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Abstrat
When nonlinear dynamial models are used to approximate physial sys-tems suh as the weather, error arises from one of two auses: the initialondition used by the model, and the model itself. Of these two soures,model error is the less well understood; yet a knowledge of model aurayis essential for reliable error estimates and model optimisation. This thesisdevelops a tehnique for measuring model error in the ontext of nonlinearsystems, and explores the link between model error and the ability of themodel to shadow the true system. The methods are tested on a variety ofmodel/system pairs in Chapters 2, 3 and 4. In Chapter 5, issues relatedto longer term behavior are studied, and onnetions with short term pre-ditability explored. In Chapter 6, the model error tehniques are appliedto operational weather foreast models. It is seen that the omponentof foreast error due to model error tends to grow as the square-root offoreast time, and for the days tested is the dominant soure of error outto three days. The results are summarised, and the impliations furtherexplored, in Chapter 7.
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What a himera, then, is man! what a novelty, what a monster, whata haos, what a subjet of ontradition, what a prodigy! A judge ofall things, feeble worm of the earth, depositary of the truth, loaa ofunertainty and error, the glory and the shame of the universe!Blaise Pasal (1623-1662)
Mankind always sets itself only suh problems as it an solve ...Karl Marx (1859)
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Chapter 1
Introdution
Nonlinear dynamial systems are frequently employed to model ompliated phenom-ena, be they an eletroni iruit, the trajetory of a spaeraft, or the lifeyle ofbeetles. One of the most important appliations, in terms both of �nanial expendi-ture and impat on people's lives and businesses, is the foreasting of the weather.The models in this ase ontain up to tens of millions of variables, whih alulate thefuture state of the atmosphere from its present measured state to give us our dailyforeast.The models essentially represent an understanding of how the atmosphere oper-ates. Sine ertain aspets of the weather, suh as loud formation, are too ompli-ated or �ne-sale to represent, a parameterisation must be employed. The modeleris also onstrained by omputer resoures; even with the world's most powerful su-peromputers, resolution in spae and time is still limited. For example, the spaingof the horizontal grid is of the order of 50 kilometres, whih is large ompared to athunder storm. As a result, all weather models have one feature in ommon: theyare di�erent from the real weather. In other words, they all ontain model error.Until now, there has been no satisfatory method to alulate the e�et of modelerror on preditability. Tehniques whih o�er partial solutions inlude measuringthe divergene of the model trajetory from observations, and omparing di�erentmodels. The �rst approah su�ers from the problem of entangling model error withinitial ondition errors, sine as soon as the model diverges slightly from observations,the two are hard to distinguish. This is espeially an issue in haoti systems, wheresensitivity to initial ondition may be large. The seond approah is useful for aomparison of spei� models, but fails to give a bound on model error beause itdoesn't fully sample the spae of available models. Models are built up from broadlysimilar priniples, so the fat that a European weather model agrees well with an
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Amerian model doesn't imply that they are both aurate - they ould both bewrong in similar ways. (A third approah is to randomly perturb model parametersto give an idea of the likely spread, but this is just a variation on the seond method,and it isn't lear that any of the perturbed models need be lose to the real weather.)This diÆulty in measuring model error is a problem. Measurement of error isfundamental both in siene and engineering. Without it, the modeller must rely onintuition or guesswork to improve the models [60℄. The problem is espeially strikingin the ontext of weather foreasting - a multi-billion dollar industry, yet one, it mightbe said, without the means to ontrol the quality of its own produt; and, as a result,plagued by more than one ompany whih laims to be able to predit the weatherout to a year or beyond.The aim of this thesis is therefore to provide a method for measuring model errorin nonlinear dynamial systems and assessing its e�et on preditability. To this end,we will address three pratial topis, primarily in the ontext of short to mediumrange predition. The �rst topi is, how do we de�ne model error? For example,how do we deide whih of various weather models is the most aurate? Or, if anensemble of models is being used, with the results in some way averaged over all ofthem, how do we assign weights to the di�erent models? And how do we omparethe magnitude of model error with the likely error in initial ondition?The seond topi is, how an we estimate how long a model will shadow (staylose to) a system or set of observations? Many tehniques in weather preditionimpliitly assume that there exists a model orbit whih shadows the true systemfor some spei�ed time. For small systems it is easy to �nd atual shadow orbitsusing optimisation tehniques, but for large atmospheri models the omputationis diÆult, and shadow times are unknown, with expert opinions ranging betweenseveral hours and many months. Therefore, how an we heaply estimate shadowtimes for a partiular model? Can we tell if the model is good enough for ensembles,omprised of a olletion of perturbed foreasts, to enapsulate reality?Finally, given a model with a number of parameters whih an be varied, whatriterion should be used to optimise the parameters, so that preditability is max-imised? How do we know the model is the best that an be ahieved, up to a hangeof struture? And, armed with a knowledge of model error, an foreast auray beimproved by other means?
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1.1 OutlineWe will study model error over a range of systems, ranging from simple 3D systems,to the higher dimension Lorenz '96 [40℄ systems, right up to operational weathermodels with dimensions of the order 107. The �rst hapter introdues the problemof weather predition, and the interation between model error and initial onditionerror in the ontext of nonlinear dynamial systems. It also provides some bak-ground on nonlinear systems, and introdues the spetral bifuration diagram. Thisis a new method of visualising system behaviour through the use of spetral analy-sis of time series, whih will be useful for the higher dimension systems enounteredlater. Chapter 2 presents the Lorenz '96 systems, whih an be viewed as highlyidealised atmospheri models, and their behaviour over a range of parameter valuesis explored using spetral bifuration diagrams and other tools. The Lorenz systemsare partiularly suited to the study of model error, and this is a feature exploited inChapter 3, whih develops a formal theory of model error, building up from observedbehavior of the Lorenz systems, and arriving at a new measure of model error whihis appliable for any model/system pair. In the fourth hapter, a omputationallyinexpensive tehnique for estimating shadow times, based on the model error work,is developed, and a shadow law, whih underpins the link between model error andshadow times, is presented. The �fth hapter investigates limatologial onsidera-tions and stohasti models. Links between the optimisation of model limatologyand of short term preditability are also explored.In Chapter 6, the theoretial results developed thus far are applied to weathermodels at the European Centre for Medium-Range Weather Foreasts (ECMWF).A range of model error and shadowing results are presented for di�erent resolutionmodels, inluding the operational model. A simple formula for foreast error, whihpredits the magnitude of the error for times up to three days, is developed. Finally,in Chapter 7, some future diretions of researh in this area are proposed, inludingthe possibility of improving foreasts through a greater understanding of model error.Most of Chapters 3 through 6 represent new work. A summary of the mainontributions is as follows:� A new method of presenting bifurations using the power spetrum� A detailed bifuration analysis of the Lorenz '96 systems� A method to measure model error independent of initial ondition error
4



