model error and initial condition error,
and in the next section this framework is used to develop a technique for estimating
shadow times. First, though, it is worth clarifying the fact that these two forms
of error, due to the model and displacement, need bear no special relation to each
other: the latter is a property of the model alone, while the former depends also on
the true system. For example, suppose that, after a given time 7, we calculate the
leading singular vectors of the model’s linear propagator, which define the direction
of displacement which gives largest growth at time 7. These directions will depend
purely on the model, regardless of the true system. The drift vector d(t), however, is a
measure of the difference between the model and the true system. There is no reason
for it to be aligned, or not, with the leading singular vectors. As a consequence, an
ensemble of initial conditions, formed by perturbing in the directions of the leading
singular vectors (as is done at ECMWF), need not offset model error.

For example, Figure 4.3 shows errors of the constant model relative to the two level
Lorenz system (compare also Figure 3.4). In the upper panel, perturbations of size
0.2 are added to the model initial condition in the positive and negative directions of
the leading singular vector, to form a two-member ensemble. Relative to the model,
these perturbations have grown at time 0.34 by about a factor 5.0. Also shown in the
background is the density of errors found by randomly perturbing the initial condition
by an amount 0.2 and taking a histogram of the resulting errors over 1000 runs. The
singular vector perturbations give maximum displacement for ¢ = 0.34, as expected
by construction, but not for higher times.

In the lower panels, where errors are shown relative to truth, the situation is very
different. The errors are larger than for the previous case, so if ensemble spread is
measured relative to truth it will be larger than if measured relative to the model
control. Also, neither singular vector perturbation effectively offsets model error,
compared to the random displacements. The negative perturbation nearly captures
the maximum error, but other random displacements do slightly better: the ‘worst-
case’ displacement now depends on the drift vector.

This figure is a graphic illustration of two facts which must be taken into account

when model error is significant. Firstly, spread will appear smaller if measured with
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respect to the model than to truth. Secondly, no member of the ensemble need
succeed in counteracting the effect of model error.

Figure 4.4 is a schematic diagram showing how model error can distort an ensemble
and affect the spread. The initial perturbations vt and v, aligned with the leading
singular vector, evolve to u}, and u,, under the model dynamics, but to u;” and uy
under the true dynamics. The angle 6, therefore shrinks, and the vectors u;" and
u, are no longer approximately anti-parallel. Since the evolved perturbations with
respect to truth are larger than those with respect to the model, the model spread is
expected to be smaller than the true spread.

A similar effect can be seen in 4.5, which shows the cosine of the angle enclosed
by the positive and negative perturbations for the constant model. At initial time
the cosine angle is -1, indicating that the perturbations are anti-parallel. For times
up to about ¢ = 0.6 the perturbations taken with respect to the model remain nearly
anti-parallel, but with respect to truth the cosine angle actually become positive.
This implies that both perturbations have effectively crossed over to the same side
of the true orbit, not a desirable property if the ensemble is supposed to encompass
truth [23].

A good ‘sanity test’ for any ensemble, therefore, is to take dot products of pertur-
bations in this manner, and follow their evolution with time. This was done in detail
for the ECMWEF models by Gilmour [23], [24], with the difference that perturba-
tions were measured relative to the model control itself, as oppposed to the observed
weather, so model error wasn’t a factor. It was found that the test fails anyway due

to nonlinearity of the model - a separate problem.

4.3 The shadow estimation technique (SET)

Because the linearised dynamics model the evolution of small errors around a true
trajectory, they can be used to model the shadowing process. In this section, we
develop a hierarchy of tests which allow the determination of approximate shadow
times for a given model/system pair.

Referring to equation 4.14 of the linearised dynamics, we can write the linear

propagator matrix in its singular value decomposition (SVD) form [25] as
M(t) = U@t)S(t)VT(t). (4.18)

If M is an n by n matrix, then U and V are matrices of the same dimension with

orthonormal columns, while 3 is a diagonal matrix with positive diagonal entries. The
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Figure 4.3: Error growth of perturbed initial conditions for the one level model. In the
upper panel, errors are relative to the unperturbed model control. The background
contours show error growth for 1000 random perturbations of magnitude 0.2, while
the dashed and dotted lines show the perturbations in the positive and negative
directions of the leading singular vector. The optimisation time for the singular
vector calculation is 0.34; perturbations in these directions give maximum growth
at that time. The middle panel shows errors relative to a trajectory of the two level
system, and therefore include the effect of model error. The error of the model control
is also shown. The lower panel is a zoom of the middle panel near initial time. Note
the effect of model error on the ensemble, and the fact that no ensemble member

offsets model error over the optimisation time.
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Figure 4.4: Schematic diagram showing how the angle between the positive and
negative perturbations in an ensemble can shrink when taken with respect to truth
(6;) as opposed to the model (6,,). See also [23], [24]
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Figure 4.5: Normalised dot product (or cosine angle) of the positive and negative
singular vector perturbations for the Lorenz model/system, with respect to the true

system (dashed line) and the model (solid line).

linear propagator maps the 7’th column v; of V to the i’th column u; of U multiplied
by the i’th diagonal entry o; of ¥. Hyperspheres in the space of V columns are
therefore mapped to ellipsoids in the space of U columns, where each axis is multiplied
by a factor o;.

Referring to equation (4.14), it therefore follows that if the initial condition lies
within a ball of radius r; about X(0), then after an elapsed time ¢ the point y(¢) will
satisfy the ellipsoid equation

— Y, < Ty
1 .t)2

n
1=

t) - u(t))?

oi(
where y(t) - uj(t) is the projection of y(t) onto the 7’th basis vector given by the
columns of U(t). From equation (4.11), this is the same as

Z":((e(t)—d(t))-ui(t))2 o2

o (0)? . (4.20)

i=1
Now, an initial condition displaced by the vector e(0) will shadow until a time ¢ if
lle(t)|| < rs where r, is the shadow radius. Because e(t) is in the ellipsoid given by
(4.20), this is the same as saying that the distance between the origin and the offset

ellipsoid should be smaller than the shadow radius r.
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The direct way to solve this problem is to find the initial displacement which has
the smallest final displacement under the linearised dynamics. Before doing so, we
first note that, to a good approximation, the desired result will be true if the zero
vector lies within an enlarged ellipsoid, where all the axes have been increased by an
amount 7, (the agreement is exact at the poles, and very close elsewhere). This is

shown schematically in Figure 4.6. The enlarged ellipse is all images
Ut)(Z(t) + VT (t) - e(0) +d(1), (4.21)

where the identity I has been added to X(¢) to stretch each axis an amount r,.
We therefore obtain a simple shadowing condition. The model will shadow the true

system for a time 7 if 7 is the smallest positive time such that

" (d(r) w(n)?
;::1 A to(r) (4.22)

Since the geometric argument of expanding each axis of the ellipse was only ap-
proximate, the above condition will give shadow times which are slightly incorrect.
In fact, it is easy to see that it will tend to slightly underestimate shadow times of the
linearised dynamics. Suppose that condition (4.22) is satisfied. Then the ellipse of

images contains the zero vector, and there is an initial displacement e which satisfies
U)(Z(t)+D)VE(t)-e+d(t) = 0. (4.23)

Rearrangement gives
UBZ)VE(t)-e+d(t) = -U()V(t)e. (4.24)

Now ||U(t)VT(t)e|| = ||e|| since the matrices U(t) and VT (¢) are orthonormal. Also,

by assumption, ||e|| < rg, so it follows that
[UOZ@)VT(t) - e+d(t)|| <7, (4.25)

and the point e shadows under the linearized dynamics. The approximation therefore
will tend to underestimate shadow times.
A more accurate estimate of shadow times using the linearised dynamics can be

attained by directly solving the following problem:

minimise C(e) U@ V() - e(t) +d(t)|
subject to ||e(0)]| < 7. (4.26)
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Figure 4.6: Schematic diagram of linearised shadow dynamics, showing the initial
ball of radius r about the starting point; the final ellipse at the shadow time with
axes ro;u;; the drift vector d; and the optimal initial displacement e which satisfies
IMe +d|| =r.
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In other words, find the initial displacement e(0) which has the smallest final dis-
placement (we neglect for now the checking of displacements at intermediate times).
This optimisation problem can be solved using the Lagrange method. Dropping the

dependence on time for clarity, we seek stationary points of
(UxVTe+d)T(USVTe +d) + dele (4.27)
where A is a scalar Lagrange multiplier. Setting the variation equal to zero gives
vEUT(UEVTe +d) + de = 0. (4.28)
Solving for e, and using the fact that UTU = VIV =1, we find
e=—(VZ*VT + AI)"'vEU’d. (4.29)
Now it is easily seen by direct substitution that
(VEVT 4+ AI) ' = VAL VT (4.30)
where A () is the diagonal matrix with i’th diagonal entry
ai(A) = (e + Nt (4.31)
Substituting into the expression for e gives
e=—-VA(\N)Xp (4.32)

where p = UTd.

The next step is to solve for A. We first note that the linearised dynamics map
points e on the outside of the shadow radius ball to image points on the outside of the
ellipse. The maximum shadow time under the linearised dynamics (not necessarily
the real dynamics) will occur when there is just one point that shadows, so we can
assume that the image is on the perimeter of the ellipse, and therefore that e satisfies
|le|| = rs. Referring to equation (4.32), this implies

e’e=p " (ZAN)*p =12 (4.33)

8

which is equivalent to

> _(pioiai(N)* — 17 = 0. (4.34)

i=1
The multiplier A can therefore be found by using Newton’s method to find zeros

of the above expression. Once A has been determined, we solve for e using (4.32).
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The image point UXV7Te +d is then seen to be A\ UA()\)p, with magnitude equal to
the square root of A2 3%, (p;a;(\))2.

We thus arrive at a new shadowing condition, which is in two stages. Given a
specified time ¢, first calculate the initial displacement which yields the minimum
displacement at that time. Then check to see whether the magnitude of the image
point is smaller than the shadow radius. If it is, then the model shadows until time ¢
under the linearised dynamics (again neglecting what happens at intermediate times,
which need also to be checked).

The shadowing condition involves more computation than (4.22), but is easy to
implement. Also, since (4.22) will tend to underestimate the shadow time, the detailed
test need only be carried out when the simpler test fails. For the models studied here,
it usually adds about a percent or less, as measured in terms of the allowable drift
over a shadow orbit, and the difference goes to zero as the shadow radius decreases.

Finally, since the multipliers o; are all positive, we can write

- (d(7) - wi(r))* N ) — (g2
; (1+ 0i(7))? S;(d(t) i(2)) Z;dz(t) d(t) (4.35)

n n

where we have also used the fact that the vectors u form an orthonormal basis. It
follows from equation (4.22) that if the drift d(7) at time 7 is smaller than r,, the
model should shadow at least until that time.

We therefore can apply a hierarchy of shadow tests, each of increasing complexity.
For increasing times ¢ we first test equation (4.35), to see if the drift is smaller than
the shadow radius. If this fails, we test equation (4.22), to check if the enlarged ellipse
contains the zero vector. When that fails, we can do a full solution of the eigenvalue
problem (if desired, though its effect is small). We shall refer to this procedure as
the shadow estimation technique, or SET. The SET depends only on the model drift,
the modified linear propagator, and the shadowing radius, and is applicable whenever
the modified linear propagator is a good approximation to the system dynamics at
distances smaller than the shadow radius from the true attractor.

We can now quantify our observation that a model which tends to scatter orbits in
all directions given small displacements may shadow quite well (a shot gun may hit its
target better than a well-aimed rifle). Such a model will have large multipliers o;, so
that a ball of initial conditions blows up into a large ellipse. This will reduce the left
hand side of equation (4.22). If we compare between models where these multipliers
are similar, then the dominant factors are model drift and shadowing radius. In the
next section, we derive a law that applies to any model which is locally dissipative,

i.e. more like a rifle than a shot gun.
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4.4 A shadowing law

Under certain circumstances, shadow times can be estimated by considering model
drift only, without recourse to the linear propagator. Suppose first that shadow times
are relatively short, so that the singular value multipliers (which tend to unity as ¢

goes to zero) are close to 1.0. Then from equation 4.22 we have

r; = ém (4.36)
~ Z:M (4.37)
_ W (4.38)
_ d(;—){ (4.39)
The shadowing time 7 then satisfies
d(r) = |[d(7)[| = 2r, (4.40)

and so is the time at which the model drift exceeds the shadow diameter.

In such cases, the ratio of drift (or equivalently, for the Lorenz systems, integrated
forcing error) to shadow radius for a typical shadow orbit should be approximately 2.
This is exactly what was found in Figure 3.14 for the constant model. The number 2
actually appears to be an upper bound, for all but low values of F'.

The property clearly holds when displacement error is effectively zero, since, for
a reference time 7 and drift vector d(7), the model trajectory can simply begin at a
displacement of —0.5d(7) and end at a displacement of —0.5d(7). It will also tend

to hold in a statistical sense, though, whenever

n 2
1:1 1 + 01(7')) 4
which is a much weaker condition.
Suppose that the model exists in a high dimension state space, and the components
of the drift vector are uncorrelated either with each other or with the direction of the

singular vectors. In this case,

(d(r) - w(m)?) = (d2()) = = (d(r). (4.42)

n
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Suppose now that we fix the magnitude of the drift vector, and the multipliers o;,
and take expected values of both sides of equation 4.22 over all possible orientations

of the singular vectors. Then, from equations 4.22 and 4.42,

w2y = 340wy, (4.43)

’ = (1 +o0i(7))?
d(t)? & 1
n <; (1+ O'i(T))2> (4.44)

where the shadow radius r; is now a function of the orientation of the singular vectors.

If the model is locally dissipative in the sense that it contracts volumes in state
space [47] over the finite time 7, then we claim that the sum on the right hand side
has a minimum value of § when all o; = 1. To see this, consider first the case where

the model exactly preserves volume, which will occur if
[[oi=1 (4.45)
i=1

where we have dropped the dependence on 7. Writing the minimisation problem as

a Lagrangian, we seek minima of

2 4(1 Tt o) + )\(g o; —1) (4.46)

where A is a constant multiplier. Taking partial derivatives with respect to o;, and

setting to zero, gives

-2 A
0= M o = + 2 (4.47)
(1’|‘ zl;lj (1+UJ) Tj

where we have used the fact that [, o; = 1. Therefore
2 3
oj = X(O'j +1)°. (4.48)
This equation represents the intersection between a straight line and a cubic in o3,
and has two solutions for A > 16, and a single solution when A = 16 and all o; = 1.
Since A is the same for all j, the multipliers o; can only take on one of a maximum
two values.
We claim that the solution o; = 1 for all j represents a global minimum. The full
proof is complicated, and is given in the Appendix. For the 2-D case, a geometrical

argument is also possible. We wish to show that

1 1
+
(14+01)2  (1+09)?

(4.49)



which is the same as saying that the point 1 = 1, x5 = 1 is inside the ellipse

I 1 1
(I1+01)2 (14 09)?

> (4.50)

1
3
When o1 = 1 and 05 = 1, the point (1,1) is at the boundary of the ellipse. Any other
volume retaining ellipse, which is contracted along one axis and expanded along the
other, will not contain this point. It therefore follows that
1 1 1
(to)?  (Iton2 2

(4.51)

if o1 (and by implication oy) doesn’t equal 1.
Since the critical point with o; = 1 for all 7 represents a global minimum, it follows,

from equation 4.44, that

) (4.52)

> d(;)zg (4.53)
- d(??, (4.54)
(r2) > @. (4.55)

Therefore the allowable shadow radius, in an RMS sense, for a given magnitude of
drift, is greater than or equal to half the drift. If the model is locally strictly dissipa-
tive, rather than volume preserving, the inequality is replaced by a strict inequality.
This is a powerful result, since it applies to an extremely broad class of chaotic models,
including, typically, those which have an attractor [47].

Note that we are treating the shadow radius r, as a function of the shadow time
7, while in the shadow calculations of the Lorenz '96 and other systems we solved for
the shadow time as a function of the shadow radius. Since 7(r;) is a monotonically
increasing function, it is possible to invert the problem in this way. We will see in
Chapter 6 that for weather model it is usually more convenient to solve for the shadow
radius as a function of shadow time.

Define the dissipation coefficient q(7) as

=1 TP

Then equation 4.44 can be written

d(7) = 2q(7)/(ri(7)). (4.57)



The dissipation coefficient ¢(7) is a measure of local model dissipation in state
space. A model where all the singular value multipliers equal 1 has a dissipation
coefficient of exactly 1. If model error is high, or the shadow radius is small, then
shadow times will be short and the dissipation coefficient will be near 1, so RMS drift
will approximately equal the shadow diameter. The dissipation coefficient can either
be calculated directly, or estimated from some idea of the likely distribution.

As an illustration of a volume preserving model, suppose that the magnitudes of
the n singular vector multipliers o;(7), when arranged in descending order, follow a

power law distribution, so that

oi(t) =0, ™. (4.58)

The largest singular vector multiplier is therefore oy, and the smallest is o, = o7 ".

An equal number of directions contract as expand in phase space, and because the
product of the multipliers is 1, such a model would preserve state space volume.
Given the ideal power law distribution, and assuming the dimension n is large, we

can approximate the sum by an integral, so

n 1 n/2 1
S = / —— ds (4.59)

= (L+0i(7))? —n/2 (1 + 0177)2
n n o1 —1
= —— . 4.60
2 2log(o1) o1+ 1 (4.60)
The dissipation coefficient is therefore
1
q() = - (4.61)

2,/1

~ log(on) v+l

Values of ¢ are plotted as a function of ¢y in Figure 4.7. The maximum value of 1.0
occurs for oy = 1.0, as expected.

Real models often show a similiar, roughly power law distribution. Figure 4.8
plots the distribution of singular value multipliers, and dissipation coefficient ¢ (where
the expectation operator in equation 4.57 is supressed), for the constant and linear
models. Results are averaged over 200 shadow runs at shadow radius 0.4. The +
marks the centre point: for either model, more singular value multipliers contract than
expand. The models are therefore more dissipative than the power law distribution
described above. The constant model has a lower ¢ than the linear model, and so is
more dissipative. This is largely because ¢ is evaluated over maximal shadow orbits,

and the constant model shadows for shorter times than the linear model.
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Figure 4.7: Plot of the dissipation coefficient ¢(7) when the singular value multipliers
follow a simple power law distribution as described in text. Shown as a function of
the leading multiplier. The maximum value is 1.0. As an upper bound on shadow
times, the shadow law therefore sets drift equal to twice shadow radius, which equates

to a dissipation coefficient of 1.0.