� A tehnique for estimating shadow times� A simple method to determine an upper bound on shadow times for dissipativemodels� Methods for omparing the relative magnitudes of model and initial onditionerror� Proofs of fundamental results onerning limatology of the Lorenz systems� The �rst estimate of shadow times for weather models� A formula for prediting the magnitude of foreast error up to three days
1.2 Model error vs initial ondition errorA reurrent theme of this thesis will be the relationship between model error anddisplaement error, de�ned as the error due to the model equations being evaluatedat the wrong point. When displaement error ours at initial time, it is referred toas initial ondition error. To suessfully measure model error, it must somehow beisolated from displaement error.The inuene of the two types of error was ited in the ontext of weather modelsby Bjerknes [4℄, who pointed out in 1911 that the ability to suessfully predit theweather requires two things: a suÆiently aurate model, whih, given an initialondition, will orretly ompute the atmospheri state at the future time; and aknowledge of what that initial ondition is. These statements reet the Laplaianideal [42℄ that, if we knew the present state spae oordinates of a system, and thefores ating on it, we ould predit its future.A typial atmospheri model an be written as a di�erential equation of the formdxdt = G(x); x(0) = x0 (1.1)where the vetor x represents atmospheri variables, the initial onditions at timet = 0 are x0, and the veloity of x at any time is governed by the funtion G.Analytial solutions for (1.1) are not generally available, but a numerial solution anbe determined by integration. The problem of weather predition then redues toknowing the orret initial onditions x0, and having an appropriate model G.Now, the equations governing the atmosphere are nonlinear, and therefore a-pable of showing haoti behaviour. The hallmark of haos is sensitivity to initial5



onditions, so small variations in x0 an quikly lead to radially di�erent solutions.This was famously illustrated by Lorenz [37℄, who enountered it when he disoveredthat rounding o� the initial onditions of his trunated onvetion model ompletelyhanged the solutions. The idea that the atmosphere was a haoti system soon be-ame enshrined in publi lore (somewhat onveniently for foreasters!). What hope isthere to know if it will rain on the weekend, if a buttery somewhere in Brazil ouldap its wings and stir up a storm?It is ertainly true that all observations of the weather have a degree of error, andsine only a �nite number of observations are possible, we never know the exat stateof the atmosphere at any given time: the vetor x0 is known only to within a ertaintolerane. Therefore, beasue of sensitivity to initial ondition, a single run of themodel will soon stray from the true path as it is integrated forward in time.Muh e�ort has gone into addressing the problem of sensitivity to initial ondition,and the major weather entres have developed methods of generating ensembles ofinitial onditions, omprised of perturbations around the observations, all of whihare run forward using the model [44, 67, 49℄. Statistial statements about the futureweather an, in theory, be dedued by examining the ensemble of �nal states [7℄.While haos makes predition diÆult, it also obsures the e�et of model error.As soon as a foreast state diverges from the true weather state, displaement errorkiks in. And sine there is always some unertainty about the initial ondition, dueto observation error and trunation to model resolution, it is hard to separate modelerror from displaement error even for small times. But that doesn't mean that itsontribution an be ignored.For example, on�dene in the ensemble approah would be improved if the modelould shadow [23℄ the true solution, i.e. if there existed some initial ondition withinthe ensemble radius � around x0 whih remained within a tube of radius � of the truesolution as it was integrated forward. This would ertainly be the ase if our model(1.1) was a perfet desription of the atmosphere. Suppose, though, the model isawed (a more likely possibility!), and no suh shadowing orbit exists past a time � .Then no matter what tehnique we use to generate an ensemble, statistial onlusionsdrawn by examining the behaviour of the ensemble past that time will be a�eted, ifnot made invalid, by model error.The problems of initial ondition error and model error are therefore oupled, andit is impossible to disuss preditability of any system without assessing the e�ets ofmodel error. We know what happened when Lorenz rounded o� his initial onditions,
6