We summarise these results with the following formal statement of the shadow
law.

The Shadow Law. Suppose that the model of a true system is locally dissipative
in the sense that the singular value multipliers o; of the linear propagator, evaluated
along the true orbit over a time 7, are volume contracting, i.e. [I? ; 0; < 1. Assume
also that the drift vectors are uncorrelated with the singular vectors. Then, as a

function of drift d(7), an approximate lower bound on shadow radius is given by
1
(ri(r)) = 5d(7). (4.62)

When model error is high, or shadow times are short, then the shadow radius will

approach this bound, so
1
re(T) & §d(7'). (4.63)

The shadow law therefore provides a lower bound on shadow radius, in terms of
drift, whenever the model is dissipative over the time tested. The shadow rule will
prove indispensable for the weather models encountered in Chapter 6, for which it is

impossible to calculate all the singular vectors, and the full SET cannot be invoked.
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Figure 4.8: Upper panel shows singular value multipliers, arranged in descending
order, for the constant and linear models. Results are averaged over 200 shadow runs
at shadow radius 0.4. The 4+ marks the centre point: for either model, more singular
value multipliers contract than expand. The centre panel shows the distribution of
the dissipation coefficient ¢ over the same shadow runs. The lower panel shows the
distribution for the constant model. The constant model is less dissipative than the

linear model, largely because it shadows for a shorter time.
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4.5 The model error index

While the measurement of model error may be complicated by sensitivity to initial
conditions, the degree to which this holds true depends on the strength of model error
relative to displacement error. For example, if a model is only moderately sensitive
to initial conditions, but generates huge model error, then it should be relatively easy
to measure model error. If, on the other hand, the model is excellent, but both it and
the system are highly sensitive to initial condition, then measuring model error will
be more difficult.

The relative strength of model and displacement error also determines which places
limits on shadow times. When model error dominates, shadow times will be deter-
mined primarily by the drift, while if model error is small the model dissipation must
be taken into account.

We propose two different measures for the comparison of model error with dis-
placement error. The first compares the forces of drift with those of dissipation. Using
the definition of the dissipation coefficient ¢(7), the linearised dynamics in RMS form

were written in equation 4.57 as

d(7) = 2q(7)\/(r2(7))- (4.64)
We define the first model error index M1(7) to be
M1(r) = <27i(qT()T)>' (4.65)

M1(7) provides a measure of the relative strength of model error, as measured by
the drift d(7), compared to the dissipation, as measured by ¢(7). If it is the case
that M1(r) > 1, then model error dominates dissipation, and the model won’t be
expected to shadow for the time 7 at radius r;.

For large models, it may be impossible to evaluate the dissipation coefficient g(7).
For dissipative models, and any of the models studied in this thesis, it holds that
q(7) < 1. Therefore we have

M1(r) < d2(7). (4.66)

S

Another measure of model error relative to displacement error is to use, instead
of the dissipation, the growth of the leading singular vector. Such a measure would
be useful when judging the likely impact of model error on ensembles created by
perturbing in the direction of the leading singular vectors. We therefore define

Ma(r) = 47

2. Omas (1)

(4.67)
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where 0,,4.(7) is the maximum singular value multiplier at the shadow time, d(7) is
the drift at the shadow time, and r, is the shadow radius. If model error is high, then

drift is about equal to the shadow diameter, so the expression simplifies to

M)~ (4.68)

O maz(T)

For the constant model typical values of M2(7) are about 0.10, and for the linear
model about 0.017. Its precise value will vary around the attractor, especially for
systems like Saltzman where shadow times vary enormously.

Either one of these measures can be used to compare different model /system pairs.
In Chapter 6, we use M2 to compare the likely effect of error on ensembles in weather

models, with the corresponding effect on ensembles of the Lorenz ’96 constant model.

4.6 Applications of the shadow test

4.6.1 The Lorenz 96 systems

The SET is a general method for estimating shadow times, using only the drift and
singular vector multipliers, that can be applied to any model/system pair. In this
section we test the method for a number of cases, by comparing the estimated times
with actual shadow times.

The first comparison is with the Lorenz ’96 models already studied in some detail.
Figures 4.9 and 4.10 show the results when applied to the constant and linear models,
where the truth is the two level system. Shadow times have been averaged over twenty
runs. The shadow radius has again been scaled, and takes the values 0.2 and 0.4 at
F = 10. Agreement is quite good. A more detailed view of the results for the linear
model at F' = 10 is given by Figure 4.11, which compares a histogram of shadow
times over 200 starting points.

The shadow law states that the maximum drift tolerated over a shadow orbit
is bounded by the shadow diameter. For the constant model the bound is close to
actual shadow times, as was found in Figure 3.14 where the ratio of drift to shadow
radius for the constant model was about 2 (it actually exceeds 2 by a small amount
for lower values of forcings where the model is only weakly dissipative). For longer
shadow times, however, the shadow law can over-estimate substantially. For example,
with the linear model at ¥ = 10 and shadow radius 0.4, an estimate of an upper
bound using the shadow law would give 4.05. The SET gives an answer of 2.36,

while the actual shadow time is 2.28. Using the shadow law as a guide to shadow
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Figure 4.9: Plot of estimated and mean shadow times for constant model, averaged
over 20 runs. Shadow radius is 0.2 and 0.4 at F' = 10, scaled proportionately for

other values.
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Figure 4.10: Plot of estimated and actual shadow times for linear model, averaged

over 20 runs. Shadow radius is 0.2 and 0.4 at F' = 10, scaled for other values.
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Figure 4.11: Histogram of 200 shadow times for linear model with F' = 10, shadow

radius 0.4. Upper is real shadow times, lower is estimated times.

times, rather than an upper bound, works best in situations where model error is
large relative to displacement error, simply because under those circumstances the
dissipation coefficient ¢(¢) will be near 1.

It might seem strange that the SET can work so well at relatively long times,
when one would expect that the linear propagator will no longer be accurate. This
fear would appear to be validated by Figure 4.12(a), which shows the images of a
0.4 radius ball of initial displacements under both the full and the linearised propa-
gator dynamics. The linearised dynamics produce an ellipse, as expected, while the
full dynamics produces a somewhat contorted distribution. For most points the two
completely disagree, but for points near the origin, which correspond to shadow tra-
jectories, the match is in fact quite good. Figure 4.12(b) shows the images of a ball
of points of radius 0.02 around the shadow point. Both the full dynamics and the
linearised dynamics produce an ellipse close to the origin. The essence of the SET is
that it only tries to model trajectories which actually shadow, and for these orbits,
so long as the shadow radius is sufficiently small, the linearised dynamics are valid.

Of course, the validity of the linear approximation depends on time as well as
shadow radius, and if a model shadows for extremely long times then the SET will
no longer be reliable. An example of a very long shadow orbit is shown in Figure
4.13. It was obtained by changing the coupling of the two level system from 1.0 to
0.5, which reduces the effect of the fine-scale g variables on the large-scale & variables.

The resulting system was then modelled with the linear model. When the SET was
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Figure 4.12: Plot of displacements from truth, in first two coordinates, for images
under the linear model (full dynamics) and the propagator (linearised dynamics).
The accuracy of the linearised dynamics depends on proximity to the true orbit. For
the ball of initial conditions at radius 0.4, top panel, the linearised dynamics do not
represent the full dynamics, but they are much more successful in the lower panel,

where the ball of initial conditions has been shrunk to 0.02.
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Figure 4.13: Shadowing orbit for linear model of two level system with coupling
coefficient reduced to 0.5. The reduced effect of the fine-scale y variables on the
large-scale x variables allows for long shadow times, in this case about 10.1 time

units. Shadow radius is 0.4.

tested with this model, it failed to converge. The reason is that, over time periods
such as this, higher order terms, which are not taken into account by the linearised
dynamics, will eventually dominate. Figure 4.14 shows the drift accumulated over the
shadow orbit. The shadow law gives an upper bound on total drift over the shadow
orbit of about twice the shadow radius, or 0.8, which is well above the actual value
of 0.12.

4.6.2 The Rossler system

The Lorenz ’96 systems have a certain symmetry in that the equation for each variable
x is the same, and it is possible that for some reason this symmetry might make
shadow behaviour easier to predict. As a check against this, the method was used to

predict shadowing times where the system is a modified version of the Rossler system,

de —z+azxy/c

v = Y y

dy

-~ = 0.1

7 r+ 0.1y

d

d—j — 01+ (z—0)z (4.69)
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drift

Figure 4.14: Drift calculated over the orbit shadowed in Figure 4.13. The SET fails
to predict shadow times in this instance, because the drift remains small and higher

order terms, not modelled by the linearised dynamics, eventually dominate.

and the model is the regular system of equation (1.2). The difference between the
two is therefore the term azy/c in the first equation, which was chosen as just one
example of a nonlinear, asymmetric error term. Figure 4.15 shows the real and

estimated shadow times for a = 0.3. The SET is equally effective for this system.

4.6.3 The Saltzman system

With any such concocted example, though, we can be accused of choosing the system
to prove the point (just about anything can be demonstrated using simple systems,
since there are so many of them). A more convincing example might be one taken
from the literature. It was mentioned in the introduction that we are familiar with
the effect of Lorenz truncating the initial conditions of his convection model, but less
familiar with the effects of truncating the equations of the model to three dimensions
in the first place. Because of the historical importance of this 3-D model, we present
a detailed investigation of its shadowing relative to the 7-D Saltzman system from
which it was derived.

The equations for Saltzman’s 7-D system [37] are:

% = 23.521BC' — 1.500D — 148.046 A
dB
il —22.030AC — 1.589F — 186.429B
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Figure 4.15: Real and estimated shadow times for the modified Rossler system.

Shadow radius is 0.5 at F' = 10, and scaled for other values.

d

d—f = 1.561AB — 0.185F — 400.276C

Cil_lt) = —16.284CFE — 16.284BF — 13.958 AG — 1460.631) A — 14.805D

Cil_f = 16.284CD — 16.284AF — 18.610BG — 1947.508\B — 18.643F
F

(il_t = 16.284AF + 16.284BD — 486.877\C — 40.028F

dG

i 27.916AD + 37.220BE — 39.479G

(4.70)

where A is the Reynold’s number. Lorenz noted that in certain circumstances the

variables apart from A, D and G tended to zero. Therefore he built his system using

only those three variables. He also rescaled so that each had a similar magnitude.
In order to check how his approximation compares to the full Saltzman system,

we considered the reduced model

% — _1.500D — 148.046A

dD

= = —13.958AG — 1460.631\A — 14.805D

d

d_(t; = 927.916AD — 39.479G. (4.71)

We then set X = A, Y = D/100 and Z = G/100 in both model and system (the

rescaling is similar to that which Lorenz used).
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If X is such that the other parameters do indeed tend to zero, then the 3-D model
and the 7-D system will obviously agree, and shadowing times will be infinite. We
therefore seek regimes where this is not the case. It was found that a critical point
exists between A = 25 and A = 25.1, so for A > 25.1 the other parameters do not go
to zero. We then compared the model and sytem for A = 28, the typical value used
in the Lorenz system, and A = 25.1.

Figure 4.16 shows orbits on the attractor for the system and model at each value
of \. The attractors are inverted from those of the Lorenz ’63 system because of a
sign change. For A = 28, the familiar butterfly wings of the model have, in the case
of the full system, grown a body as well. The attractors at A = 25.1 appear in closer
agreement. Of course, these are observations of the climatologies, rather than model
error on a true orbit, but the shape of the attractors might lead one to expect better
shadowing performance for the lower setting of A than for the higher.

This suspicion is borne out by Figure 4.17, which shows a detailed analysis of
the shadowing performance. The upper panels are scatter diagrams of estimated and
actual shadow times from 40 initial conditions, for shadow radius 0.1. The middle
panels are histograms of shadow times. Note the different scale of the A = 28 (left
side) and A = 25.1 (right side) results. For A = 28, the longest shadow orbit is about
2 time units (the units differ from those of the Lorenz system). For A = 25.1, many
points shadow for longer than that. In either case the majority of the estimated
shadow times are in good agreement with actual times, though for longer times the
SET tends to overestimate the time.

The lower panels show the location on the attractor of the longest shadow orbit.
The orbit at A = 28 is shorter than the A = 25.1 orbit on the right, even though it
manages the transition from one lobe of the attractor to the other.

The Saltzman system is interesting because shadow times vary enormously de-
pending on the position on the true attractor. Despite this variation, the SET does
a good job of predicting shadow times for the majority of points (the top-left scatter
diagram shows two points which fail for times under 0.5, but this only represents 5
percent of the total number tested). The 3-D model appears to be a better approx-
imation to the full system at the lower setting of A = 25.1, which is just above the
threshold where other variables go to zero.

Figure 4.18 is another way to view shadow orbits. The model displacements from
truth have been projected into a 2-D coordinate system (z,,y,) following the true
orbit, and plotted with time ¢ as the third axis. The graph, viewed from left to right,

represents the perturbations that one would experience up and down (y,) and from
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Figure 4.16: Comparison of attractors for the 7-D Saltzman system (upper panels)
and the reduced 3-D model (lower panels), for A = 28 and 25.1. The model appears

to be in better agreement with the system for the lower value of .
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Figure 4.17: Analysis of shadowing performance for the 7-D Saltzman system and the
reduced 3-D model, for A = 28 (left side) and A\ = 25.1 (right side). Shadow radius is
0.1. Upper panels are scatter diagrams of estimated and actual shadow times from 40
initial conditions. Middle panels are histograms of shadow times (note different time
scales on left and right). The majority of the estimated shadow times are in good
agreement with actual times, though for longer times the SET tends to overestimate

the time. Lower panels show the location on the attractor of the longest shadow orbit.



side to side (z,) while attempting, figuratively speaking, to follow the true path in a
model car. For either value of A, the displacements follow a regular pattern that slowly
grows in magnitude. It appears that the reason the A = 25.1 model shadows longer
is because the system spends longer in each lobe of the attractor, thus presenting an

easier path to follow.

4.6.4 Shadowing and step size

One cause of model error is an insufficiently small step size used during integration
of the model’s differential equations. Selection of an appropriate step size and inte-
gration scheme is of course a field in itself; our aim is merely to rephrase the problem
in terms of model error, and illustrate the techniques developed so far. Figure 4.19
is a schematic diagram showing how a large step integration will create a drift error,
as compared with an integration performed using two smaller steps. The drift after
one step of A is just the difference between the trajectories at time 24, which can be

written

dx(A)  dx(0)
dt dt
The term in brackets equals the change in velocity, so the drift can be written in

d(A) = ( )A. (4.72)

terms of the acceleration:

d?x(0)
dt?
This quantity can easily be calculated for each point.

d(A) ~ A2, (4.73)

As an example, suppose that we wish to determine whether a step size of 0.02 is
sufficiently small for integration of the Lorenz '63 system. As a test, we could check
how well the model at that time step shadows the system with a reduced step size of
0.01.

Figure 4.21 is a histogram of shadow times for shadow radius 0.01, where the true
system has a step size of 0.01, and the model has a step size of 0.02. A small number
of points, about 2.4 percent, fail to shadow for longer than a single time step. These
points are marked by circles in Figure 4.20.

From the shadow law that maximum drift is twice the shadow radius (shadow
times approach the upper bound when model error is high), we would expect the
points which fail to shadow with the points where drift exceeds a value of 0.2. These
points have also been marked in Figure 4.20. The correspondence is almost exact.
They are simply the points which experience high acceleration. (They also coincide

with areas of state space contraction [65].)
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Figure 4.18: Shadow orbits for the 3-D model of the 7-D Saltzman system, at A = 28
and 25.1. Model displacements from truth are projected into a 2-D coordinate system
following the true orbit. The results are plotted with time as the third axis. For
A = 28, the shadow trajectory begins at the left hand side (¢ = 0), oscillates with
increasing magnitude around the true orbit, and suddenly fails a short time after
switching from one lobe of the attractor to the other. The A = 25.1 model shadows a
longer time (note the different time scale), apparently because the true system spends

more time in one lobe of the attractor.
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Figure 4.19: Diagram showing how too large a step size creates drift. The model,
which has twice the step size of the true system, overshoots it. The resulting drift is

proportional to the acceleration of the true system.

This contrasts with Figure 4.22 from Gilmour [23], which shows points where
shadow orbits fail for a larger observational tolerance. She demonstrated a connection
between the points where shadowing fails, and points with fastest error doubling times
[62], which both tend to occur in the transition region between zones of the attractor.
The figures serve again to highlight the distinction between initial condition error and

model error.

4.6.5 The Rulkov circuit

The systems considered so far have only existed inside a computer. However, the
techniques of studying model error apply equally well to observations of real systems,
for which the true equations are unknown (or don’t exist). In the next section, we
formalise the treatment of observed systems. As a prelude, we here consider a model
of an actual electrical circuit, which will further clarify the distinction between model

and initial condition error.
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Figure 4.20: Plot of points with local drift > 0.2, and points with shadow times < 0.1,
for Lorenz ’63. True system has time step 0.01, model has time step 0.02. Errors

occur in regions of high acceleration.
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Figure 4.21: Histogram of shadow times for Lorenz '63. True system has time step
0.01, model has time step 0.02.
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Figure 4.22: Distribution of the final points of the model to shadow observations from
the Lorenz equations (plus signs). A trajectory of the Lorenz equations (solid line) is

also shown for reference. True system has time step 0.01, model has time step 0.02.
From [23].

The Rulkov circuit [59] was presented in Chapter 2 as an example of a nonlinear
dynamical system. The equations model the behaviour of a real electrical circuit, but
there will never be an exact correspondence between the two: even simple circuits
don’t follow neat mathematical laws, when examined in detail. We therefore take
the physical circuit, projected into model space, to be truth, and the mathematical
approximation as the model.

Figure 4.23 shows predicted and observed points for a number of trajectories
starting from neighbouring points. Each of the initial conditions used was a point
on an orbit of the true system, projected into model space. It was possible to find
a number of initial conditions in close proximity because the circuit is recurrent: i.e.
if the system is run for sufficiently long times it experiences a near return, within
a specified tolerance, to the initial condition. As a result, the ensemble of model
trajectories can be verified against an ensemble of true trajectories, which makes
model error much easier to detect [63].

Referring to the figure, around time 7830 both the observed and predicted trajec-
tories suddenly diverge, so at this point both the model and the system itself have
high sensitivity to initial condition. Therefore to say that a model has high sensitivity

to initial condition is not to say that it is wrong, or that this is an undesirable feature,
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Figure 4.23: Circuit errors. From [63].

since the system itself may have the same behaviour. Rather, it means that the initial
condition must be chosen very exactly to get an accurate prediction. In this case, the
model seems to track the observations quite well for the majority of points.

In the zoomed view, Figure 4.24, however, it is seen that, near the local maximum
at time 7825, the forecasts are systematically lower than the observations. This is a
result of local model error.

Recurrence makes model error at a particular point easier to detect, because an
ensemble of forecasts can be compared with an ensemble of true trajectories. Since
the atmosphere is unlikely to repeat itself even once before it eventually boils away
into space, recurrence isn’t a feature that we can exploit to generate initial conditions
for weather models. However, this needn’t be a limitation; model error and shadow
times are determined principally by the linearised dynamics, which don’t distinguish

whether the initial conditions lie on an attractor or not.

4.7 Observed systems

The development of the linearised dynamics assumed that we know the underlying

equations of the true system. For most systems of practical interest, such as the
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Figure 4.24: Zoom of circuit errors. From [63].

weather, this won’t be the case. The best that we can do is interpolate through a
series of observations, each of which will be corrupted to some extent by observation
error (in weather forecasting the arrived at interpolation is known as the analysis [17]).
Fortunately, because the linearised dynamics refer only to the specific trajectory of the
true system which we are trying to shadow, it isn’t necessary to know the equations
that underlie it. Suppose that the true system is expressed, as with the weather, from
an analysis, so that

X =Xa+ ha (4.74)

where X, is the analysed solution and h, is an error term due to imperfect observations
and analysis. We further assume that x, is continuous and piecewise differentiable. If
the analysis is only known at discrete points, then we can use some smooth interpola-
tion for intermediate points, or alternatively the equations below could be written in
discrete form (we prefer the continuous form for clarity and consistency with previous
results).

Linearising the equations as before, we can write

de dx dx
dt dt  dt
= J(X(t)) e(t)) + G(x(t)) — — + Re(t)



dx, dh,
at o ar
= J(xa(t))-e(t)) + G(Xa(t)) + J(Xa(t)) - ha(t) + Re(t) + Ru(t) — (

= J(Xa(t) + ha(t)) - e(t)) + G(xa(t) + ha(t)) — (

) + Re(t)

dXa + %)
dt dt

where the remainder term R,(t) is O(|le(t)||?), and Ry (t) is O(||ha(t)|?).

If we neglect the second order remainder terms, and integrate, we then obtain
e(r) % Ma(r) - 0(0) + [ Glxa(t))dt — xa(7) + %a(0) +E(7)  (475)
where the error term
E(r) = [ I(xa(t))  Ba(t)dt — ha(r) + a(0) (476)

depends only on the analysis error and the model. If the likely analysis error dis-
tribution is known, then the error term E can be estimated without needing further
information about the true system. Note that in the above formulation it is not nec-
essary to calculate the velocity of the true system, since this term has been integrated
out. Only the start and finish analysis points x,(0) and x,(7) need be known.

The linearised equations can be used to obtain model drift and estimate shadowing
times as for the case without error. The only difference is that there will now be an

additional error term. Consider for example the calculation of the analysed model
drift
do(7) = ||da(7)||, where

do(r) = /0 " G (xa(t))dt — xa(7) + %4 (0) + E(7). (4.77)

If we assume that observation errors are uncorrelated, then averaging the results over
many integrations should give a good measure of average model drift, and hence
model quality.

As an example, suppose that the vectors h,(¢), sampled every A time units,
follow a white noise distribution with variance K = (h%(t)), and suppose the vectors
J(xa(t)) - ha(t) follow a similiar distribution but with variance pK. Then the integral

in the expression for E(7) is just a random walk, and we can write

(] Ixalt)) - Ba(t)it)?) = pEcT. (4.78)

Therefore
(E*(7)) = pK7 + 2K (4.79)

and the expected value of the error in the drift calculation due to observation error

can be explicitly calculated.
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The conclusion is that model drift is a robust measure of model error, which
doesn’t necessitate a direct calculation of the true system velocity. Of course, if ob-
servation error is greater than model error it will be difficult to separate the two.
When we look at weather models in Chapter 6, we will concern ourselves with shad-
owing the analysis, which is the best approximation to the weather, rather than the
observations themselves (if the model can’t shadow the analysis within the analysis

uncertainty, then it can’t shadow the real weather either).

4.8 Error due to the projection

Until now, we have ignored the role of the projection operator P which maps the true
system state space into that of the model. However, the projection can introduce
significant errors. In the case of the weather, for example, the projection operator
maps the real weather onto the model grid, using an assimilation process which is
dependent on observations but also to a large extent on the interpolation scheme,
which itself is a functon of the model [17]. In data-poor regions, the assimilation
process will be particularly prone to error.

To see how such errors affect the drift calculation, suppose that there exists a

particular projection Pt and a corresponding model

dx
o Gr(x(t)) (4.80)

such that
x(t) = Pr((1)) (4.81)

provided x(0) = P (Xo), where Xg = X(0). In other words, the model is perfect given
the particular projection Pr. Taking derivatives with respect to time at initial time,
we have

d_ .. 0Pp(%o) .
= ZPa(%o) = = G(%o). (4.82)

Now, suppose that the actual projection is given by the function P = Pt + Pg,

Gr(Pr(X0))

where Pg is an error term, and the actual model is given by G = Gt + Gg. Then

the error will be

e(t) = x(t) — P(x(t)) (4.83)
with initial velocity
de(0) - oP ~ _
o = GPX)) — 5-G(X0) (4.84)



0Pz _ . OPg_-

~ G(P(%0) ~ Z2G(%0) ~ DG (%) (4.85)
= G(P(%)) ~ Gr(P(%0) ~ ZEG(%) (4.86)

= G(Pr(X)) — Gr(Pt(%X0)) + G(P(X0))

~G(Px(%)) ~ 5 PG (o) (457

where the first two terms reflect error in the model relative to the perfect model, and
the last three terms reflect error in the projection operator. In the perfect model case

where G = G, we have
de(O) 8PE ~ .
= — G 4.
so even with a perfect model, there will be a velocity error term caused by the

projection operator.

As a simple example, consider the 2-D case where

P(z1,20) = (21,72 + f(21,22)) (4.89)
Pr(z1,22) = (21,22) (4.90)
PE(ml,xg) = (0, f(.fL'l,.’L'Q)) (491)

where f is some C! function. The z; variable could correspond to a well-observed

area, while the x5 variable corresponds to a poorly observed area. Then we find

8f dCEQ 8f dCBQ
= (=2 2Ly, 4.92
(aiﬂl dt ,81'2 dt) ( ) )

de(0)
dt

Therefore the error due to inaccurate observation of xy also creates errors in ;.
From our calculation of the drift, therefore, we cannot tell if the error is due
to the model parameters being incorrect, or the projection operator being wrong.
This is because the definition of the model implicitly assumed a certain projection
operator when the initial condition was picked. This does not mean, however, that
errors which appear to be due to the model are in fact due to sensitivity to initial
condition. All we have done in the above treatment is decompose the model error
into two parts: that due to model equations, and that due to the projection. The
shadow law still states that if model error is large, no orbit can be found by taking
small perturbations around the initial condition that will shadow for a long time.
For weather models, projection is likely to occur over data-poor regions where the
interpolation scheme, which involves the forecast model, fails to give an accurate

estimate of the real weather.
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4.9 Potential problems with the shadow estima-
tion technique

While the SET has worked quite well with a number of models, and should hold in
general providing the shadow radius is sufficiently small, there will be situations where
it fails to work correctly. This will be the case, for example, if the shadow radius is so
large that the model error inside the shadow tube varies significantly from its value
on the true orbit. The drift, which is calculated on the true orbit, may then give a
misleading indication of the real model error experienced by a shadow orbit.

Situations where the model error either dramatically increases or decreases away
from the true orbit are easy to produce, and may occur with real weather models;
it is sometimes said of a weather model, for example, that it experiences an initial
spin-up error because it is in some way out of balance (similiar to the way that a low
dimension model experiences a transient orbit before settling on its attractor). An
interpretation of model error might then be that the model is out of balance at start
but soon moves back towards balance. The model error may then decrease as the
model trajectory moves away from the true trajectory, even while remaining within
the specified shadow radius. In this case the calculation of the drift could give an
artificially high value.

The linearised dynamics can still be applied, but in such situations it is preferable
to linearise around a model trajectory that starts from truth, rather than the true
trajectory itself. The reason for this is that model error near the true trajectory
doesn’t reflect model error at points off that trajectory, but still within the shadow
radius. (The main reason we linearised around the true orbit was to allow calcula-
tion of model error over a range of prediction times, particularly in cases where the
model can shadow for long periods.) Equation (4.13) will remain the same, with the
difference that the linear propagator M is calculated around the model orbit rather
than around the true orbit, and the drift vector d becomes the forecast error. The
linearisation will only be valid, as before, until the time at which the model orbit
leaves the shadow radius. The SET can also be used, with the same limitation, and
the shadow law remains valid.

An example of a model which is ‘out of balance’ with truth is shown in Figure

4.25. The equations of the true system are

dzx

e r—y—x(z® +y?)/a®
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Figure 4.25: True system has a stable periodic orbit with radius 1.0, model has
periodic orbit with same angular velocity at radius 0.8.
dy

- = z+y—y(@® +y?)/a?

(4.93)

with @ = 1.0, which has a stable periodic orbit at radius 1.0, while the model has
the same equations but with a = 0.8, so the periodic orbit is at 0.8. When started
from the point (0, 1), as in the figure, the model quickly moves away from truth to
the smaller radius.

Figure 4.26 shows how drift accumulates along the true orbit. The velocity error,
shown in the x direction, continually pulls the orbit towards the smaller radius, and
the drift accumulates steadily. For a prediction period of 0.5, the drift is about 0.1.
If model error is high, we could therefore expect a shadow radius of half the drift, or
0.05. The multipliers of the linear propagator over that prediction period are 0.249
and 0.816, which are both smaller than one so the state space is contracting (i.e.
the model is locally dissipative). For a displacement of 0.05 the maximum error due
to initial condition is 0.816 times 0.05, which is 0.041, much smaller than the drift.
Because the model is highly dissipative, it is reasonable to estimate shadow times
from the drift alone, so that shadow diameter should approximately equal the drift
over the prediction time.

A feature of this model, though, is that the drift will depend critically on the
time step used for the integration. Figure 4.27 shows the drift calculated with time

step 0.01 (equal to the integration step for the system) and 0.5. The drift for the
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Figure 4.26: Forecast errors for z component. As in Figure 3.2, a number of short
term model forecasts were initiated at regular intervals along a true trajectory (shown
unscaled). The total error magnitude over both = and y is also shown, as well as the

drift, which accumulates steadily.

longer time step is considerably lower. This isn’t due, however, to the effect of dis-
placement error dampening out model error; rather, it is because the model error
reduces as the model trajectory approaches its attractor. Model error therefore de-
pends on the shadow radius. If the shadow radius were specified as 0.2, then the
model could shadow indefinitely, since the periodic orbit at radius 0.8 is within the
shadow tolerance of the true orbit at 1.0.

This effect can be seen in Figure 4.28, which shows the shadow diameter as a
function of prediction time, along with the drift and the forecast error starting from
the point (0,1). Shadow times approach infinity for a shadow diameter of 0.4. The
shadow law, which states, in the case of high model error, that drift approximately
equals shadow diameter, doesn’t hold beyond a shadow diameter of about 0.2. For
larger shadow diameters, linearising the dynamics about the true orbit is no longer
valid, so it is better to linearise about the model trajectory. The shadow law then
states that shadow diameter is about equal to the forecast error. From the figure, we
see that this relationship holds up to times of about 0.6.

To summarise, the SET should work for any model/system pair, sufficing the
shadow radius is chosen sufficiently small. If the shadow radius is chosen too large,
then model error may vary with distance from the true orbit, and the drift calculation

may be sensitive to integration step. In such cases, it may be preferable to use forecast
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error as a guide to shadow times rather than the drift.

Of course, the best way to determine shadow times is to test for actual shadow
orbits. We discuss below ways in which this can be achieved, even for extremely
large problems such as weather models. First, though, we examine another kind of
difficulty that arises in the calculation of model error, when errors are measured, not

over all variables, but only an unrepresentative subset.

4.10 Errors over a subset of variables

The treatment so far, and the development of the linearised dynamics, has assumed
that errors are measured using a norm which takes into account all variables of model
space. In this section, we consider the likely problems that can occur if this require-
ment is not satisfied, and the norm measures only a subset of variables. For example,
weather models are often verified against analysis, mostly for historical reasons, using
the 500 hPa geopotential height. Since the variables in the model typically include
surface pressure, two horizontal wind components, temperature, moisture and geopo-
tential height [43], knowing the last of these alone, and at only one level, won’t be a
very complete indication of the atmospheric state. For the Lorenz system, it is the
equivalent of measuring only x;, and trying to determine the quality of the model
based on this alone.

The linearised dynamics assume that the model equations and initial condition
are completely known, so restricting error measurements to a subset of variables will
affect their accuracy. For example, equation 4.13 states that the error at any time is
approximately given by the sum of the drift, and the initial displacement multiplied
by the linear propagator. For small times and zero initial displacement, the linear
term vanishes and the error is about equal to the drift. This is shown in Figure 4.29
for the Lorenz constant model. The drift closely approximates the error up to about
t=0.2.

It isn’t the case, however, that errors over individual components e; are equally
well approximated by components d; of the drift. Figure 4.30 compares the error and
the drift for each component. The first component e, for example, has departed from
its drift equivalent by about ¢ = 0.1. It seems that drift is better at approximating
the magnitude of the error than its direction. This is evident also from the top panel
of Figure 4.29, where the magnitude of the difference between the drift and the error
is shown to grow in an exponential manner, and the lower panel of the same figure,

which plots the cosine angle between the drift and the error vector.
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The reason for this behaviour is that the linear propagator acts on displacements
in two ways: by rotating, and by stretching (for example, it rotates the first singular
vector v into uj, and stretches by a factor o;). Rotations don’t affect the magni-
tude of the displacement, but they will transfer error in one component into error in
another. It follows that individual components will be more sensitive to the effects
of the linear propagator than the total error. It is also much harder to separate out
the effects of model and initial condition error, since displacements may be large in
those components not measured, and create exaggerated errors.

Shadowing times will also be influenced if errors are measured over only a subset
of variables. For example, it is easy to imagine that the Lorenz constant model might
shadow the two level system for longer times if only x; was taken into account, since
enormous distortions could be accommodated in the other variables. For weather
models, this would be like having a model which shadows indefinitely at 500 hPa, but
is completely wrong at ground level. Model error is best understood by considering
all variables, and for this reason the work with weather models is performed using an

energy metric which represents the energy in the atmosphere over all levels.

4.11 Fast techniques to find shadow orbits

The SET allows one to assess the shadowing capability of a model without actually
having to produce the shadowing orbit, and therefore takes much less time. However
the linearised dynamics can also be exploited to produce actual shadow orbits.

Shadow orbits to this point have been found by a multi-dimensional optimisation
technique known as the simplex method [53]. The simplex method is a somewhat
brute force approach since it doesn’t use any derivative information and requires
many points to be tested. It is therefore impractical for larger systems such as weather
models, for which derivative information can be extracted by using the adjoint, as we
see in Chapter 6.

In this section we briefly outline two techniques to produce actual shadow orbits,
using derivative information, in a more efficient way. The first method will require
computation of singular vectors, while the second method has been designed to work
as closely as possible with existing weather model code at ECMWF. The methods are
illustrated using the Lorenz ’96 system. Since we limit ourselves to a single starting
point, the shadow times will generally be shorter than those found by the simplex

method; in some situations there will be more than one local maximum, so the brute
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force approach is necessary to find them all. However computation times are orders

of magnitude smaller.

4.11.1 The linear approximation method

To find a shadow orbit is to seek a point in the ball of initial conditions, with radius
equal to the shadow radius, which will remain within the shadow radius of the true
system for the longest amount of time. It is therefore possible to pose the shadowing
problem as a general optimisation problem. Beginning with an initial prediction time

t, we solve

minimise C'(e) = |[le(t)e’ ()]
subject to [|e(0)|| < g (4.94)

where e is the error term. The optimal solution will minimise the offset from truth
at time t over all initial conditions within the shadow radius. If the final error also
satisfies

le(t)| < s (4.95)

then the prediction time ¢ can be increased, and the process repeated.

Strictly speaking, we should demand that the error e(¢) remain within the shadow
radius for all intermediate times between 0 and ¢; however we shall relax that condition
for the time being, because for the systems considered here it will usually hold so long
as the trajectory is within the shadow tube at the initial and final points.

Were the system perfectly linear, the minimisation problem could be solved in a
single step just by solving the Lagrangian problem of equation 4.27. With nonlinear
systems, a one-step approach isn’t feasible, since the system is sensitive to small
displacements, and if the step is too large it is likely to miss the optimum completely.
The standard optimisation approach in such cases is to begin with a starting point,
and iterate slowly from it, using a rule to determine the step direction, until further
steps no longer produce an improvement [22].

The problem then becomes how to choose the step direction. One method which
has been proposed is to search in the space of the leading singular vectors, the rationale
being that these are the perturbations which give the maximum final displacement
and are therefore most likely to offset model error. A topic we have often returned
to, however, is that model error and displacement error are not the same thing, and

are generally in different directions.
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In fact, it is easy to imagine situations where the largest step must be taken in
the direction of the trailing, rather than leading, singular vector. Referring to the
schematic diagram of the linearised dynamics, Figure 4.6, suppose that the model
error is aligned with the evolved trailing singular vector us. Then the initial pertur-
bation to offset it must be in the direction of uy, and, if the multiplier o5 is much
smaller than unity, then the initial displacement must be much larger than would be
the case if the model error were aligned with the leading singular vector u;.