but how about when he trunated his equations from the full onvetion model in the�rst plae?Matters are further ompliated by the fat that we are dealing with nonlinearsystems. Even simple nonlinear systems are apable of showing highly omplex be-haviour, and the e�et of altering a partiular parameter (whih is one example ofmodel error) an be hard to analyse. It is therefore neessary to understand somebasi properties of nonlinear systems before exploring the topi of model error. Be-ause the systems to be studied are high dimension and fairly ompliated, we shall�rst illustrate some properties of nonlinear dynamial systems, as well as the toolswhih are used to analyse them, in a simple system due to R�ossler.
1.3 The R�ossler systemThe R�ossler system [58℄ is given by the equationsdxdt = �y � zdydt = x+ aydzdt = b+ (x� )z: (1.2)The onstants a and b are here set to 0.1, while  will be treated as a parameter whihan be varied. An advantage of this system is that it is very simple - there is only onenonlinear term - and is easier to visualise than the higher dimensional systems whihwe will ome to later. It will also serve as a basis for omparison for those systems,in terms of both similarities and di�erenes.A standard method of studying the behaviour of dynamial systems is to look forattrators, whih an either be a �xed point, a periodi orbit, or a haoti `strangeattrator' [26℄. Some of the attrators for the system (1.2) for various values of  areshown in Figure 1.1. The left hand olumn is a time series of x, the entre olumn isy versus x, and the right hand olumn is a power spetrum of x. Note that not all ofthe three dimensions are shown: it isn't always neessary to plot the attrator in thefull dimension of the spae to understand its struture. This will prove useful whenwe go on to look at 40 dimensional systems! Computations were performed using afourth order Runge-Kutta sheme [52℄ with step size 0.01.For low values of , suh as  = 3, the attrator in the xy plane is a periodiorbit onsisting of a single loop. The power spetrum onsists of a base frequeny of
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Figure 1.1: Plots of x versus time, y versus x and power spetra versus frequeny forvarious values of  for the R�ossler system.
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about 0.16, plus its integer multiples (as required for periodiity). As  is inreased,the system passes through a bifuration point, and the single loop beomes a doubleloop, as shown for  = 6. The power spetrum piks up an extra base frequeny ofabout 0.08, and its multiples. Further period doubling bifurations ensue, at smallerand smaller intervals, until by  = 9 the system is haoti, so there is no periodiorbit. The power spetrum ontains a full range of frequenies. This route to haos,onsisting of an in�nite number of onseutive period doublings, appears in a widevariety of nonlinear systems [26℄.For higher values of  there are oasional windows where the system eases to behaoti and reverts to periodi behaviour. For example at  = 12 there is a period3 orbit, and one again there is regular struture in the power spetrum. As  isinreased the system again period doubles to haos. By  = 17 the haoti attratorhas grown in size.Clearly the behaviour of the system depends in a vital way on the parameter. Rather than examining individual values of , it is desirable to try to piturehow the system hanges, and partiularly where bifurations our, as  is variedontinuously. One method to do this is analogous to the bifuration diagrams ofmaps suh as the logisti map, whih simply reord the points on the attrator asthe bifuration parameter is inreased, either by a satter plot or a density plot. Forexample, the top panel of Figure 1.2 shows a density plot of the x variable. For eahvalue of , it reords the density of the x time series, of the sort shown in the leftolumn of Figure 1.1.While the resulting diagram is interesting and aptures muh of the behavior, adisadvantage of the method, whih doesn't our with maps, is that beause x isa ontinuous variable, the periodi orbits appear as a ontinuous band rather thandisrete points, and it is hard to distinguish areas of haos. This is improved in themiddle panel, whih is again a density plot, but only inludes those values of x whihare either a loal maximum or a loal minimum. It is now muh easier to distinguishbetween the areas of haos, suh as  = 11, and the periodi window beginning after = 12. A period p orbit produes p separate loal maxima, while in a haoti region,we expet an in�nite number of suh maxima.
1.4 Spetral bifuration diagramsThe lower panel of Figure 1.2 is a new kind of bifuration diagram, dubbed thespetral bifuration diagram. It was inspired by a tehnique used to do on-the-y
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measurements of �eld harmonis in superonduting magnets while the urrent isbeing ramped [45℄. The diagram is omposed by ombining the power spetra atdi�erent values of , as shown in the right olumn of Figure 1.1, into a ontinuouspower histogram. The vertial axis shows frequeny, while the greysale indiatesthe power at that frequeny. For example, at  = 3 the heavy line at frequeny 0.16orresponds as before to the periodi orbit with that frequeny, and the period doubleat  = 6 is indiated by the appearane of a lower frequeny line. Chaoti regionsdisplay a smear of frequenies. The periodi window after  = 12 appears as a learband, with lines present only at multiples of the base frequenies. Another, smallerperiodi window is also visible just after  = 10. The advantages of the spetralbifuration diagram will beome partiularly evident in the next hapter.From the bifuration diagrams, it is evident that haoti systems suh as theR�ossler system are sensitive not just to slight variations in initial onditions, but alsoto slight variations in parameters. This is one kind of model error, and perhaps themost basi. Below we present two other systems whih will be useful in our laterinvestigations into model error.
1.5 Other low dimension systems
1.5.1 The Lorenz '63 systemThe story behind this lassial system [37℄ is well known, but worth repeating here.In 1961, Lorenz, a meteorologist with MIT, visited Barry Saltzman of the TravelersInsurane Company Weather Centre in Hartford. Saltzman had been studying theonvetive motion of a uid heated from below and ooled from above, a problem�rst examined by Lord Rayleigh. By onsidering variations in only two dimensions,Saltzman expanded the solution funtions in a Fourier series, substituted this seriesinto the original partial di�erential equations, and trunated the resulting in�nitesum to a set of seven terms (the equations are presented in Chapter 4). In an e�ortto further simplify the system, and noting Saltzman's omment that under ertainonditions all but three of the Fourier oeÆients went to zero, Lorenz retained onlythose terms, and resaled to obtain the following set of equations:dxdt = ��x+ �ydydt = xz + rx� y
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dzdt = xy � bz: (1.3)The lassial values are � = 10, b = 8=3, and r = 28. The approximation is atuallyonly valid for ertain (low) values of r, and the behaviour of these redued equationsno longer says muh about onvetion between plates. However they yield a mathe-matially very interesting system, whose buttery-shaped attrator is something of ahaos ion. Staying with the original spirit of ignoring physial reality, we show thebifuration behaviour for r between 25 and 275 in Figure 1.3 for the z variable. InChapter 4, we will ompare the Lorenz system with the original Saltzman equations.
1.5.2 The Rulkov CiruitAnother system we shall onsider later, as an example of a low dimension system whihatually approximates a physial system, is given by the Rulkov Ciruit equations [59℄:

dxdt = ydydt = �x� Æy + zdzdt = (�f(x)� z)� �y: (1.4)where  = 0:2, Æ = 0:534, � = 1:52, and � is a parameter to be varied in the range10 to 30. The funtion f(x) is given by:
f(x) = �sgn(x)(qd(f1(x)� a)2 + � ad ) (1.5)and f1(x) = kxk if kxk � a (1.6)= �q(kxk � p) if a < kxk � b (1.7)= �a if kxk > b (1.8)where d = a2�a2 , q = 2ab�a , p = a+b2 , a = 0:5, b = 1:8, and  = 0:03.The bifuration behaviour of the iruit equations is shown in Figure 1.4 for � inthe range 18 to 23, whih is where most of the interesting hanges our. Figure 1.5is a zoomed view of the spetral bifuration diagram, showing the existene of manysmall periodi windows. A possible appliation of the spetral bifuration diagramsis to searh for periodi or quasi-periodi orbits whih are diÆult to spot using othertehniques. 12
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Figure 1.3: Bifuration diagram for the Lorenz '63 system, from F = 25 to 275.
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Rulkov Circuit Equations

18 19 20 21 22 23

0

0.5

1

1.5

2

18 19 20 21 22 23

0

0.5

1

1.5

2

18 19 20 21 22 23
0

0.05

0.1

0.15

0.2

0.25

Figure 1.4: Bifuration diagram for the iruit model.
14



20.8 20.82 20.84 20.86 20.88 20.9 20.92 20.94 20.96 20.98 21
0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115
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1.6 The danger of low dimension systemsAt this point, one might objet that the R�ossler, Lorenz or iruit systems have littlein ommon with atmospheri models. The Lorenz '96 systems, presented in the nexthapter, are higher dimensional, but in general, if we only do our experiments on`toy' models, how do we know whether the results will generalise to real atmospherimodels?A similar point was raised at the Newton Institute in Cambridge during its 1996disussion of atmospheri preditability [64℄, where it was put as follows:Many linear-dynamis-based intuitions are violated in low-dimensionalnonlinear systems, like the Lorenz 1963 model; yet these NWP modelsappear to behave onsistently with these intuitions. Is there some prini-ple whih indiated that there are pathologies whih happen only in loworder systems. Do these our `Even In, Or Only In' low order systems?Toy models are at their most e�etive when used as a kind of thought experiment.An example is James Lovelok's Daisyworld model [41℄ whih proposes an imaginaryplanet populated with white and dark daisies. As a result of their growth rates, itis seen that they e�etively regulate the temperature of the planet. No one thinksthis is an aurate model of the real world, but it sueeds in demonstrating a simple
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priniple whih otherwise may not have been evident. It aptures the imagination,and its impat is as muh rhetorial, like a good analogy, as sienti�.Simple models, however, an easily be misapplied. For example, in many lowdimension models, the model error is loalised to partiular regions of the attrator.If we were to onlude that the atmosphere shares this priniple, so that model errorvaries greatly from day to day, then we may well be mistaken. There is no rulewhih says that nonlinear dynamial systems have to behave like one another. Theproblem is exaerbated when results are interpreted graphially; for example, it iseasy to argue that the attrator or error pattern of one system might `look like' thatof another, an ativity whih is more sport than siene.For this reason, the results here are stated wherever possible in suh a way thatthey an be applied to as broad as possible a lass of model/system pairs. The newmethod for measuring model error, for example, is system independent, and we applyit equally to low dimension systems, or, in Chapter 6, operational weather modelsontaining millions of variables.There is one key di�erene between low and high dimensional systems, whih hasan immediately visible e�et when omparing the two, and that is related to theonept of orthogonality. Pairs of randomly hosen vetors in a high dimension spaehave a high probability of being nearly orthogonal. More preisely, the variane of theangle between suh vetors in a dimension n spae is 1n . (To see this, let x and y bevetors. Sine we are only interested in the angle, we an assume that eah vetor hasmagnitude 1. By symmetry, we an also hoose x to be any vetor we want. Choosex to be the vetor with �rst oordinate x1 = 1 and all other oordinates zero. Thenx � y = y1. But Pni=1 y2i = 1, so the variane of y1 is 1n , whih proves the result.) Forfull weather models, where n is around 107, two unorrelated vetors an thereforebe treated as if they are orthogonal. This simple observation aounts for muh ofthe di�erene in behaviour that we will experiene here between weather models andlow dimension systems.
1.7 SummaryIn this setion we have seen that even simple, low dimension systems suh as theR�ossler, Lorenz or Rulkov Ciruit Equations show a rih mix of behaviour, whihdepends in a highly sensitive fashion on model parameters: slight alterations anthrow the system from a periodi orbit into haos, or vie versa. Sine inorretparameters are just one example of model error (if the model is struturally di�erent
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from the true system, then no setting of the parameters need remedy it), in order tounderstand model error we must be able to visualise model behaviour over a range ofparameter values.Spetral bifuration diagrams are an exellent tool for this purpose. They learlyindiate when a model is in a haoti, periodi, or, as we see in the next hapter, aquasi-periodi orbit. The diagrams also give information about the model's attrator,or `limatology', in terms of the priniple frequenies.Beause of the omplexity of nonlinear systems, it might seem that omparingtwo di�erent systems would be a hopelessly ompliated task. Fortunately, we willsee in hapter 3 that the problem an be made easier by ertain emergent propertiesof the systems. In fat, one unantiipated result for the Lorenz '96 systems is thatthe question of whether they are haoti or not has little bearing on the subjet ofmodel error.
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Chapter 2
The Lorenz '96 systems
2.1 The one and two level system equationsThe Lorenz '96 systems were �rst introdued as idealised one-dimensional models ofthe atmosphere [40, 27℄. They produe time series whih are qualitatively similar tothe behavior of variables suh as temperature. Another useful property, enounteredin Chapter 6, is that, if the parameters are hosen orretly, the model error is seento resemble that enountered in weather models, in terms of its variation with timeand its magnitude ompared with displaement error.The �rst system, whih we shall refer to as the one level system, ontains nvariables x1; x2; :::; xn, and the equations aredxidt = xi�1(xi+1 � xi�2)� xi + F; i=1,. . . ,n (2.1)where F is a onstant, and the index i is yli so that xi�n = xi+n = xi. The xi's antherefore be viewed as variables around a irle, as shown in Figure 2.1(a). In physialterms, they ould be values of some atmospheri quantity suh as temperature at nequally spaed latitudes around the globe. The onstant term F in the equationsis external foring, the linear term is internal damping, and the quadrati terms,whih introdue information about the spatial variation of x, represent advetion. Ofourse, the system is only meant to be evoative of atmospheri behaviour, not anaurate model. A typial time series of the system is shown in Figure 2.2, whihplots x1 versus time for F = 10, for whih the system is haoti, as seen below. Notethe equations are the same for eah xi regardless of index, so eah variable has thesame statistis.
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(a) The one level system variables with n = 8.