In the case of weather models, searching for an optimal displacement in the sub-
space of leading singular vectors, which typically has a dimension of about 25 in an
overall space of millions, would be limiting one’s self to a rather impoverished set of
step directions. (One advantage of singular vectors, though, is that they give the max-
imum final displacement for a given initial displacement, so if no other information
is available they may be a good place to start.)

The approach adopted here is again based on the linearised dynamics, which has
been shown to hold to a good approximation for those trajectories which shadow
(the ones we are interested in). We first transform the minimisation problem to an

approximate linear one:

minimise C'(e) = [[U#)Z(#)VT(¢)-e(t) +d(t)]
subject to ||e(0)]| < 7. (4.96)

This is a constrained optimisation problem, which is more complicated than an un-
constrained one, since the optimal direction will depend on whether the boundary on
the initial condition e(0) is active or not, i.e. if ||€(0)|| = rs. The constraint is impor-
tant, because solving the unconstrained problem won’t give the same solution, even
if the process is stopped when the initial condition exceeds the boundary condition
[22].

Various techniques exist to solve this problem, but the schematic diagram of the
linearised dynamics, Figure 4.6, suggests a simple and novel approach. It was already
seen in the development of the shadow test that the ball of initial conditions will
contain one point that shadows if the enlarged ellipse, where each axis is increased by
unity, contains the zero vector. Therefore the constrained problem can approximately

be solved by finding an initial condition e(0) which satisfies

Ut)(Z(t) + VT (t) - e(0) +d(t) = 0. (4.97)
The vector €(0) can be solved for directly:

e(0) = —VI(#)(Z(t) + I)'UT(1)d (). (4.98)
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Note that X(¢) + I is positive diagonal, hence invertible. The actual step would be
taken in this direction, but with a reduced magnitude determined by the optimisation
routine.

A scheme was implemented which proceeded as follows. The initial condition
was chosen to coincide with the true orbit. The initial prediction time was chosen
(typically 0.05 units), and the first step taken in the direction suggested by the zero
of the enlarged ellipse. The step size was chosen to be a factor (typically 0.5) of the
difference between the initial condition’s magnitude and the shadow radius. Thus the
steps would never exceed the shadow radius. The new initial condition was then run
forward under the full dynamics until it ceased to shadow. This time became the new
prediction time. The process was then repeated until it ceased to improve shadow
times.

The method was tested by calculating shadow times of the Lorenz ’96 linear
model relative to the two level system. With shadow radius 0.2, the technique gave a
median shadow time of 0.95, as opposed to 0.97 for the brute-force simplex method.
Considering that the new method only begins from a single starting point, and is
orders of magnitude faster, this is an excellent result. For shadow radius 0.4, the
median shadow time is 1.80, as opposed to 2.35 for the simplex method. For the
increased shadow radius, there is a greater possibility of multiple local minima, which
can only be found by using a number of starting points. Figure 4.31 shows a histogram
of shadow times for the linear model using the new optimisation method. It can be

compared with Figure 4.11.

4.11.2 The ‘pinch’ method

While the linear approximation method is much faster than the simplex method, it
requires the computation of singular vectors. For weather models it is possible to
calculate the linear propagator matrix M, using the adjoint (see Chapter 6), but
the dimension of the matrix prohibits computation of all the singular vectors. We
therefore need an optimisation scheme which can work with the linear propagator in
its raw form. Also, optimisation methods are currently used with ECMWEF models
for purposes such as 4D-Var data assimilation, so the method should be capable of
exploiting existing code for those models.

The linearised optimisation problem, written now without the singular value de-

composition, is
minimise C(e) = |[|M(¢) - e(t) + d(¢)]|
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subject to |le(0)||] < s (4.99)

which again is a constrained problem. One approach to such a problem is the penalty
method, which transforms the constrained problem into an unconstrained one by

adding a penalty term:
minimise C'(e) = ||M(¢) - e(t) + d(t)]| + A(|le(0)]] — r2) (4.100)

where A is some suitably large constant. The above formulation will force the initial
condition e(0) to have radius r,; alternatively, the penalty function could switch on
only if the radius exceeds the shadow radius.

There is a symmetry to the shadow problem, however, which doesn’t distinguish
between the initial and final displacements; we could equally well minimise the initial

displacement subject to the final displacement being within the shadow radius, i.e.

minimise C(e) = | e(0)]|

subject to [[M(¢t) - e(t) +d(t)]| < rs. (4.101)

This would mean that the final displacement became the penalty term, instead of the
initial displacement.
A balanced approach, then, is to minimise the sum of the initial and final dis-
placements
minimise C(e) = ||M(t) - e + d(t)|* + ||e(0)]? (4.102)

without specifying what the shadow radius r, should be. For a particular prediction
time ¢, this method should produce the orbit which minimises the initial and final
displacements. The shadow radius r, can then be taken as the maximum of these two
values. We assume that intermediate values will remain within bounds; this is easily
checked for.

One method to determine the step direction would be to find the gradient of the

cost function C'(e), which is given by
2M”(t)(M(t) - e + d(t)) + 2e(0) (4.103)

and step along the negative of the gradient (the so-called steepest descent method).
This approach was used in early versions of the ECMWF sensitivity code [55]. A
disadvantage of the method is that it tends not to converge well if the gradient

matrix is ill-conditioned [22].
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A more robust technique, commonly used in 4D-Var [16], is to take a step in the
direction determined by Newton’s method. Because of the quadratic form of the cost

function, the Hessian of the cost function can be calculated as
2M” (t)M(t) + 2I. (4.104)

By using the Hessian information, Newton’s method can achieve quadratic conver-
gence. (Implementing it with low dimension models is more straightforward than
with 4D-Var, which is a subject in its own right [36, 15].)

The optimisation scheme is then as follows: for an initial prediction time, deter-
mine an initial condition e(0) which minimises the sum of displacements, by taking
a sequence of steps in the Newton direction. The shadow radius is taken to be the
largest of the initial and final displacements. Then increase the prediction time by
an increment, and repeat the process, using the previous shadow point as the new
starting point. The process is repeated until the specified shadow time is exceeded
(or a curve of shadow radius versus shadow time stored, and the time for the specified
radius read off by interpolation).

This ‘pinch’ method, which finds the shadow orbit by simultaneously minimising
the initial and final displacements, gives results which are less accurate than the
previous method: at a radius of 0.2, the average shadow time is 0.94 (the brute-force
method gives 0.97), while for shadow radius 0.4 the average shadow time is 1.62, a
substantial reduction from the 2.28 of the brute-force method. For good models with
long shadow times and complicated shadow orbits as seen in 4.1, the ‘pinch’ method
may not be adequate.

A useful feature of this technique, however, is that it can be implemented in
the ECMWF code with a fairly minimal degree of work; and it is this which has
motivated its development here. Its efficiency will depend on how long the ECMWF
models can shadow (if shadowing times are such that the model ceases to shadow
before it becomes nonlinear, then just about any optimisation routine will suffice).

In the next chapter, we will discuss the longer term characteristics of the Lorenz
system and its models. In other words, we will turn our attention from the short
to medium range ‘weather’ to the longer term ‘climate’. Before doing so, we briefly

summarise the progress made so far in the understanding of model error.
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Figure 4.31: Histogram of shadow times using the Newton method, linear model.
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Figure 4.32: Histogram of shadow times using the pinch method, linear model.
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4.12 Summary

In this chapter, results from experiments on variants of Lorenz '96 and other model/system
pairs have been translated into a number of insights into model error and shadow-
ing. Equation 4.22, which describes the linearised dynamics near a true orbit for any
model/system pair, summarises the relationship between the two. Shadow times can

be estimated using the SET, which is based on the linearised dynamics, and includes

the drift and a linear propagator term. For any locally dissipative model, the shadow
law gives an approximate upper bound on shadow times in terms of the drift alone;
and when model error is high, the allowable drift over a shadow orbit is about equal

to twice the shadow radius.

The methods have been tested over a range of model/system pairs. The SET
was found to work well for both the constant and linear Lorenz models, though the
technique fails when coupling in the true system is reduced to half its normal value,
because shadow times become excessively long (the shadow law still holds) A modified
version of the Rossler system showed that the equations need not be symmetric, while
comparisons of the full 7-D Saltzman system with its 3-D model showed that the SET
can work even when shadow times vary greatly over the attractor.

As a method to measure model error, it is worth distinguishing between local
model drift, and other measures such as forecast error after a certain period, or the
tendency error at a particular time. Forecast errors convolute initial condition and
model error, while tendency error doesn’t allow for the fact that model error can be
non-additive over the prediction period.

In the introduction, three questions were raised, asking how do we measure model
error, how do we estimate shadow times, and how do we optimise a model’s param-
eters. From the above discussion, we are now in a position to address these points.

The research into model error indicates:

e Model drift, as defined in terms of integrated velocity error, is a useful measure

of model error, and the primary determinant of predictability

e Shadow times can be estimated for any model/system pair using the model
drift and (for longer shadow times) a modified version of the model’s linear

propagator matrix, without the need to produce an actual shadowing orbit

e For locally dissipative models, shadow times are bounded above by the shadow
law, which states that RMS drift over shadow orbits must be smaller than twice

the shadow radius
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e Predictability is best optimised by minimising the model drift (which is deter-

mined by the model’s low frequency velocity error)

As an example of the last point, the constant model was chosen to have its forcing
equal to the average true forcing, which minimises the RMS velocity error. This is
equivalent to minimising the drift in the limit as the integration time goes to zero. In
general, a model can be optimised by minimising its drift over a specified prediction
time. For example, if the goal is to predict over a five day period, the 5 day drift
can be calculated at various points on the true attractor, and the model parameters
chosen to minimise it. Alternatively, if the velocity error power spectrum is calculated
on the attractor, the drift can be minimised over a range of prediction times simply
by adjusting the weighting of the power spectra to calculate the expected drift at
each time.

The key result from this chapter is the shadow law, which provides an easily
computable upper bound on shadow times. It is a mathematically demonstrable and
easily verified statement which applies across a broad range of dispersive, chaotic
models. Figure 4.33 is a graphic illustration of the shadowing law: for the more than
60 experiments conducted with a number of model/system pairs, the ratio of drift to
shadow diameter over a shadow orbit is near or below 1. We will later use this simple

result to address the question of model error in weather forecasting.

129



121 b
*
* *
1+ * e} X % B
0] *
+ x X
+ % * a «
b8 x o F
o o ? 8 i " > q
0.8 o g ® N
£
g X X conr=.2 © v e}
2 + +  conr=4 © © ©
506[ = R
* * linr=.2
e} e} linr=.4
0.4F A A pred r=.2 i
v v pred r=.4
¢ O redur=4
u] o =
02k ross r=.5 i
> > salz25.1 I
N N salz 28
O 1 1 1 1 1 1
2 4 6 8 10 12

Figure 4.33: Average ratio of drift to shadow diameter for maximal shadow orbits.
Shown are the constant and linear Lorenz models from Figures 3.14 and 3.24 as a
function of forcing; the predictor model; the low coupling model; the modified Rossler
model from Figure 4.15; and the Saltzman 3D model at A = 25.1 and 28. Results
are determined by averaging over 20 shadow runs, except for the predictor model and
low coupling model where only a single run was tested. All models conform to the
shadow law (though these are average rather than RMS results). The low coupling
model has very low drift because the extremely long shadow orbits are dominated by

nonlinear effects.
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Chapter 5

Climatology

5.1 Introduction

Prediction problems have been described by Lorenz [39] as falling into two categories.
Problems which depend on the initial condition, such as short to medium range
weather forecasting, or El Nino, are described as ‘predictions of the first kind’. Longer
term problems, such as effects on the Earth’s climate of volcanic emissions or carbon
dioxide levels, are referred to as predictions of the second kind.

In general, modelling the climatology seems to be a somewhat easier problem
than modelling short term behaviour. For example, numerous models have been
constructed which do a reasonably good job of modelling certain aspects of financial
time series, yet predicting the next stockmarket crash is still an elusive goal. The
converse also holds: it is easy to construct a model of the Lorenz 96 system which
predicts short term, but, due to a small damping term, eventually trends to zero.

It should also be noted that, while model climatology is affected by model error, it
does not seem possible to measure model error in a meaningful manner by analysing
the climatology alone. In general the true system is only known through observations
of a true orbit. Therefore model error is strictly speaking only defined on projections
of true orbits into model space (for how can we measure model error in a region of
state space that the true system never enters?).

Despite these caveats, there appear to be some links between short and long range
predictability. For example, referring to Figure 4.16, it was noticed that the attractor
of the Saltzman 7-D system was closer to that of the reduced 3-D model at a parameter
value of A = 25.1 than at the higher value of 28. It also turned out that shadowing

was much improved at the lower parameter setting. Intuitively, it seems reasonable
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that there be a connection between the two kinds of predictability. Also, shadowing
was seen in Chapter 3 to depend primarily on low frequency errors - precisely the
type that one might expect to influence long-term climatology.

In this chapter, we turn our attention to issues related to climatology and pre-
dictions of the second kind, concentrating on the Lorenz '96 system and its models.
We will examine how climatology of the model or system depends on forcing; what
properties hold over a range of forcings; and how the system climatology might be
modelled at a particular forcing.

One question, of special relevance in high dimension systems, is how to judge when
one attractor is similar to another. A possible measure of a system’s climatology is
the amount of power contained at different frequencies. Spectral bifurcation diagrams
express this information over a range of forcings, and therefore provide a snapshot of
climatological variation.

Figure 5.1 shows such diagrams for the true system and constant model. Also
shown is the difference between the two, i.e. the mismatch between the attractors
as expressed in terms of power spectra. For the constant model there is clearly a
difference around F = 6 where the true system is chaotic but the constant model is
periodic or quasi-periodic. Also around F' = 2.5 there is a mismatch in the frequencies
of the periodic orbits, which appears as a split in the lines. The linear model shows
a general improvement of fit over the constant model.

These figures encapsulate a great deal of detailed information, but it is hard to
draw any general conclusions from them - especially if we are more interested in
general behaviour rather than whether the model is chaotic or periodic. Another,
somewhat simpler, measure of climatology is to consider the first and second order
moments, i.e. (r;) and (z?). We might then ask whether optimising the model for
these macroscopic quantities is the same as optimising for short term predictability.
In the next section we prove that this depends on the model; in one case the two aims

are at odds, while in another they appear to agree.

5.2 Chaotic in the small, predictable in the large

The Lorenz 96 systems undergo complex changes in behaviour as forcing is increased.
Nevertheless, it was seen in Chapter 3 that quantities such as forcing error vary
in a simple manner as a function of forcing. Similar relationships can be deduced

for (z;) and (z?) by averaging the model equations over long time periods. These
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relationships can then be exploited to determine how best to model the system’s
macroscopic behaviour with the constant or linear model.

The one level system equation 2.1 is:

d.%'i
dt

= xi71($i+1 — .731',2) —x; + F. (51)

Multiplying each side of this equation by z;, we obtain

dr;  1ldz}

nit = S = mi (@i — i) — 2 + P, (5:2)

Summing over all 7, the advection terms cancel out, leaving

dz? L. "
7 =>4+ F) z (5.3)
i=1 i=1

Let L be a real number. Then

L1 d:v 1 L 1 L
zdt ——/ 2dt —F/ ;dt. 5.4
/ Ly Zdtt pF [ 54

Now, taking the limit as L goes to infinity, the left hand side is just

11 ¢

lim ——Zx (5.5)

LﬁooLZ

It is easily seen, for example by the Trapping Region Lemma [1], that z; is bounded,
and so the above term goes to zero in the limit. The first term on the right hand
side, meanwhile, converges to n(z?), where the average is over the attractor, and the
second term is n{x;). Therefore we obtain the result that the mean of z? is equal to
the forcing times the mean of z;:

(27) = Flai). (5.6)

(2

A similar technique can be applied to the two level system. Equation 2.2 for the
large scale variables is
dz;

. - . he &
pr Ti (&1 — Tio) — T+ F — — D Gij. (5.7)

b=

The same procedure as that followed above gives a similar result, but now there is an

additional term due to the g, ; variables:

(@) = Pl — " ) 5.9
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The system equation for the g; ; variables is

dy; ; he _

g = i Fig-1 = Gigee) = Clig + T (5.9)

Multiplying now by ¥; ; and proceeding as above gives

_ mh . _
<yi2,j> = T(xzyz]> (5.10)
Combining these equations yields
1
“o ~ ~2

(Gig) = (F(Zi) = {Z3)). (5.11)

This result means that information about the fine-scale g; ; variables can be deduced
by observing only the large-scale z variables.
Suppose now that we wish to model the macroscopic behaviour of the two level

system using the constant model with forcing P°. For the model, we have

= p° (5.12)

while for the system we have

@) _ p meliy)
(Z:) (Z:)

If we demand that the ratio of the first and second moments agree, so

(5.13)

= - (5.14)

then it follows that
. (#)
P —_ -
(Z:)

The value of P¢ arrived at is not the same as the value used in Chapter 3 for

(5.15)

shadowing purposes. At F' = 10, for example, the optimal forcing is 8.87 as opposed
to 9.63 for shadowing. Also, the chosen value of P¢ gives the correct ratio of (x?) to
(z;), but never the correct value of either term. This is seen in Figures 5.2 and 5.3,
which show (Z;) and (Z?) respectively, along with the corresponding values of (z;)
and (x?) for the constant model with forcing P¢. In either graph, the curve for the
model is below the curve for the system, so it is impossible to arrive at a constant
model which has both (z2?) and (x;) correct simultaneously.

An interesting feature of the graphs is that the quantities vary in a regular manner

with forcing. The mean (;) goes approximately with the square root, and (#?) with
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the square of forcing. It seems reasonable that model error should also vary in a
simple way with forcing.

One might expect to do a better job of modelling the two level system with the
linear model, which has two parameters to adjust. The relationship between (z?) and
(x;) can be computed for the linear model just as for the constant model. Recall that

the linear model has a forcing term P! with components given by
Pl(%) = ap + o ;. (5.16)
Following the procedure above, we calculate that

(@) _ oo

(2

<ZL‘Z> - 1 — (7

(5.17)

with the additional linear term in the parameterisation introducing a factor 1 — a; in

2
the denominator. Thus, to preserve the ratio % of the true system, we require

ap  (F)
e =G (5.18)

which solved for oy gives
()
(%)

Therefore, given a value of «q, the corresponding value of a; can be found.

a1 = 1— (075] (519)

Figure 5.4 shows how the ratio of (x;) to (Z;) changes with the forcing offset ag— F'.
A graph of the ratio of (z?) to (Z?) is indistinguishable. The ratios is approximately

)

1.0 when the offset is zero, or ag = F'. The corresponding value of a; is then

ap=1- Fg% (5.20)

For F = 10, the resulting slope is a; = —0.127079. To the margin of error, these

coefficients are indistinguishable from the values oy = 10 — 0.046 and o; = —0.122
used in the linear model for shadowing purposes.

In fact, the linear model, as derived for shadowing, turns out do a fine job of

reproducing the true system’s macroscopic behaviour over a range of forcings. Figure

5.5 shows (x;) for the linear model compared to (;) for the system as a function of
2

system forcings, while Figure 5.5 shows (z?) compared to (#?). Agreement is excellent
except in the regions near F' = 1.3 and F' = 7. The area around F' = 1.3 was found in
Chapter 3 to be a problem for both the constant and linear models, since this is the

point where the fine-scale variables become non-zero in the true system. Referring to
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Figure 5.4: Ratio of (z;) to (Z;) for values of the linear model offset ag — F' where
F = 10. The linear model gives (z;) ~ (Z;) for offsets near zero. The corresponding

slope agrees with that of the linear model used for shadowing purposes.

the spectral bifurcation graphs in Figure 5.1, the problem around F' = 7 appears to
be that the system is already chaotic, while the model is in a quasi-periodic region.
Apart from these areas, correspondence is almost exact. The linear model is certainly
the simplest model which successfully reproduces the macroscopic behaviour of the
true system.

Beyond (z;) and (z?), one might ask what other aspects of the climatology can
be modelled. In the next section we look at the F' = 10 two level system climatology

in greater detail, and consider other ways of approximating it.

5.3 Modelling the climatology of the two level sys-

tem

The linear model may be the simplest model to capture the mean and variance of the
two level system, but, as seen by the spectral bifurcation diagram Figure 5.1, it is still
not perfect at modelling the power spectrum. In this section we try other approaches
to find models which produce a similar climatology to that of the true system, for
the specific forcing F' = 10, where the definition of ‘similar’ is broadened to include
phase space plots and the power spectrum.

Along with the constant and linear models, we consider also two other models
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constructed using stochastic methods. The motivation here for stochastic models is
to see if the climatology can be improved by adding random terms which make the

model statistically similar to the true system.

5.3.1 Stochastic models

The first stochastic model we will consider draws the forcing at each point from a
distribution of observed forcings. Suppose we observe the true system forcing f‘(t) at
K points on the attractor, where the points are chosen so their distribution reflects
the natural measure. We then define the model

de’i
dt

=z;_1(zis1 —xi_9) —x; + P’ random model (5.21)

where P is chosen at random from the distribution at each time step. In practice,
the size of the distribution was 10,000 points, taken from an orbit at intervals of 0.185
time units, which is the decorrelation time for F(t).

The second stochastic model attempts to better model the data by using an AR(1)

fit [11] to generate a time series of the form
PAR(n) = (F) + a1 PR (n — 1) + ay. (5.22)

The covariance term a; is given by e~'/"¢, where ng is the (non-integer) number of
time steps corresponding to the decorrelation time for ﬁ‘(t) For this model, the
resulting covariance was a; = 0.97. The term aq is a random term, with zero mean
and variance 0.165 chosen to make the AR(1) series variance match the true variance.
The model is then

dz;

dt

= wi—l(xi—{—l — .%'i_g) —x; + PAR AR(l) model. (523)

(2

Adding stochastic terms to a model seems unlikely to improve shadowing perfor-
mance, since random perturbations will only add to the forcing error variance, which
was seen in Chapter 3 to limit shadowing times. In fact, we have to be careful about
how we define shadowing times for these systems. In the case of the random model,
for example, there will be one series of random choices of the forcing which will be
exactly the same as for the true system, and therefore shadow indefinitely. What we
can ask instead is whether adding the random terms on average increases or decreases
the time that the model will track the true system. As expected, the answer is that it

decreases tracking times. The constant model shadows at F' = 10 and shadow radius
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0.4 for about 0.6 time units, while the random model tracks on average 0.46 time
units, and the AR(1) model an average 0.32 time units.

Note also that, if reducing the drift is the goal, then, because the drift measures
the integral of the velocity error over a fixed time, it follows that a parameter varied
stochastically with time will give the same drift as one where the same parameter
is held constant at some intermediate value over the prediction period. Therefore
stochastic models offer no real advantage over non-stochastic models in improving
short term predictability. The question is then whether they affect the long term

behaviour.

5.3.2 Projection on EOF’s

One technique used by meteorologists to analyse the climatology is to look at the
projections of the system onto the empirical orthogonal functions, or EOF’s. The
EOF’s are defined as the eigenvectors of the matrix OTO, where O is a K by n matrix
containing K points distributed on the attractor, and n is the dimension of the model
(in this case 8). The eigenvalues indicate the degree of variance attributable to each
EQOF. Therefore the EOF with highest eigenvalue will have the highest variance.

The first four EOF’s for the true system are shown in Figure 5.7. Model EOF’s
are similar. The first two pairs of EOF’s can be viewed as pairs of standing waves
around the circle, which are out of phase by a quarter period. Because the indices
are cyclic, the starting point is arbitrary, and only the phase and the relative phase
difference is important.

There is a small but significant difference between models in the degree of vari-
ance for which each EOF is responsible. The results are summarised below, and are
accurate to about 0.1 percent. The linear model is in good agreement, while the
stochastic models and the constant model are all out by the same amount, which is

about 1 percent for the first two EOF’s and 0.5 percent for the next two.

Table of percentage of variance in EOF'’s.
model | 1and 2 | 3 and 4

truth 22.6 14.3
constant 21.5 13.8
linear 22.7 14.1
random 21.5 13.8
AR(1) 21.5 13.9
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(a) EOF’s 1 and 2 (b) EOF’s 3 and 4

Figure 5.7: EOF’s for true system. The horizontal axis is the index 7 of the variables

x; around the circle.

In Chapter 2, we studied the system by looking at orbits of x; versus z,. We now
refine this approach by first projecting the orbit onto the higher variance EOF’s. This
will capture the high variance aspects of the system behaviour in an efficient way. For
example, the first two EOF’s are responsible for about 45 percent of the variance,
while the next two are responsible for another 27 percent. A further improvement is
to do a contour plot of the probability density in the EOF’s, rather than a simple
trace of the orbit.

Because of the rotational symmetry in the systems, the first two EOF’s are phase
shifted versions of one another, as are the next two. One approach is to project onto
EOF’s 1 and 3. Another method, which gives slightly clearer figures, is to calculate
the projection onto the first two EOF’s, get the modulus, project onto the next two
EOF’s, get the modulus, and plot a histogram of these two numbers. This has been
done in Figure 5.8. The difference between the true system and the models is shown
in Figure 5.9. Again, results for the stochastic models are similar to the constant
model, while the linear model gives the best results. The histograms were generated
by calculating 250,000 points, sampled once every 0.2 time units from a long orbit.
A test was also performed with only 50,000 points. Results are similar to the long
orbit, suggesting that the difference between the true system and the models is a real
one, and not a numerical artefact.

The final method considered for viewing the climatologies was to look at the power
spectrum of an orbit’s projection onto the first EOF. Figure 5.10 shows the spectra

for each model compared with the full system. The linear model again has the best
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Figure 5.8: Histogram of modulus of orbit projected onto EOF’s 1 and 2 (vertical

axis) and EOF’s 3 and 4 (horizontal axis) for true system and models.
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Figure 5.9: Climatology error, expressed by calculating projection of true system and
model onto EOF’s, then plotting the difference. Vertical axis represents EOF’s 1 and
2, horizontal axis EOF’s 3 and 4.
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(a) constant model (b) linear model

(c) random model (d) AR(1) model

Figure 5.10: Power spectrum of orbit projected onto first EOF for true system and

models.

fit.

5.4 Summary

In this chapter we looked first at analytically derived properties of the Lorenz system
climatologies. Properties relating the mean to the variance were found, which do
not depend on whether the system is in a chaotic or periodic state. It was shown
that optimising the mean and variance of the constant model result in a constant
forcing which is different from that used for short term prediction, while for the
linear model the parameters closely matched those used for shadowing. Therefore the
optimisation of short term predictability may, or may not, be the same as optimising
for climatology, depending on the particular model/system pair.

Attempts were then made to model the two level climatology, using variants of
the one level system. The conclusion appears to be that the linear model, which is
best for shadowing, is also best at reproducing the climatology of the full system.

This may be related to the fact, seen in Chapter 3, that the linear model reduces low
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frequency (and therefore long term) model error. Adding stochastic terms does little
to improve the constant model, even if the term is an AR(1) fit to the real errors.
This result seems unsurprising, since, in general, we would expect the climatology
to be influenced by the average forcing, and less by short term random fluctuations.
The random models are actually worse at shadowing than the constant model, which
is consistent with the hypothesis that model error is dominated by the forcing error

variance.
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Chapter 6

Operational weather forecasting

models

Up until this point the theory related to model error has been applied to low and
medium dimension systems. Since the key results have been determined from the
linearised dynamics, which are valid for any model /system pair provided the shadow
radius is sufficiently small, the methods are equally applicable to models with very
high dimension, such as weather models.

Referring to the linearised dynamics equation (4.13), a fair amount is known about
the linear propagator M for such models, because of the investigations into singular
vectors and directions of fastest growth for perturbations in initial conditions. The
neglected part of the equation is the drift d, about which very little is known [30].

In this chapter we begin to rectify that imbalance by studying the dynamics of a
number of different resolution models in use at ECMWF. In the same way as for the
one-layer Lorenz model versus the two-layer system, we will calculate model drift and
shadow times, first between the different models, and then between the operational
model and the analysis (the closest thing available to the real weather). Finally we
discuss methods to improve the forecasts by using information about the likely error.

Before going on to examine the models in detail, though, we first describe some of
the chief characteristics of weather models to understand how they work and where
error can arise. A summary of results from previous investigations into model error
will also hopefully cast some light on how we arrived at the odd situation of knowing
more about the error’s first order term - the linear propagator - than its zero order
term - the drift.

147



6.1 Causes of model error

Global weather prediction models of the type used at ECMWEF and other national
or international meteorological centres are extremely complex models, with the order
of 107 variables. The models are formulated using Galerkin truncations of the fluid
dynamic partial differential equations, which describe the evolution of mass, energy,
momentum and composition, including terms representing sources and sinks [49, 69].
The models are integrated on some of the fastest computers in the world, with typical
speeds of 10! floating point operations per second.

One problem with such huge models is that they are too complex: there are many
things that can go wrong, and the size of the models makes it difficult to analyse the
errors and determine the cause. Another problem is that they are not complex enough.
A typical spatial resolution is about 50 km horizontally and 1 km vertically. The limit
to the resolution is determined, not by some scientific choice, but by the capacity of
the computer. Therefore any fine-scale processes must be parameterised, in the same
way that the forcing in the Lorenz one-level model was used to parameterise the
two-level system.

Apart from the finite resolution, there are many other possible causes of model er-
ror. The Earth’s atmosphere must be one of the hardest modelling tasks that mankind
has ever attempted. Anyone who has built a finite element model of a mechanical
structure is aware of the potential for unforeseen error (the author’s own experience
in this regard is with superconducting magnets, where accuracies of parts in 10* or
better are attainable in theory, but less often in practice [46]). For example, the most
important constituent in the atmosphere for the fluid dynamics is water (in its various
phases). Unfortunately it is also one of the most difficult to model, and processes
to do with the formation and dissipation of clouds need to be modelled parametri-
cally. Other potential sources of error are the interaction between the weather and
the earth, such as surface heat fluxes or momentum transfer through tomography;
incorrect assessment of radiation due to poor cloud forecasts; and inaccurate model
interpolation over data-poor regions, which leads to projection errors. The models

currently in use are therefore definitely wrong; the question is, how wrong are they?

6.2 The perfect model assumption

While model error certainly has a role to play in weather forecasting, most inves-

tigations into error, at least over the last decade, have concentrated on the initial
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condition, and led to the development of ensemble methods. The reason for this
emphasis on initial condition isn’t clear, though it may have been due in part to
the interest in chaotic systems engendered by Lorenz’s discovery in 1963 [37] that
the atmosphere is chaotic. They say that a scientific revolution takes thirty years
to be absorbed: a key paper exactly thirty years on was that by Toth and Kalnay
which introduced the breeding vector method for producing ensemble perturbations
(a method similar to the singular vector method, but choosing directions which have

grown most quickly in the recent past). Here is a quote from that 1993 paper [67]:

The replacement of single operational forecasts by an ensemble of initial
forecasts reflect explicitly the recognition that the atmosphere is a chaotic
system. As pointed out by Lorenz (1963), even an infinitesimally small
perturbation (as would be produced, for example, by the ‘wings of a but-
terfly’) introduced into the state of an atmosphere at a given time will
result in an increasingly large change of the evolution of the atmosphere
with time, so that after about two or three weeks the trajectories of the

perturbed and the original atmosphere would be completely different.

Lorenz’s discovery led to ... the realization that many apparently deter-
ministic systems, like the atmosphere and its numerical models, are also
chaotic: arbritrarily small perturbations evolve into large differences with

time.

If we are willing to run an ensemble of forecasts from slightly perturbed
initial conditions, then averaging the ensemble can filter out some of the
unpredictable components of the forecast, and the spread among the fore-

casts should provide some guidance on the reliability of the forecasts.

The stated aims of ensemble forecasting, therefore, are to provide a more accurate
forecast, from the mean, and a confidence level, from the spread. The technique
will obviously work best when model error is small, and it was felt that models had
improved enough over those of the 1960’s and 70’s that model error had become

almost irrelevant. From Toth et al [68]:

In the early years of NWP, forecast errors due to simplified model for-
mulations dominated the total error growth. The traditional perception
that forecast errors are primarily due to model errors date back to those
early years. By now, however, models have become much more sophisti-

cated and it is the errors that arise due to instabilities in the atmosphere
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(even in case of small initial errors) that dominate forecast errors. The

recognition of this situation requires a major shift in the perception of
NWP.

For the purposes of the calculations, then, the model was assumed to be perfect:

In this paper we will assume that our numerical model is essentially perfect
... As Reynolds et al. (1993) have showed, the forecast error in the extra-
tropics is dominated by the error originating from the unstable growth of

initial errors, and not by model deficiencies.

A similar assumption was made for the ECMWF ensemble prediction scheme
(EPS) in Buizza et al [7]:

From its inception, the EPS has been based on the premise that medium-
range forecast errors are predominately associated with uncertainties in

initial conditions.

These are statements of what is known as the ‘perfect model assumption’, and it
underlies most of the development of ensemble techniques based on perturbations of
the initial condition (other techniques perturb the model as well, and we will come to
them below). The assumption appears in different forms whenever such techniques
are discussed. Usually it is posed only as a working assumption, but sometimes it is

expressed almost as a statement of fact. From Buizza et al [7]:

... the hypothesis of the dominant role of initial uncertainties is certainly

valid in the early forecast range ...

The same paper goes on to say that the perfect model assumption doesn’t always
hold: in fact,

. model errors can become as important as initial condition uncertainties

in the medium forecast range.

The belief that model error is only important for longer forecast times could be
dubbed the ‘nearly perfect model’ assumption. It is effectively saying that model error
is initially small, causing a perturbation which is then amplified by ‘low-dependent
instabilities of the chaotic climate attractor’ [49]. It actually refers, not to model
error itself, but to the displacement error which is initiated by a small perturbation.
The drift for such a nearly perfect model would still be small, and the model error

index low.
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Papers quoted in support of the nearly perfect model assumption include Downton
et al [21] and Richardson et al [57]. The first paper noted that different models
often gave different results, and set out to discover whether this was due to the
models themselves or the fact that they were initiated from different analyses. It
examined in detail six cases during the autumn/winter of 1985/86 where the UK
Meteorological Office (UKMO) operational forecast disagreed significantly with the
ECMWF forecast. The approach used was to run the ECMWF forecast from the
interpolated UKMO analysis, and vice versa. In most instances, it seemed that
the models produced similar forecasts providing they were initiated with the same
analysis. ‘Similar’ here was not so much in terms of RMS fields, but in various
qualitative properties of the 500 hPa heights, such as development of lows, highs,
troughs, ridges and so on. The emphasis was on errors after five days.

The second paper studied the relative effects of using different analyses and dif-
ferent models for 25 cases in the winter/spring 1996/97 period. In each case, a per-
turbation was made to the ECMWF analysis approximating the difference between
it and the UKMO analysis. Forecasts with the ECMWEF model from this analysis
were compared with the EPS control forecast, to determine analysis differences, and
with the UKMO model to determine model differences. It was found that the effect
of using a different analysis was ‘substantially greater’ than that of using different
models, as measured by RMS errors in the 500 hPa height. At day 5, model differ-
ences were found to account for only 25 percent in the Northern and 15 percent in the
Southern hemispheres, though this was considered an upper bound since it contained
also errors in the representation of the UKMO analysis.

Another paper taking a similar approach was Harrison et al [28]. It noted that
the ‘the weight of evidence appears to suggest that analysis differences are the more
critical in controlling forecast divergence’, but also that ‘the overall contribution of
model and analysis dependencies to the divergence of forecasts have not been fully
elucidated and further evaluation is desirable’. The paper went on to examine two
case studies comparing the ECMWF T63 model with the UKMO Unified Model at
comparable resolution. Four ensembles, each with 33 members, were constructed
using all permutations of models and analyses. The initial perturbations for the en-
semble were generated from ECMWF singular vectors. It was found that ‘significant
differences between all four ensemble sets were found in each case-study’, where the
emphasis was again on the medium range (5 days). The writers concluded that it
might be preferable to include both models, so that the ensemble contained, not only

different initial conditions, but different models: a multi-model ensemble.
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6.3 Multi-model ensembles

The use of ensembles comprised of different models is an extension of the technique
of initial condition ensembles. If different models give different results, then incorpo-
rating all the models in the ensemble should take that effect into account.