(b) The two level system variables with n = 8 and m = 4.
Figure 2.1: System variables
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Figure 2.2: Time series of x1 for the one level system given by equation 2.1 withF = 10.
The other system to be disussed will be referred to as the two level system, andinorporates smaller sale motions with shorter time sales. There are n variables ~xi,together with an additional nm variables ~yi;j whih an be viewed as sitting insidethe ~x's as shown in Figure 2.1(b). The equations [40℄ ared~xidt = ~xi�1(~xi+1 � ~xi�2)� ~xi + F � hb mXj=1 ~yi;jd~yi;jdt = b~yi;j+1(~yi;j�1 � ~yi;j+2)� ~yi;j + hb ~xi (2.2)for i = 1; : : : ; n and j = 1; : : : ;m. Again the variables are yli so that ~yi+n;j = ~yi;jand ~yi;j�m = ~yi�1;j. Following Lorenz [40℄, we set b =  = 10, whih has the e�et ofmaking the ~y's utuate ten times more rapidly than the ~x's. The ~y's an be thoughtof as onvetive sale quantities in the atmospheri analogy. The oupling oeÆienth is set (exept when otherwise spei�ed) to 1. For this thesis we have primarily usedn = 8 and m = 4, though Lorenz originally looked at higher dimensional systems[40℄.Figure 2.3 shows a two level system time series of ~x1 and ~y1 for F = 10 whihan be ompared with Figure 2.2. It an be seen that a large loal value of ~x tendsto exite the ~y variables, due to the feedbak between the two (this is a relationshipthat will prove useful in Chapter 3).Our motivation for studying these systems is to examine the e�et of model error.Suppose that we onsider the two level system to be `truth', and the one level system20
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Figure 2.3: Time series of ~x1 and ~y1 versus time for the two level system given byequation 2.2 with F = 10.
to be a model. If we ompare the x equations with the ~x variables, we see thatthe model ontains a onstant foring, while in the true system the foring dependson the loal ~y variables. In Setion 3, we will onsider the onstant foring of theone level system to be a parameterisation of the two level system foring, just asreal atmospheri models inorporate parameterisations of ompliated, small salephysial proesses. First, though, it is neessary to see what role the foring has inthe struture of the solutions for either system.
2.2 Behaviour of the one level system with n = 4In this setion we will onsider the one level system with n = 4, whih is the simplestnon-trivial variant. We will derive some of the basi properties of the system, beforeembarking on a numerial study of the bifuration behaviour. The equations are:dx1dt = x4(x2 � x3)� x1 + Fdx2dt = x1(x3 � x4)� x2 + Fdx3dt = x2(x4 � x1)� x3 + Fdx4dt = x3(x1 � x2)� x4 + F (2.3)By substituting into the equations, it is easily seen that x1 = x2 = x3 = x4 = F21



is a �xed point for all F . The stability of this �xed point an be determined byonsidering the Jaobean [26℄, whih is:0BBBBBB�
�1 x4 �x4 x2 � x3x3 � x4 �1 x1 �x1�x2 x4 � x1 �1 x2x3 �x3 x1 � x2 �1

1CCCCCCA
For F = 0, the Jaobean at the solution x1 = x2 = x3 = x4 = 0 is minusthe identity, and the only eigenvalue is -1 whih ensures stability. For F = 1, theJaobean at the solution x1 = x2 = x3 = x4 = 1 is0BBBBBB�

�1 1 �1 00 �1 1 �1�1 0 �1 11 �1 0 �1
1CCCCCCA

An eigenvetor of this matrix is (i,-1, �i, 1), with assoiated eigenvalue i. At F = 1an eigenvalue passes through the real axis in the omplex plane. This is assoiatedwith a Hopf bifuration [26℄, where a periodi orbit is produed from a �xed point.Indeed, in Figure 2.4 we see that for F just above 1, the system attrator plotted as x1versus x2 is a near irular stable periodi orbit with period of approximately 2�. Thevariables x2, x3 and x4 (not shown) also follow periodi orbits but are out of phasewith x1 by �=2, � and 3�=2 respetively. Viewed as variables on a irle, the solutionan then be seen as a wave propagating in a lokwise diretion. This diretionof propagation is notieable even when the system is haoti, and is a onsequeneof the advetion term. The power spetrum of the time series of x1 shows a peakat frequeny 1/2�, as expeted, but also reveals a number of higher harmonis atmultiples of the base frequeny.As F is inreased, the x1 time series piks up extra loal maxima due to thepresene of higher harmonis, but there is no sign of period doubling. In the log sale,the power appears to derease more or less linearly with frequeny. This implies thatthe oeÆients in the power spetrum derease exponentially with frequeny. NearF = 12, the system beomes haoti. Around F = 14:7 there is a periodi windowbefore beoming haoti again. The orbit shown in the lower panels has a period of11.365 time units.Some of the system behaviour is expressed in the upper two panels of Figure 2.5,whih show the density and max/min bifurations of x1 (again, it doesn't matter22
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whih xi is hosen). It an be ompared with Figure 1.2. The line whih appearsat F = 1 represents the nearly linear growth in frequeny of the solution as F isinreased. The new lines whih appear around F = 3 and F = 8 reet the higherharmonis whih appear for higher F . Unlike in Figure 1.2, however, these lines donot indiate period doubling. The system beomes haoti around F = 12, and theperiodi window at F = 14:7, as well as a seond window just before F = 16, an belearly seen.While the bifuration diagrams give useful information, new lines representing thegrowth of higher harmonis appear out of nowhere, and don't indiate any bifura-tion. Beause the system piks up progressively higher harmonis as F inreases, themore natural approah is the spetral bifuration diagram in the lower panel. Thismethod also has the advantage of showing whih spetra are present in the long-term`limatology' of the system.Comparing the spetral bifuration diagram with Figures 2.4 and the upper twopanels, we see that the lines beginning at and after F = 1 and ontinuing to F = 12represent the periodi orbits. These lines are equally spaed in frequeny, whihmeans that the orbit for F in this region only ontains harmonis whih are multiplesof its lowest frequeny (this ensures periodiity). Around F = 12 the haoti regimebegins. The periodi windows, suh as the one near F = 16, appear as bands ofhorizontal lines. The period of the orbit at F = 14:7 may be estimated from itslowest frequeny of about 0.88, whih agrees with the observed period 11.365.
2.3 One level systems with dimension 8 and 40Higher dimension versions of the system display broadly similar behaviour, with someadditional ompliations. One feature of the n = 8 system is that it has at least twoattrators: a symmetri attrator (x5 = x1; x6 = x2; x7 = x3; x8 = x4) whih isa opy of the n = 4 attrator, and a seond attrator ontaining no suh points.This symmetri attrator will attrat any initial ondition whih has the requiredsymmetry, while other points are drawn to the other attrator [27℄. Therefore periodiorbits orresponding to those in Figure 2.4, even the one at F = 14:7 where mostorbits are strongly haoti, all exist in the n = 8 system. The analysis below isonerned with the seond (asymmetri) attrator.Figure 2.6 shows bifuration diagrams for the n = 8 ase. They are similar tothe attrator for the n = 4 system, but beome haoti muh earlier. Prior to aboutF = 2:8, the attrators for n = 4 and n = 8 orrespond, in the sense that trajetories