The concept of using a combination of models to provide a forecast is actually not
very new [28]. Meteorologists have access to products from all the major weather cen-
tres, and have always used their experience of model performance and atmospheric
behaviour to choose the model which seems most applicable. (The final forecast,
though, was usually based on a single model.) This tradition is carried on by com-
panies like Risk Management Solutions, which, when predicting hurricane tracks for
insurance companies, use a combination of available models and historical data, or
by the Fleet Numerical Meteorological Centre which regularly produces a 72 hour
forecast which is the mean of the forecast from several centres [30]. It has been found
that the difference between forecasts can be a good predictor of forecast skill [75].

Multi-model ensembles come in two flavours. The first is to use a combination of
models from different centres. The second approach is to perturb the parameters of
a single model, analogous to the randomly perturbed Lorenz models of Chapter 5.
This can be viewed as an attempt to add a perturbation to the model which captures
the likely nature and extent of model error.

In the past, attempts were made to account for model error by adding random
perturbations to the entire model, rather than particular parameters. Philips [51]
suggested using a white noise description for the model error. Bennet and Budgell [3]
claimed that the tail of the spectrum should be constrained, so as to be consistent
with regularity of model solutions. Such a model error description was used by Cohn
and Parrish [14], who adjusted the length scale of the model error to the length scale
used in the National Centers for Environmental Prediction regional analysis system.
Dee [19] investigated the estimation of model error parameters using an analysis of
innovations.

As Houtekamer et al. [30] pointed out, it wasn’t clear whether such an idealised
model error had the same characteristics as the real error, or whether their addition
would aid an ensemble system. The whole principle behind ensembles, to put things
rather bluntly, is that we add garbage to the solution in the hope that the ensemble
of perturbed solutions will give an improved picture of where truth lies; but we at

least want to add the right kind of garbage.
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A more sophisticated scheme is to actually perturb those physical parameters in
the model which are felt to have a degree of uncertainty. When combined with initial
condition errors, this means that every uncertain variable is perturbed - a method
dubbed the system simulation experiment, or SSE [73, 74, 31, 50]. Houtekamer et al.
[30] incorporated into their SSE different parametrizations of a number of model areas.
Particular attention was focused on the areas of orography and deep convection, which
were thought to be particularly deficient [56], and the treatment was also extended
to horizontal diffusion, radiation, and gravity wave drag.

A similar approach was taken by Buizza et al. [8] at ECMWEF, focussing on the
parametrization of the diabatic tendency. The diabatic forcing term for each grid
point was chosen randomly from a prescribed range. The forcing term also varied
with time: it was noted that ‘even if the parametrized and actual diabatic heating
fields agree on average (i.e. over many time steps) at the chosen grid point, there
must inevitably be some standard deviation in the time-step by time-step difference
between observed and modelled heating’. The scheme was therefore similar in prin-
ciple to that in Chapter 5 where random perturbations were assigned to the forcing
of the one-level system.

The SSE approach doesn’t make the perfect, or nearly perfect, model assump-
tion; but it does assume that the models can be corrected, or at least substantially
improved, by varying the parameters. This is what we might call the ‘structurally

perfect assumption’.

6.4 Problems with the ensemble approach

The use of ensembles has become quite broadly accepted in the meteorological com-
munity, and ensemble calculations have been executed routinely at ECMWF since
1992. They seem well adapted to the problem of addressing initial condition error,
because the error in that case is in an unknown direction, but is (probably) within
a certain magnitude. It is also possible to choose the perturbations which grow the
fastest, and therefore estimate the likely spread of forecasts.

Referring to Figure 4.3, though, the usefulness of an ensemble forecast, in terms
of the mean and, to a lesser degree, the spread, will depend on the model error. If
model error is high, then the ensemble mean may be no more accurate than a single

control forecast. As stated in [68]:

The ensemble strategy will work only if the models are good enough that

model-related errors do not dominate the final error fields.
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Therefore we are brought back to the perfect, or at least the near-perfect, model
assumption. Unfortunately, evidence for the near-perfect model assumption is mostly
circumstantial, and is based on the observation that models from different weather
centres produce similar results. In fact, this is hardly surprising, because of the
process by which the models are built: the meteorologists all read the same books
and attend the same conferences, so when an advance is made in one area it is
adopted fairly quickly by the others. It is notable that the one paper which found
a distinct difference between forecasts [29] atributed it to a problem with one of the
models, which was eventually corrected. In practice, it has been found that ensembles
consistently underestimate the spread, and that the mean is no better than the control
[6, 70]; characteristics which are both compatible with high model error.

The use of ensemble techniques to understand model error is even more prob-
lematic than its use for initial condition error, though for different reasons. It has
been stressed in this thesis that model error and initial condition error are differ-
ent entitities; therefore they demand different approaches. Ensemble methods are at
least theoretically suited to initial condition error, since the true initial condition is
assumed to lie within some ball of radius corresponding to the analysis error. Model
error, in contrast, is more difficult to address. It could be simply impossible to con-
struct a suitable set of equations [63]. Perturbing model coefficients won’t help if the
model is structurally deficient. With initial conditions, we know the type, if not the
direction, of the garbage that we want to add; with the model, we can make educated
guesses about uncertainty of certain parameters, but have no guarantee that we have
addressed the real source of error.

The most important difference between ensembles of initial conditions and of
models, though, is that we can choose those initial conditions which, out of all possible
perturbations, will create the largest error, but we can never do the same for models.
An ensemble of models from different centres is a very poor sample of model space;
and a stochastically perturbed model will not represent the real errors if the model
is not structurally perfect. Indeed, there may be no accessible set of equations that
perfectly mimic the dynamics of the system [63].

The focus here will therefore be, not on creating ensembles, but on measuring
model error and determining its characteristics. (After all, the constant model was
improved, not by taking an ensemble of models with different constant forcings, but
by looking at how a simple parameterization could reduce error: the linear model.)
This is not to say that the ensemble approach isn’t adaptable to model error; rather

that, as for initial conditions, if we intend to perturb our model by adding garbage to

154



it, we need to have a very good idea which kind of garbage we should add. We begin
that investigation by comparing ECMWEF models of different resolution.

6.5 Error between models of different resolution

6.5.1 The range of ECMWF models

The forecast models at ECMWEF have undergone a number of changes in resolution
since operational forecasting began over 20 years ago. Here is a brief summary of
their historical development.

In April 1983, a 15-level finite difference model, based on a regular longitude/latitude
grid, was replaced by a T63 16-level spectra model, with the extra level in the plan-
etary boundary layer. Spectra models exploit the spherical geometry of the globe
by using a truncated series of spherical harmonics (products of sinusoidal functions
in the zonal directions and Legendre functions in the meredinial direction). A T63
model truncates the series above order 63.

Further improvements followed. In May 1985, the horizontal resolution increased
to T106. A year later, vertical resolution became 19 levels, with the three extra levels
in the stratosphere. In September 1991, horizontal resolution became 213 and vertical
31, with layer spacing reduced by a factor of about two. In April 1998, spectral reso-
lution became T319, but used a ‘linear-grid’ option in which the computational grid
remained the same (about 60 km) as for the old T213. In March 1999, vertical layers
increased to 50, with a layer spacing of about 1.5 km over most of the stratosphere.

The EPS scheme, meanwhile, was initiated in 1992 with a T63L19 model (the 19
refers to the vertical levels, the ‘L’ refers to the linear grid option). In December 1996
the resolution was increased to T159L31. The singular vectors, which are expensive to
compute, are based on a lower resolution T42L31 model. There also exists a tangent
linear version of T42L31, which linearises the adiabatic component of the model so
that an adjoint can be constructed [10].

There therefore exists a fairly extensive suite of models from which to choose.
The resolution experiments in this thesis were based on the lower resolution T42L31
and T63L31 models, using T159L31 as ‘truth’. These models have the advantage of
keeping the same number of vertical levels, so interpolation isn’t required over that
scale. Also an adjoint exists for T42L31, which is required for the computation of

shadow orbits.
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Figure 6.1: Model errors in the 500 hPa height norm. Left column shows analysis
heights for days 1 to 4, middle column shows predicted heights, right column shows

errors. Contour interval is 25 for the heights and 2 for the errors.

6.5.2 The energy metric

In order to calculate RMS errors, it is first necessary to choose a metric. One possible
choice, which is used commonly by meteorologists, is the 500 hPa height. Figure 6.1
shows how error grows in this metric over a typical four day forecast. After a couple of
days the difference between the analysed heights (left column) and predicted heights
(middle column) has become noticeable. The error (right column) appears to have a
finer structure than the height fields themselves.

The 500 hPa height metric may be useful for meteorological interpretation of the
weather, but it is less suitable for shadow calculations since it only takes into account
a limited set of atmospheric variables, namely the geopotential at one level. The

situation would be the same as doing shadow computations for the 8D Lorenz system
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Figure 6.2: Errors for temperature 7" integrated over Europe, for a typical week.

with a single variable; as mentioned in Chapter 4, it may be possible to shadow for
example z1, but only by introducing huge distortions into the other variables. In
weather terms, the pressure might be fine in the middle atmosphere, but completely
wrong at ground level.
A more complete measure of the atmospheric state is given by a simplified version
of the total energy metric. The vector used to describe the atmospheric state x at a
particular time is
x = (u,v,T) (6.1)

where u and v are the zonal and meridional wind components, and 7" is the tempera-
ture. Figure 6.2 shows errors for one of these variables, the temperature T, integrated

over Europe. We define the energy norm to be

(x,x) = 1/2 /0 ' / /E (W? + v* + (C,/T,)T?)d= (3p,/On)dn. (6.2)

The energy norm equals the sum of the kinetic energy of the wind error and the
potential energy stored in the temperature error, and is the same as the total energy
norm but with the relatively small surface pressure component omitted. T, is a
reference temperature, p, a reference pressure, and C, the specific heat at constant
pressure for dry air. X is the horizontal domain, taken here to be northwards of 30
degrees, and 7 the vertical coordinate. Details are in [9].

The energy norm appears more complicated than the standard Euclidean norm,

but it can be viewed numerically as a weighted sum of squares of (u, v, T') errors over a
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finite element grid. Quantities such as singular vectors can be calculated in this norm
just as they were for the Lorenz models in the Euclidean norm, with the difference
that the matrix transpose of the linear propagator becomes an adjoint model [20],

calculated with respect to the total energy inner product.

6.5.3 Forecast errors

The upper panel of Figure 6.3 shows RMS errors in the energy metric at five different
five-day forecasts starting at different dates. For comparison, the typical analysis
variance, which is used to determine perturbation size in ensemble forecasts, is about
45 units on this scale. The model trajectories diverge from the true system (TL159)
at a fairly constant rate, with T63 consistently performing better than T42 as one
would expect. The lower panel shows the ratio of T42 errors to T63 errors. What is
surprising is the uniformity of the results; there is little evidence of fickle sensitivity
to initial conditions for these five starting dates. Nor does growth appear to be
exponential in shape, which is the typical characteristic of initial condition error.
Rather, the curvature is negative, so rate of growth actually decreases with time.
Interpretation of the forecast results is complicated by the ambiguity in the start-
ing points. The forecast errors are not all zero at time zero because of the truncation
operator which translates TL159 fields to T42 or T63 fields. For the forecasts consid-
ered here, the mismatch is about 40 energy units for T42 and 25 for T63. This still
allows the possibility that truncation error is responsible for the divergence of fore-
casts: a small initial error is magnified by the nonlinear dynamics, and the problem
would not then be of model error, but of sensitivity to initial conditions. In that case
it would be possible to shadow for extremely long times, since the negligible model

error could be counteracted by an appropriate choice of initial displacement.

6.5.4 Calculation of the drift

From the forecast alone, we can’t separate out the effects of model error and initial
condition error, since as soon as the model diverges from the true orbit initial condi-
tion error begins to grow. We therefore calculate the drift. A number of short, twelve
hour forecasts were made with T42 and T63, starting at twelve hour intervals along
the TL159 forecast, and the results integrated numerically to give the drift. Figure
6.4 shows how the drift accumulates with time for T42 and T63. The ratio of the
drifts is also shown in the lower panel of Figure 6.3; as for the forecasts, it is nearly

constant at 1.4 over the forecast time.
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Figure 6.3: The upper panel shows T42 (dashed) and T63 (dotted) forecast errors at
starting dates 15/10/99,15/11/99,22/12/99,15/1/00,15/2/00. Errors are computed in
the energy norm, relative to TL159. The lower panel shows the ratio of the magnitudes
of T42 and T63 errors, where each is again taken relative to TL159. Also shown is

the ratio of the drift magnitudes. 150
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Figure 6.4: The upper panel shows a plot of T42 errors with respect to TL159 for
starting date 15/10/99. Solid line is the forecast, dashed line is the shadow trajectory
which minimised error at 48 hours, dotted line is the drift. The uncorrected drift is
in places larger than the forecast error, due to a spin-up error which is probably
caused by truncation error. The two estimates for the lower bound on shadow radius,
computed using estimates of the drift, are shown by the shaded region. Errors are
computed in the energy norm, relative to TL159. The lower panel shows the same
for T63.
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T63 Drift wrt T159 as Function of Step Size
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Figure 6.5: Comparison of drift for T63 vs TL159, computed with step sizes of 3, 6

and 12 hours.

If model error were truly negligible, then we would expect the drift to be smaller
than the forecast error, since the tendency difference is always calculated on the
TL159 orbit where displacement error is minimal. In fact, the magnitude of the drift
is close to the magnitude of the forecast error. At times it is even larger: the reason
appears to be that there is an initial spin-up error associated with each short forecast,
which may be an artefact due to the initial truncation error. Tests with different time
steps show that the drift calculation is dependent on step size. For example, Figure
6.5 shows the drift for T63 versus T159 for step lengths of 3, 6 and 12 hours. The
results show a marked discrepancy between the different step sizes, with the 6 hour
step length giving a drift about 50 percent higher than the 12 hour number, and the
3 hour step drift higher by the same amount again.

This spin-up error, whose signature is a lack of scale invariance in the drift cal-
culation, appears to be an unavoidable feature of the inter-model comparisons. It
means that a portion of the drift is due to spin-up effects, and the calculated drift is
artificially high. We will therefore attempt to deal with it using two methods, and
note that the same problem does not occur in the next section, where the operational
forecast is compared with the analysis, and the drift calculation is seen to scale with
time step.

The first approach is to reduce the drift by the errors incurred during each small
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forecast. For example, the drift calculation over 48 hours involves four short forecasts,
so compared to a normal forecast there are three additional 20 unit errors. We could
therefore correct the 48 hour drifts by 60 units, giving a drift of 156 units for T42
and 99 units for T63.

The second approach is similar to that adopted for the system of Chapter 4 with
periodic orbits on a circle, shown in Figure 4.25. In that example we circumvented
the problem of spin-up error by linearising the error around the model control rather
than truth. The control error therefore serves as a proxy for drift. This method gives
a result for 48 hour drift of 168 units for T42, and 114 units for T63.

Given an estimate of the drift, we can determine its effect on shadow times from
the shadow law. The law has been shown to work for a range of low and medium
dimension models, but does it apply to full weather models, in all their complexity?
The conditions for the law to hold are that the model must be locally dissipative,
and the shadow times must be sufficiently short so that the linearised dynamics are
valid for shadow orbits. The first condition surely holds. For the second condition,
it is known that the model becomes nonlinear within a day or so [23]. However, if
the linearisation is done about truth, and only shadow orbits are considered, then
the linearisation will hold for longer times because the displacement is limited by the
shadow radius (the error is O(]|r?||)). It therefore seems reasonable to expect that
the shadow law will apply.

The shadow law states, in an RMS sense, that the minimum shadow radius for a
set drift should be equal to half the drift. As mentioned above, there are two methods
for estimating the drift given the large truncation errors. If we correct the drift by
subtracting the initial errors, we obtain an expected minimum shadow radius of about
78 units for T42, and 50 units for T63. If we use instead the control error as a proxy
for drift, we find a radius of 84 units for T42, and 57 units for T63. The results of
the two different methods are shown by the shaded region in Figure 6.4.

To summarise, it appears that both T42 and T63 have significant model error
relative to TL159. Drift varies with step size, but is highest for the shorter step,
implying that it is not due to initial condition, and even when spin-up effects are sub-
tracted it still accounts for most of the total forecast error. Estimating the minimum
achievable shadow radius at a specified time of 48 hours from the drift gives for T63
a radius of around 50-57 units, close to the analysis variance, and for the T42 model

around 78-84 units.
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6.5.5 Shadowing

The above results are approximate, and hampered somewhat both by the initial
truncation error and the (perhaps related) fact that drift increases with lower step
size. It might still be possible to construct some scenario where the drift is due,
not to the model, but to the truncation error being consistently in the same, rapidly
growing direction (for example, the direction of the leading singular vector). Were
this the case, and model error was in fact small, then it should be possible to find
shadow orbits which shadow for two days with a much smaller shadow radius than
given above. The only way to test this is to look for actual shadow orbits.

An ECMWEF algorithm, originally designed to find optimal perturbations to offset
forecast errors [55], was employed to search for such orbits. The method, based on
that used in 4DVAR data assimilation [36, 15], uses a Newton step minimisation
procedure, and is similar to the 'pinch’ method described in Chapter 4, with the
difference that only the final energy error at 48 hours is minimised rather than the
sum of the initial and final. The method is therefore not perfect, but since the
optimisation time is quite short and the model reasonably linear over that period
[34, 54, 71], it should produce satisfactory results. The gradient of the cost function
is determined by use of the T42 adjoint, which will only be an approximation to the
true adjoint for T63. A total of 50 iterations were performed.

Figure 6.4 shows the orbits which the program found for T42 and T63. At time
two days, the minimised error of the T42 forecast is 114 units, while for T63 it is 82
units.

The optimisation procedure gradually increases the initial error while it decreases
the final error, and since for both T42 and T63 the initial condition error is still smaller
than the final error it appears that the process isn’t quite complete. Convergence was
limited by computer time and the efficiency of the algorithm, but it seems reasonable
that trajectories could be found which had the same initial and final displacements
equal to the average of the two. For T42, the average of initial and final is about 99
units, while for T63 it is about 63.5. These are still above the lower bound estimate
shown in Figure 6.4.

Orbits with longer shadowing times may exist, as the method used isn’t optimal,
however, this concern would be more of an issue for longer shadow times where the
model was less linear. The fact that shadow behaviour is consistent with results from
the drift implies that the drift does not overestimate the contribution of model error,
and confirms that both T42 and T63 have significant model error relative to T159. A

typical shadow tolerance for operational purposes would be the same as the analysis
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variance, i.e. 45 units. It therefore appears that both models fail to shadow at that

radius while they are still in what would be considered a linear regime.