24



F

x1

4D System I

5 10 15
−10

−5

0

5

10

15

F

m
ax

/m
in

 x
1

5 10 15
−10

−5

0

5

10

15

F

fr
eq

ue
nc

y

5 10 15
0

0.2

0.4

0.6

0.8

Figure 2.5: Bifuration diagram for the one level system with n = 4. Upper panel isa density plot of x1, middle panel is density of loal max/min, and lower panel showsthe spetral bifuration diagram, as introdued in the text.
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in the n = 8 system are drawn to the symmetri periodi orbits. However aroundF = 2:8 a period-doubling bifuration ours, as shown in Figure 2.7, and we will nolonger have x1 = x5 and so on. By F = 3:8, the system appears to be haoti. Atthis resolution, it is diÆult to pik out periodi windows of any width in the haotiregime past F = 4:5.The spetral bifuration diagram in the lower panel of Figure 2.6 reveals om-pletely new features that are not evident from the density and max/min diagrams.The symmetri periodi orbit is indiated by the line beginning at F = 1 and fre-queny 0.16. At F = 2:8 a line appears at half the frequeny, whih orresponds tothe period doubling mentioned above. By F = 4 we see a broad range of harmonisorresponding to haos. However from about F = 4:8 to F = 5:6 there are largewindows where the system appears to be non-haoti (or at least not broad band).Inspetion of the spetral bifuration diagram reveals that more than one fre-queny, or its harmonis, are present in these windows. The slopes of the diagonallines in the range F = 4:8 to F = 5:6 are di�erent, so the relative balane of thefrequenies hanges with F . When the frequenies are inommensurate, the resultwill be a quasi-periodi orbit. In bifuration diagrams produed either by the max-ima method or a Poinar�e setion method [1℄, these quasi-periodi orbits appear as aontinuous band indistinguishable from haos.It is possible to �nd orbits in the region F = 4:8 to F = 5:6 whih appear tolose, as shown in Figure 2.8 for F = 5:235298. However the number of deimalplaes in F attests that this is not an easy task! The period of this orbit is 36.7,whih orresponds to a frequeny of 0.027. Figure 2.9 is a lose-up of the spetralbifuration diagram. The periodi orbit is loated in a region where the spetra areseparated by a frequeny spaing of 0.027, as expeted.Still another way to view, or experiene, the bifurations is to listen to them. Atape is available whih ontains a translation of the 8 dimension system into sound.The x1 and x5 variables are interpreted as sound waves using MatLab, and played tothe left and right speakers respetively. Starting from a periodi orbit at F = 3:5,the system is ramped upwards. The periodi orbit inreases in speed and sound level,like a motor being aelerated. A distint hange is heard as the system goes haotiaround F = 3:8; the sound level drops and beomes irregular, as if the motor isabout to stall. Entering the quasi-periodi region around F = 4:7, the system oneagain settles down, though it doesn't quite repeat. Only when held at a value ofF = 5:235298 is a true rhythm established. It seems that the Lorenz systems are abetter model of a ar in need of a tune than the atmosphere!
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The dimension of the system an be inreased inde�nitely, but omputationsrapidly beome expensive. The highest we looked at was n = 40. Figure 2.10 showsbifurations for the 40D one level system. It is again quite similar to the other sys-tems, with the exeption that the spetral bifuration diagram (lower panel) has asomewhat riher appearane in the transition to haos.The systems onsidered so far have all had a onstant foring term F . Othervariants are possible; one studied is the ase where F depends on the index i. Thisis analogous to the weather problem where foring is di�erent over land and over sea[27℄. Another possibility is to make the foring a funtion of the loal value of xi, orall values of xi at the urrent time, or values of xi at urrent and previous times, andso on. The two level system may be onsidered as one suh variant, where the foringdepends on small sale ~y variables whih are oupled with the large sale ~x variables.

2.4 Behaviour of the two level systemThe equations for the ~x variables in the two level system are similar to those of theone level system, with the di�erene that the onstant foring is replaed by a termwhih depends on the fast sale ~y variables. We might therefore expet the ~x variables
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to behave like the x's in the one level system, but with an added degree of fuzziness.The density and max/min bifuration diagrams for the n = 8;m = 4 ase (dimension40) in Figure 2.11 bear this out. They are qualitatively quite similar to Figure 2.6.The lines in the region F = 4 to F = 5 have an added thikness, and orrespondto apparently haoti orbits that are like jostled versions of the periodi orbits seenin the one level system for slightly lower values of F . There is an additional perioddoubling bifuration at F = 1:5, as the fast sale variables beome non-zero. Anothernotieable feature is that the ~y variables tend to derease the foring F on average,so the whole diagram is shifted to the right ompared to Figure 2.6.The spetral bifuration diagram for the two level system in Figure 2.11 an beompared also with that in Figure 2.6. Again it is quite similar to the one levelase, with the di�erene that a full range of spetra, indiating a ompletely haotiregime, doesn't our until around F = 5:5 as opposed to F = 4. The diagramonly shows to F = 6, however the system appears to remain haoti and there aren'tany periodi or quasi-periodi windows visible past that point. Figure 2.12 showsbifuration diagrams for the ~y variables.Figure 2.14(a) shows a periodi orbit at F = 4:6. Of ourse, for the system to beperiodi the ~y variables must be periodi as well as the ~x's, and the path traed outby the ~y's in 2.14(b) does in fat lose. Figures 2.14() and (d) is what happens fora slightly smaller value of F . The ~y variables are haoti, but the ~x orbit is nearlyperiodi.So far we have only onsidered bifurations obtained by varying the parameter F .There are of ourse other possibilities, suh as varying the oeÆient h, whih ontrolsthe oupling between the small sale ~y variables and the large sale ~x variables. Figure2.13 shows bifurations in the ~y variables as the oeÆient h is varied, while theforing is held onstant at F = 2. The spetral bifuration diagram shows intriateross-hathing, and a degree of struture that is absent from the other diagrams.When the oupling oeÆient is inreased, the two level system is apable ofshowing quite ompliated behaviour even at F = 2, where the one level systemis periodi. Figure 2.15 shows the ~x and ~y orbits. The ~x variables nearly follow aperiodi orbit, while the ~y variables are learly quasi-periodi.
2.5 SummaryThis onludes the introdution to the Lorenz '96 systems, whih have turned out tobe interesting in their own right, showing a rih variety of behaviour. As prototype
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models for disussions of atmospheri dynamis, they have the advantage of beinghigher dimensional and bearing at least a passing resemblane to real atmospherisystems, both in the equations and the resulting dynamis. Spetral bifurationdiagrams are a new and useful tool for analysing suh systems, and reveal featuressuh as quasi-periodi orbits whih aren't evident in the usual type of bifurationdiagram.We an now use the systems and the tools developed so far to study the e�ets ofmodel error. We begin by looking at empirial properties of the error, before makinga more formal analysis in Chapter 4. An advantage of the statistial approah isthat it allows us to buid up an understanding of model error from observations, whileseeing how its behavior is simpli�ed by ertain maro-properties of the Lorenz '96systems.