6.5.6 Ensemble calculation

If model error is significant compared to displacement error, then the behaviour of
initial condition ensembles will be affected, as discussed in Chapter 4 for the Lorenz
systems. A suitable guide to the possible impact is the model error index M2(1) given
in equation 4.68, which compares the drift with the growth of the leading singular
vector.

Leading singular vectors normally grow in the energy norm by a factor of about
20 over 48 hours (the energy itself may increase by 400, so RMS errors will be the

square root of that). From equation 4.68, the model error index for T42 will be

M2(r) = L = 0.05. (6.3)

01

To compare with the Lorenz systems, this is closer to the constant than the linear
model. Since model error had a significant effect on ensembles for the Lorenz constant
model, we can expect it to do the same here.

To test the effect, an ensemble was formed for the T42 model by adding scaled
displacements, equal in magnitude to the analysis variance, in the subspace of the
leading 25 singular vectors. A total of 50 initial conditions were generated from
the positive and negative perturbations. Figure 6.6 shows the resulting errors with
repect to both the T42 control (upper panel) and the T159 control (middle panel).
The lower panel was generated by summing the errors in the upper panel with the
control errors, with the assumption that they are orthogonal. If the upper panel errors
are caused by initial condition error, while the control errors are primarily caused by
the model, then, because of the high dimension of the space, it is safe to assume they
are orthogonal. The agreement between the centre and lower panels confirms this.

Figure 6.7 compares the two only leading singular vector perturbations of the
weather model with those of the Lorenz system (see also Figure 4.3). It illustrates
some of the key similarities and differences between the weather models and the
Lorenz systems, and between high and low dimension systems in general. The upper
panels follow quite similar curves for either system. In the lower left panel, the T42
control has a negative curvature, unlike the Lorenz system. We will see later that
this curvature is characteristic of model error in high dimension systems. The biggest

difference is that in the lower dimension Lorenz system the model error significantly
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affects the error for the singular vector perturbations, increasing it in one case and
decreasing it in the other, while in the weather model the errors appear largely un-
affected. Also the lower panel for the Lorenz system, which assumed the errors were
orthogonal, is a less good fit to the real errors than for the weather model. The
explanation lies in the dimension of the space: in a low dimension system the initial
condition and model errors have a much higher probability of interacting than in a
high dimension space, where we can assume they are orthogonal.

The conclusion is that, for weather models, we may not only assume that initial
condition error and model error are uncorrelated, as demanded by the shadow law,
but also that they are nearly orthogonal. As a result, no ensemble member manages
to reduce model error. The ensemble mean, also shown in the centre panel, closely
tracks the perturbed forecasts; this is not surprising, since, if the model is in a linear
regime, the positive and negative perturbations will tend to cancel in the average.
The implication, at least for this particular day, is that running an ensemble of T42

forecasts wouldn’t be much more informative than a single deterministic forecast.

6.6 The ECMWF operational model

Of course, T42 and T63 haven’t been used operationally for some time; the current
standard at ECMWF is TL319. Also, we want to shadow the real weather, not
TL159. Our real interest is therefore to compare TL319 with the analysis (our closest
approximation to the real weather).

Previous calculations of model error in this thesis have primarily been with re-
spect to a true system which is described by differential equations. For the Lorenz
model, the true system was the two-level equations. For the experiments above, the
true system was TL159. As mentioned in Chapter 4, though, the same model error
techniques can be applied equally well to comparisons between a forecast and an
interpolated set of observations or analysed trajectory.

To further illustrate this point, one goal of measuring model error is to estimate
shadow times. Shadow orbits can be found explicitly, as in the previous section, by
a code which minimises the RMS error at a specified future time (here 48 hours).
However the program doesn’t distinguish whether the target trajectory (specifically,
the desired value at 48 hours) comes from an analysis or a model; it can be used
with either. In the same way, our estimates of shadow times, derived from the drift
vector, are applicable whether the drift is calculated relative to a model trajectory or

an analysed trajectory.
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Figure 6.6: Upper panel shows plot of errors wrt T42 control for a T42 ensemble
generated from leading singular vectors at 1999/10/15, 12 hours GMT. Centre panel
shows errors with respect to a TL159 control for the T42 forecast (solid line), the
ensemble (dotted) and the ensemble mean (dashed). The lower panel shows the
errors which would occur if the error vectors in the upper panel are added to the

control error, assuming orthogonality. It can be compared with the centre panel.
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Figure 6.7: The left hand panels are as for Figure 6.6, but only the first two ensemble
members are shown. The right hand panel shows the corresponding figures for the
Lorenz system, from Figure 4.3. Solid line is the control, dashed is the mean, dotted

are the two ensemble members.
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We will therefore use the analysis, not as a proxy for truth, but as the true
orbit X(t) itself (in, of course, a discrete form). An advantage when comparing the
operational forecast with the analysis is that there is no truncation error, since both
are at the same resolution. And because the forecast is always initiated at the analysis
for that day, the two have the same initial condition. Therefore we don’t have the
problem, encountered in Figure 6.4, that truncation error contributes to forecast error.

It also appears that the spin-up error which occurred with the inter-model com-
parisons is not an issue when the truncation error is removed. Figure 6.8 shows error
growth for a single forecast, along with the drift. The drift was calculated by sum-
ming short 6 hour forecasts for the first day to capture the fast initial growth, followed
by 24 hour forecasts for days 2 and 3. Unlike with the inter-model comparisons, the
calculation is not sensitive to step size, so summing 6, 12 or 24 hour forecasts give
similar results. This can be seen, for example, by the fact that the drift over one day,
calculated by summing four 6 hour forecasts, agrees closely with the forecast error at
24 hours, which would be the value of the drift if a 24 hour step were used. Spin-up
errors, whose signature is a strong time-step dependence in the drift calculation, are
not present to a noticeable extent.

The drift closely tracks the forecast error out to three days, in a manner compatible
with high model error, and the initial slope is about three times greater than that for
T63 versus TL159. The most striking feature of the curve, though, is its pronounced
negative curvature, which is hard to reconcile with the exponential-on-average [65]
growth expected from displacement error.

The shape of the curve makes more sense when we examine the nature of the short
forecast errors which make up the drift calculation. Figure 6.9 shows histograms of the
cosine of the enclosed angle of the 24 hour drift vectors, for consecutive and randomly
chosen days over a hundred day period. The mean for the consecutive days is 0.081,
which is a significant correlation considering the dimension of the space. Note that
the distribution for consecutive days in the upper panel is shifted significantly to the
right of the distribution for random pairs of days, implying that drift is persistent
on a timescale of one day. (We return to discuss the fact that neither are mean zero
below.)

One might expect that this correlation would increase for shorter times, but the
reality is less straightforward. The left two panels of Figure 6.10 show the magnitudes
and cosine angles for drift vectors calculated every 6 hours instead of daily. The
magnitudes fall into two camps: those to the left of the dashed line are initiated at
0 or 12 hours GMT, while those to the right are initiated at 6 or 18 hours GMT.
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Figure 6.8: Plot of TL319 forecast error (solid line) with respect to analysis. Also
shown is the drift (dotted). The drift is calculated using a time step of 6 hours for
the first day and 24 hours for days 2 and 3.

The variation is probably related to the amount of data available to construct the
analysis at each time. The mean cosine angle for consecutive vectors is 0.084, which
is little higher than for 24 hour vectors. In order to smooth out some of the variation,
consecutive drift vectors were combined to give 12 hour drift vectors, shown in the
right hand panels. Both the magnitude and the cosine angle are more tightly focussed,
with a mean cosine angle of 0.125.

We can use information about the mean magnitude and cosine angle of drift
vectors to build a theoretical equation for model error. Suppose the drift over T’
hours has average magnitude d,,, and the cosine angle for consecutive days has mean
¢ (We assume that correlations become negligible for periods of over one day). Then

the drift is given by

t
d(t) = dm\/f(l + 2¢,) — 204, (6.4)
where ¢ > T' is the time in hours.

This modified square-root curve has negative curvature, as did the drift of the
Lorenz '96 models (see for example Figure 3.31). If the correlation ¢, equals zero,
then the drift is a square-root curve. This would be the case if the velocity error was

equivalent to white noise.
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Figure 6.9: Upper panel shows the cosine angle for 24 drift vectors at consecutive
days over a 100 day period from 15 Oct 1999. Lower panel shows the same for 100

randomly chosen pairs of days from the same period.
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Figure 6.11: Plot of TL319 forecast errors (solid lines) with respect to analysis at four
different starting dates, along with the theoretical approximation for model error from
24 hour drifts (dashed) and 6 hour drifts (dotted). The dates used were 1999/10/15,
1999/12/22,2000/01/15, 2000/02/15, all at 12 GMT.

Figure 6.11 shows forecast errors for five starting dates, along with the model error
as estimated using equation 6.4 with parameters calculated from 24 hour and 6 hour
forecasts. The 24 hour curve has T' = 24, d,,, = 315 and ¢,, = 0.081. For the 6 hour
curve, vectors were combined as above to form 12 hour drifts, in order to filter out
some of the short-term variability, and reduce correlations between non-consecutive
drift vectors. The values used were then T' = 12, d,,, = 205 and ¢,, = 0.125. In either
case the theoretical curves closely match the forecast errors up to a time of three
days.

It seems remarkable that forecast errors for five different days in five different
months can be modelled using such a small amount of information, namely the mean
magnitude and cosine angle of consecutive drift vectors. The weather itself may be
chaotic, but our degree of ignorance of its future state is extremely reliable. Note that
the technique will work less well in low dimension spaces, where correlations between
random vectors is higher.

Although model error appears to dominate forecast error, displacement error will
of course play a role, if only as a by-product of model error, as soon as the model

departs from truth. The convolution of model error and displacement error will be
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complex, but a rough picture can be obtained by assuming that, on top of the model
error, an additional displacement error term, which is initiated by the model error,
is added to the theoretical curve. For example, the drift calculation is performed
by summing a series of short forecasts. We then suppose that each of these errors
creates a displacement which magnifies exponentially. Therefore the model error over
the first six hours leads to a displacement, which then grows at an exponential rate
from that time on. The next six hours brings another displacement which also will
magnify at the same rate. Each of these displacement error curves, initiated every 6
hours, are shown at the bottom of Figure 6.12. We assume a doubling time of 2.5
days, in accordance with the estimate given in [38]. Each displacement curve starts
with magnitude zero, because it represents the additional error after the original
displacement. After 2.5 days the error has doubled, so each curve has a magnitude
equal to that of the original displacement, which is the same as the 6 hour drift.
Summing each of these separate curves, and assuming orthogonality, which is justified
given the dimension of the space, gives the total displacement error curve shown as
the dot-dash line. When this displacement error is added to the drift, again assuming
orthogonality, we arrive at the upper dashed line, which is an excellent fit to the RMS
forecast errors.

Of course, the plot isn’t meant to be an accurate representation of how model
error and displacement error convolute. Nor does it confirm that error doubling
times are 2.5 days; indeed, the displacement error is assumed to be orthogonal to
the original error, which differs from the usual definition of doubling times. The
graph’s aim is merely to show that observed forecast errors are consistent with a
combination of a large model error term, and a secondary displacement error term.
It also seems reasonable, though, that forecast error, being a mix of model error and
displacement error, could be loosely viewed as the sum of square root and exponential
growth curves. The resulting curve has an initial negative curvature phase, followed
by a nearly linear growth phase in the middle term, before eventually saturating.
Interpolating Figure 6.12 forward, the model error and displacement error portions
become roughly comparable in magnitude after about five days, though saturation
effects will also come into play by that time.

The displacement error curve, being a sum of lagged exponential terms, isn’t quite
an exponential itself. It can be calculated explicitly by adding each of the separate
error terms exactly as described above. If the e-folding time is 1/a (so the doubling

time, again assuming that error growth is orthogonal to the original displacement, is
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log(2)/a), and the individual drift vectors initiated each ¢, time units have magnitude

d,, then the total displacement error p(t) is seen to be

p@yzmdem_1(€“+l 2>+fn (6.5)

eatr — 1 \eatr 11

In Figure 6.12, for example, ¢, is 6 hours and d, is the drift at 6 hours. Taking the

limit as ¢, goes to zero, we have

mn=s¢%@m—n@w—a+t (6.6)

where s = limy, g j_;? which can be estimated for example from the 6 hour drift (the
limit will exist if the drift varies with the square root of time).

The displacement error p(t) created by the drift corresponds to the term in Eq.
4.12 which was omitted from the linearised dynamics. We see that for weather models,
it is a relatively small effect. At 24 hours, it is about 10 percent of the drift, and at
12 hours it is only five percent.

The effect of the drift on shadow times can be estimated by using the shadow
law to determine the likely drift for a certain shadow radius. The mean 24 hour
drift over the days tested was 315, while the mean 6 hour drift for the days tested
is 138. An upper estimate of shadow time from the 6 hour drift for a radius of 45
units is then about three to four hours. This result is definitely on the low end of
what has been considered the likely range, and is a rather surprising result. It means
that the dominant term in equation 4.13 is d rather than M; model error rather
than displacement error, drift rather than chaos. Weather models may be sensitive
to initial conditions, but according to these results, they fail to shadow after just a

few hours, and well before chaotic nonlinear growth becomes an issue.

6.7 Modelling the model error

While the conclusion that model error is responsible for the majority of forecast error
over times of three days may seem less than encouraging, one positive note is that,
because the drift vectors show a degree of coherence with time, it might be possible
to develop techniques which compensate for it. For example, suppose we are making
a 24 hour forecast, and we know the drift d, from the preceding 24 hours. If the
24 hour forecast gives d, and we assume that the cosine angle with d is ¢, then

vector algebra shows that using d — ¢,,,d, as the corrected forecast yields a fractional
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Figure 6.12: Plot showing how forecast error is consistent with a combination of
model error and displacement error. The + signs shows TL319 RMS forecast errors,
with respect to analysis, over five different starting dates. Solid line is the theoretical
approximation for model error from equation 6.4. Dotted lines at bottom show series
of displacement error curves initiated by the model error after each 6 hour period.
Dot-dash line is the sum of the displacement error curves, assuming orthogonality.
The dashed line which closely matches the data is the sum of the model error and
displacement error curves, again assuming orthogonality. The dates used for the
forecast error were 1999/10/15, 1999/11/15, 1999/12/22, 2000/01/15, 2000/02/15,
all at 12 GMT.
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improvement of 1 — /1 —¢2,. For ¢, = 0.081 the correction is 0.33 percent. The
correction increases to 0.78 percent if the 12 hour drift vectors, with mean correlation
0.125, are used instead. These are small improvements, but don’t cost anything, and
can probably be improved by considering more sophisticated schemes.

Such techniques are similar to the statistical approach for correcting forecast errors
of [60] or [35], or the method proposed in [18]. Model parameters could also be tuned
to reduce the forecast error, as suggested in [72].

An unexpected result was that the 24 drifts taken at random days in Figure 6.9
also shows a degree of coherence, with an average of 0.038. This implies that the
model drift will not tend to zero over at least seasonal time scales. A first step to
improve the model would therefore be to tune out this constant drift.

The square root shape is of course reminiscent of the integrated errors caused by a
white noise spectrum, as discussed in Chapter 3. Perhaps a white or red noise model
similiar to that in [51] is appropriate as a description of model error. It seems more
likely, though, that the model error is not entirely random, and probably exists in
a subspace of smaller dimension than the full space. What is certain is that adding
white noise to the model won’t make it more realistic, any more than stochastically
varying the forcing improved the Lorenz model’s performance in Chapter 5.

One topic that we haven’t investigated is the spatial structure, or precise cause, of
the model error, which is a topic of future work. Nor have we attempted to determine
what component of the model error is due to model formulation and what is due to the
projection. One method may be to examine data-rich and data-poor areas separately.
The approach must be used with care, though, because the mathematics behind the
linearised dynamics assumes that the model is well described by the equations and by
the initial condition. If the model is limited to a small region, this condition will be
violated, since the behaviour of the model in the specified region will be influenced by
events in the other regions, and measurement of the drift vector will to some extent
be affected.

6.8 Model error in the 500 hPa height

We have used the total energy norm because it provides a fairly complete description
of the atmospheric state. If the weather is viewed as a flow of energy, then the total
energy gives the amount of that energy associated with error. It also has the benefit
of describing the sensible components of the atmospheric state, namely heat and

wind. Meteorologists, though, often prefer to use the 500 hPa height to describe the
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atmospheric state and record errors. The reason appears to be more historical than
corresponding to any special property of this particular height [35].

As mentioned earlier, the 500 hPa height isn’t an appropriate variable for our
investigations into model error, since it is too incomplete a description of the atmo-
sphere. However there is no reason why we shouldn’t look at 500 hPa errors, and try
to interpret them using the tools developed so far.

Figure 6.13 shows a plot of 500 hPa RMS height errors from ten separate forecasts.
The errors no longer follow a square root curve, but grow quite linearly. One might
think that the drift vectors are highly correlated, so that they add almost linearly as
for the lower dimension Lorenz system, but Figure 6.14 shows this is not the case:
the cosine angles have mean 0.13, which is higher than the total energy angles but
still small.

Figure 6.13 also shows the approximate proportion of error due to displacement
error, calculated using equation 6.5. A doubling time of 1.8 days was used in order
to fit the data, which is faster than the 2.5 days used for the total energy error. The
faster time makes sense when we compare the situation with the Lorenz system in
Figures 4.29 and 4.30. When an incomplete set of parameters is used as a metric, the
errors will be susceptible to the effect of rotations which preserve error magnitude but
rotate error from one component to the other. Therefore one reason for the difference
between the total energy errors and the 500 hPa errors is that 500 hPa model error
is more sensitive to rotational displacement error, and therefore more likely to feed
into a rapidly growing mode.

Another possible reason for the difference is that weather models may be better at
predicting 500 hPa heights than they are at predicting other variables such as wind or
temperature throughout the atmosphere, for example near the Earth’s surface. (The
fact, though, that the 500 hPa height was not a strong source of model error would
not imply that it is unaffected by model error, which can advect in from other locales,
or enter from other parameters through the primitive equations.)

In general, model errors are best analysed using as global a measure as possible.
Just as attempting to predict the future direction of a highly complex stock market
using only a single index is a risky (but popular) endeavour, so it may be misleading

to interpret model error by its effect on height level.
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Figure 6.13: Plot of TL319 RMS 500 hPa height errors (solid line) with respect to
analysis over ten different starting dates, along with the drift (dashed line) and the
theoretical approximation for combined model and displacement error (dotted line).
The ten forecasts were launched each ten days from 12 GMT on 1999/10/15.

6.9 Summary and discussion of results

In this chapter we have applied the methods for measuring model error to operational
forecast models. Inter-model comparisons show that the T42 and T63 models have
significant error relative to the TL159 control. Calculations of drift are hampered by
spin-up effects, but indicate that model error is significant. Estimates of minimum
shadow radius using the shadow law are in accordance with shadow orbits obtained
using a sensitivity algorithm, and ensemble behavior is also consistent with high
model error.

When the techniques were applied to the TL319 model relative to the analysis,
it was found, unsurprisingly, that model error was higher than for the inter-model
comparisons. The forecast error was found to be dominated by model error out to
three days, and could be represented as a sum of a square-root model error curve,
together with exponential displacement error curves. Estimated shadow times at the
observational tolerance are in the region of only 3-4 hours.

We did not attempt to locate the cause of the model error, nor determine what
proportion of the error is due to model structure and what to projection error over

data-poor areas. We have concerned ourselves only with the magnitude of the error.
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Figure 6.14: Magnitude and cosine angle for 24 drift vectors at consecutive days over

a 100 day period from 15 Oct 1999 in the 500 hPa height norm.
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What is clear is that making small displacements around the initial condition will not
offset the effect of the error or, from the shadow law, produce a shadow orbit.

The above results indicate that model error has serious repercussions for many
aspects of forecasting. For example, the technique for generating an analysis is es-
sentially an attempt to force a model solution into fitting a set of observations. It
appears, however, that the TL319 forecast is already generating errors of the same
magnitude as the observation error after just a few hours. This complicates the
analysis procedure and makes convergence unlikely.

Ensemble techniques which generate multiple initial conditions will also be af-
fected. The usefulness of an ensemble is directly related to the model error: if model
error is negligible, then the ensemble tells us everything we need to know about er-
ror distribution; but if model error is much larger than initial condition error, then
the ensemble technique is just an expensive way of producing many wrong forecasts
instead of one. For weather forecasts, we are in an intermediate position, so ensem-
ble techniques contain information about some fraction of the error, but neglect an
important component.

Ensemble techniques were designed to tackle the problem of sensitivity to initial
conditions; however their use as a method to similarly tackle model error appears to
be less justified. Singular vectors give a precise measure of initial condition error, in
terms of the maximum error growth after a certain time, which can be used to generate
initial conditions for an ensemble. No such method exists to produce the model
perturbations which give maximum growth. Taking a collection of existing models
and lumping them together in an ensemble may be an effective way of screening out
particularly dud forecasts, but doesn’t really address the problem of model error.
Models which incorporate stochastic perturbations suffer from the same problem;
there is no way to tell which are the correct perturbations to make.

Model error has usually been treated as some inherently unmeasurable quantity;
but the fact is that model error, a zero order term, is easier to measure than initial
condition error, a first order effect that requires calculation of singular vectors or
similar. Only when model error is so small that it is dwarfed by initial condition
error will it become difficult to measure. The assumption that atmospheric models
have reached that state appears to be optimistic. Estimates of model error for T42 and
T63 with respect to TL159, arrived at by drift, shadow and ensemble calculations, all
indicate that error, even between these forecast models, is dominated by the model

rather than initial condition. It is unsurprising, therefore, that drift calculations
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indicate an even greater error between the operational forecast and the analysed
weather.

Weather models are extremely complicated entities which have to incorporate all
kinds of interactions between air, water, the ground and so on. They are also look-
ing for a fairly small signal - weather fluctuations - on a large background field -
the climate. Any finite element modeller or other person with experience of mod-
elling physical systems must view the weather as one of the most complex problems
imaginable, and regard with awe the progress that meteorologists have made. At the
same time, such a person would find the perfect or nearly-perfect model hypotheses
puzzling. Models may have improved substantially in recent years, but, as analysis
of forecast errors has shown, they are certainly not perfect. The best way to proceed
must be to measure the error, optimise the model to reduce it, and then do whatever

is possible to predict and possibly offset the residue error.
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Chapter 7

Conclusions

7.1 Summary of results

In this thesis we have studied model error over a range of systems, from the smallest
3D to the largest operational weather model. Of particular interest were the medium-
dimension Lorenz ’96 systems of Chapter 2: small enough to compute rapidly, but
large enough to produce behaviour qualitatively similar to atmospheric variables. The
intricate beauty of these systems, with their interplay of periodic, quasi-periodic and
chaotic orbits, was revealed, for the first time, with spectral bifurcation diagrams.

In Chapter 3, it was shown that a fundamental difference between model error
and initial condition error is that model error has a non-zero initial slope. This slope
was termed the velocity error. The complexity of the Lorenz system behaviour as the
forcing parameter F' was varied led one to suspect that velocity error would be equally
complex; yet it was found that emergent properties of the systems made velocity error
surprisingly smooth as a function of the forcing. For the constant model, the model
error, both in terms of initial velocity error and shadowing times, simply varied with
the square root of F.

The linear model, which employed a simple linear parameterisation of the forcing
error, gave dramatically improved shadowing behaviour, even though the reduction
in initial velocity error was relatively modest. The reason was found to be that low
frequency forcing error was the primary determinant of shadow times, and since the
linear model had a less ‘red’ forcing error power spectrum than the constant model,
its performance was improved.

This result led to the detailed investigation of the shadowing process in Chapter 4.

By linearising around the true attractor, the displacement of a shadow trajectory from
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truth was approximated by a linear equation, involving a zero order drift term and the
first order propagator term. The linearised dynamics were used to develop a shadow
estimation technique (SET), which was seen to accurately predict shadow behaviour
even over prediction times when the system itself had ceased to be linear. This was
because the linearised dynamics applied only to shadow orbits, which remained within
the shadow radius of the true orbit.

The linearised dynamics, when applied to locally dissipative models, led to the
discovery of a shadow law, which states that, in an RMS sense, minimum shadow
radius is bounded below by half the drift. When model error is high, the minimum
shadow radius approaches the bound, and drift is approximately equal to the shadow
diameter. Even with an estimate of shadow times, it is always desirable to compute
actual shadow orbits for verification; therefore optimization schemes to find shadow
orbits, even for large models with long computation times, were proposed and tested.

The usefulness of ensemble techniques, in terms for example of the accuracy of
computed spread, was found to depend critically on the model error. If the model
error dominates displacement error, then it is natural that ensembles should give less
information about the likely correct forecasts. It was noted that in high dimension
spaces, model error and displacement error are expected to be nearly orthogonal,
making it unlikely that model error could be offset by searching in the space of
singular vectors.

Chapter 5 turned attention away from the short and medium range, and looked at
the question of predictability of the second kind; long term climate. Analytic results
concerning the mean and variance of the Lorenz 96 systems were derived, and it was
found that the linear model, something of a champion among simple models, was
capable of matching both quantities over a large range of forcings, and suggested a
link between short term and long term predictability. Other models, which invoked
various stochastic schemes to simulate the properties of the true forcing, were also
tested. For the models studied, the stochastic approach appeared to have no benefit
over the non-stochastic models.

Finally, Chapter 6 applied the techniques developed for the lower dimensional
systems to full weather models. First, the T42 and T63 models were compared with
TL159. An upper bound on shadow times was estimated using the drift, and com-
pared with results using an optimisation program. The two methods gave compatible
results.

The fact that model error outweighed displacement error was confirmed when an

ensemble of T'42 initial conditions was run. As expected, no ensemble member reduced
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error, and the ensemble mean offered no improvement over the control forecast. Any
‘return to skill’ by an ensemble member would be due to chance, since, if it isn’t
better after a day, there’s no reason to expect that it should be better after a week.
The initial condition errors were also seen to be nearly orthogonal to the model error,
in agreement with theory.

The operational TL319 forecast was then compared with the analysis to estimate
how long the forecast could shadow the true weather. The drift calculations indicated
that model error was higher than for the inter-model comparisons, and shadow times
were estimated to be in the region of 3 to 4 hours, which would have severe impact
on analysis and ensemble techniques. Another square root law emerged: model error,
and indeed forecast error, varied with a simple square root formula up to about three
days. It meant that forecast error could be predicted just from a knowledge of the
mean drift magnitude and cosine angle between consecutive drift vectors, both of
which are fairly stable quantities. Despite the immense complexity of the weather,
and of the model, the difference between the two after a certain time is remarkably
constant from day to day or month to month. To globally conserved quantities such
as momentum or mass, we may now add a new one: error.

Knowing the size of the error is one thing; knowing its direction is another. (It
may be interesting that all forecasts are wrong by the same amount, but it isn’t very
useful.) The fact that model error was so large and consistent was at least seen to offer
a potential solution. If the error had predictable features, then it could be possible to
effectively model the model error, and thus correct the forecast. Similar techniques,
based on predictor methods, had been used to some effect with the Lorenz systems.
The model could also be improved by tuning parameters to minimise drift. Without
such a measure of model error, though, it would be impossible to make much progress

in improving the model, since to do so would be like working in the dark.

7.2 Does chaos matter?

As Bjerknes first said, forecast error is due to a combination of model error and initial
condition error. The former is mostly a question of physics or engineering; how well
can we model the complicated physical laws governing the atmosphere with a set of
differential equations truncated to a finite grid? The latter effect is related to chaos
theory; how sensitive is the atmosphere (or the model) to small perturbations in the

initial condition?
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Which of these sources of error is more important will depend on the particular
system and model. In the case of the atmosphere, the answer to this question hasn’t
been known. Good estimates of initial condition error are available, from singular
vector and other methods, but there hasn’t been a corresponding measure of model
error; at the same time, and contradictorily, it has been widely assumed to be small.

In fact, considering the enormous number of articles written for meteorological
journals, a search reveals that relatively few refer to model error in the abstract (most
of those have been referenced in this thesis). It is slightly puzzling why more attention
hasn’t been paid to the subject of model error. As mentioned earlier, it is easier to
measure model error, a zero order effect, than it is to measure initial condition error,
which depends on complicated first order derivative estimates based on a large number
of forecasts and requiring the use of an adjoint model. Also, an examination of typical
RMS forecast error plots reveals not the quasi-exponential growth characteristic of
displacement error, but the square root curve that is characteristic of model error. So
why was it assumed that forecast error was primarily due to initial condition error,
and not the model? Why jump to the more complicated first order explanation before
eliminating the simple zero order cause?

Some reasons suggest themselves. Initial condition error shifts the blame for bad
forecasts away from the forecast centres towards the inherent unpredictability of the
weather. Model error, meanwhile, isn’t as culturally important in meteorology as it
is in other fields (say bridge design) which also employ sophisticated and complicated
modelling techniques. Any engineer is familiar with the sense of anxiety that mingles
with anticipation as a project nears completion: the computer models are replaced
by a physical object which will follow not quite the same rules, and at the same time
any mistake or omission in the calculation will become very evident (consider the
Millennium bridge). Meteorologists, in contrast, aren’t responsible for the weather,
and therefore by implication their responsibility is dimmed when, as in any case
always happens, it does something other than predicted. And meteorologists don’t
get sued (though people have tried [32]).

Part of the reason, though, must also be due to the entity pictured in Figure 7.1.
Butterflies, it seems, can do more than stir up storms by flapping their wings. They
can also deflect the course of entire branches of science. This particular example was
spotted to his great credit by Ed Lorenz in 1963, but, like other revolutions of its type,
took 30 years to fully develop. It was then that the technique of ensemble forecasting

was introduced: a net in which to catch the unruly but attractive butterfly of chaos.
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Figure 7.1: Butterfly. Species Lorenzus. First spotted 1963. Incubation period 30

years.

Chaos may well place an upper limit on prediction times of a couple of weeks. It
seems premature, though, to worry too much about that if the models are already
introducing significant errors after just a few hours. The ensemble net has missed its
target almost before it is thrown, and the butterfly escapes.

Weather forecasting ranks as one of science’s greatest and most prodigous mod-
elling endeavours; but, like most human pursuits, it has yet to banish the effects of
error, uncertainty, or chaos. Ensemble techniques have played their part in improv-
ing our understanding of the latter. In seeking methods to further improve forecasts,
though, it would be preferable to devote additional resources to analysing model er-
ror, and using the information thus gained to develop the model. For it is here, rather
than in the effects of chaos or the flapping of an insect’s wings, that the primary cause

of near and medium range forecast error lies.
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Appendix A
Proof of the shadow law

Referring to equation 4.44, the proof of the shadow law rests on showing that, for a

dissipative model, the sum
" 1
Z (1 + (Ti)z

=1

(A1)

has a minimum value of %. Suppose first that the model is volume preserving, so

Writing the minimisation problem as a Lagrangian, we seek minima of

2 A to) + )\(l:H1 o; — 1) (A.3)

where ) is a constant multiplier. Taking partial derivatives with respect to o;, and
setting to zero, gives

2 3
O’j:X(O']'—I-l) (A4)

which has two solutions for A > 16, and a single solution when A = 16 and all o; = 1.
Since A is the same for all j, the multipliers o; can only take on one of a maximum
two values apart from 1, and they must also satisfy equation A.2.

We claim that the solution o; = 1 for all j, for which the sum in equation A.1

D
critical points. Suppose that some other arrangement of o;’s satisfies the criticality

is equal to represents a global minimum. We do this by examining the other
requirement. For a particular value of A, there are only three possibilities for each
o 01, 09, or 1, where 07 < 1 and 0 > 1 are roots of equation A.4. We set n; equal
to the number of occurences of oy, ny the number of o5’s, n3 the number of 1’s, and

Ng = N1 + Ng, SO Ng + N3 = N.
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Let 5 = % Then from equation A .4,

o1 = 5(0’1 + 1)3 (A5)
and
09 = /8(0-2 + 1)3 (AG)
From equation A.2,
1=1]]oi=0705? (A.7)
i=1

so, taking the ns’th root of each side,
olob =1 (A.8)

where a = ™ and b = "2. Substituting the expressions from equations A.5 and A.6

s

into A.8, we can solve for 3 as
B=(1401)1+0) (A.9)

so equation A.5 then becomes
o1=B(o1 + 1) = (1+01)* (1 + 09) 7%, (A.10)

Solving for o9, we obtain
1
oy =0, (1+0y)— 1. (A.11)

Substituting into equation A.8 gives g(o1,a) = 1, where the function g is defined as

1

g(o1,0) = 0§ (o "7 (L + 1) — 1) (A.12)

For a given value of oy, the requirement that g(o1,a) = 1 can be used to solve for
a = f(o1). It is easily seen that f is monotonically decreasing from 0 to 0.2364 and
negative for 0.2364 < oy < 1 (o is less than 1 by assumption). Since we require
a > 0, it follows that o; is in the range 0 to 0.2364. The function f, for o; in that
range, is shown plotted in Figure A.1.

We now show that the sum A.1, evaluated at such a critical point, has a value

greater than 7. We can write

n 1 1 No ns
Z _ + i A.13
i=1 (1+0i)2 (1+0’1)2 (1+O’2)2 4 ( )
n3
= N, — A.14
e T e T (4-14)
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Figure A.1: Plot of f and h, which are defined in the text, as a function of the singular
value oy over the range for which f is non-negative.
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where
oy =20 1=l (A.18)

(1 + 01)2 01—3(17?(01)) (1 =+ 01)2

The function h(oq), shown in Figure A.1, is also monotonically decreasing over the
range 0 to 0.2364, and has a minimum value of i at o1 = 0.2364, for which a = 0. In
the nontrivial case that a > 0, we have h(oy) > 0.25, so

" T n

ns
. My M M3 _ T Al
Zl—i—al) = nshlon) + 57 > 4+4 4 (A.19)

7 1

It thus follows that the critical point with o; = 1 for all 7 represents a global minimum,
as desired. The case where the model is strictly dissipative, so that [, 0; < 1, follows

easily.
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Appendix B
Glossary

Analysis. Meteorological term denoting the best approximation to the real
weather, as expressed in terms of model variables. It is obtained by interpolating
a combination of observed data and model predictions.

Displacement error. Error due to model equations being evaluated at a point
other than the true point projected into model space.

Drift. Magnitude of integrated velocity error, evaluated over the projection into
model space of a segment of a true orbit. Used as a measure of model error, and to
estimate shadow times, via the SET, or bound them via the shadow law.

ECMWEF. The European Centre for Medium-Range Weather Forecasts, located
in Reading, UK.

Forcing. Refers to a term in a system or model ode, usually to represent some
external input to a physical system, such as solar heat in the case of the weather, or
forcing of a pendulum.

Forcing error. Velocity error due to error in forcing term.

Four-dimensional variational assimilation (4D-VAR). A technique which
determines the analysis by combining observed data with a model forecast initiated
usually 6-12 hours earlier.

Initial condition error. Displacement error at initial time, caused by incor-
rect initial condition. May be large for chaotic systems due to sensitivity to initial
condition.

Initial velocity error. The velocity error measured at initial time.

Integrated forcing error. Forcing error integrated over the projection into
model space of a segment of a true orbit.

Integrated velocity error. The velocity error integrated over the projection

into model space of a segment of a true orbit. Has dimension distance. See drift.
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Model error. Refers to error due to the difference between model equations and
true system, as measured on the projection of a true orbit into model space.

Shadow estimation technique. A procedure for estimating shadow times for
a given initial condition and shadow radius, without explicitly producing a shadow
orbit. Referred to as SET.

Shadow law. A law which states that, for any dissipative model, and in an RMS
sense, an approximate lower bound on shadow radius is given by half the drift.

Shadow orbit. Given a specific radius r» and true orbit, a shadow orbit is a
model trajectory which stays within the radius r of the true orbit, as measured in
model state space.

Shadow radius. The radius used in shadowing calculations.

Shadow time. The time for which a shadow orbit stays within the shadow radius
of the true orbit.

Velocity. The rate of change of a system or model variable. In the case of model
variables the velocity can be calculated using the ode.

Velocity error. The difference between the system velocity at a particular point,
measured in model space, and the model velocity at the projection of that point into

model state space.
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