37



Chapter 3
An exploration of model error
using the Lorenz '96 systems
Aurate measurement of error is a basi plank of dynamial modelling; but as hasalready been disussed, the measurement of model error in the ontext of nonlin-ear dynamial systems is ompliated by sensitivity to initial onditions. Even withhaoti systems and models, though, the importane, and ease of measurement, ofmodel error depends on the situation. If the model is enormously wrong, and sensitiv-ity to initial onditions relatively small, then we should have no problem in measuringthe model error. On the other hand, if the model is aurate, but highly sensitive toinitial ondition, it is more diÆult to detet what error is due to the model.The most interesting behaviour ours when initial ondition error and modelerror vie with eah other for importane, as is the ase with the Lorenz '96 modelswhih we will study in this hapter. Rather than be deterred by the presene ofhaos, we will treat initial ondition error and model error as independent entities,to see what an be learnt about their di�erent properties. The approah is primarilyexperimental, taking the 40D two level system as the `true system', and attemptingto model it with variants of the one level system. The results will motivate theshadow approximation tehniques presented in Chapter 4, whih inorporate bothinitial ondition and model error in a more omplete desription.
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3.1 Model error vs initial ondition error (ontin-ued)Suppose we are omparing a model with a true system, and we wish to assess thee�ets of model error. In general, the model and true system will have di�erent statespaes [61℄. Therefore we require the existene of a projetion operator P going fromthe true state spae to the model-state spae. For the time being, in the interest ofsimpliity, we will assume that the model and system exist in the same state spae,and that we know the equations for the true system to bed~xdt = ~G(~x(t)) true system (3.1)while the model equations aredxdt = G(x(t)) model: (3.2)The diÆulty in measuring model error for suh systems is that it is oupled withdisplaement error. Suppose that trajetories in the model and true systems begin atexatly the same point, so x(0) = ~x(0). At time zero there is no displaement errorsine the points agree, so the only error is model error. However as soon as a �nitetime has elapsed and the orbits have diverged, the model trajetory will di�er fromthe true trajetory, and displaement error will ome into play.
3.1.1 What is initial ondition error?In haoti systems, error due to displaement of initial ondition is blamed for manywoes beause it tends to magnify exponentially-on-average [65℄. Suppose that themodel initial ondition is perturbed by a vetor ed(0). We an then estimate thedisplaement ed(t) at some future time by onsidering the linearised dynamis aroundx(0) [66, 49℄.Theorem. Let x(t) be a solution of the model equationdxdt = G(x) (3.3)where G is C1, and let xd(t) = x(t) + ed(t) be a solution with a perturbed initialondition xd(0) = x(0) + ed(0). De�ne the linear propagator [66℄ asM(t) = eR t0 J(x(t))dt (3.4)
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where J is the Jaobian of G. Then given a referene time � > 0, and � > 0, thereexists a radius r suh that, if ked(t)k < r for all t 2 [0; � ℄, thenked(t)�M(t)ed(0)k < � 8t 2 [0; � ℄: (3.5)Proof. The derivation is routine, but will be useful for results developed later.From the system equations,ded(t)dt = d(x(t) + ed(t))dt � dx(t)dt= G(x(t) + ed(t))�G(x(t)): (3.6)Performing a Taylor expansion ofG around x(t), and retaining only the �rst orderterm, we obtain ded(t)dt = J(x(t))ed(t) +Rd(t) (3.7)where the remainder term Rd(t) is O(ked(t)k2). Therefore, 9rt > 0 3 ked(t)k <rt =) kRd(t)k < �=� . Pik r to be the minimum suh rt (possible sine [0; � ℄ isa ompat set). Integrating from 0 to t for 0 < t � � then givesed(t) =M(t)ed(0) + Z t0 Rd(t)dt; (3.8)and ked(t)�M(t)ed(0)k = k Z t0 Rd(t)dtk < �� t � � (3.9)whih proves the result.The above result implies that the evolution of the error ed(t) an be approximatedby the linearised dynamis ed(t) �M(t)ed(0): (3.10)Under the linearised dynamis, a ball of initial onditions therefore evolves into anellipsoid of �nal states. The major axes of the ellipsoid and their preimages an bedetermined by performing a singular value deomposition [25℄ of M(t) (whih is howECMWF determines its perturbations aimed for maximum growth [49℄). Note theapproximation only holds for displaed orbits xd(t) whih remain within a toleraner of the referene trajetory x(t).In the speial ase of a linear system, where the Jaobian J is a onstant matrix,then ed(t) = eJted(0): (3.11)So long as J has positive eigenvalues, trajetories will experiene exponential growth.In general, and for the systems onsidered here, the Jaobian is not onstant and therate of growth an be desribed as exponential-on-average [65℄.40



3.1.2 What is model error?Model error an be analysed in muh the same way as initial ondition error. Asbefore, we initially assume that the system and the model share the same state spae(if not, then we require the use of a projetion operator from the system state spaeto that of the model). Let ~x(t) be a solution of the system equationd~xdt = ~G(~x) (3.12)
where ~G is C1, and let xm(t) = ~x(t) + em(t) be the solution of the model equationdxmdt = G(xm) (3.13)where G is C1 and em(0) = 0, so the model orbit begins with zero error relative tothe true orbit. De�ne the initial veloity error to be

V = dem(t)dt jt=0 (3.14)= dx(t)dt jt=0 �d~x(t)dt jt=0 : (3.15)Then we have the following simple result.Theorem. Given � > 0, there exists a time � > 0 suh thatkem(t)�Vtk < � 8t 2 [0; � ℄: (3.16)Proof. Performing a Taylor expansion of em(t) around time zero, we haveem(t) = em(0) +Vt+Rm = 0 +Vt+Rm (3.17)where the remainder term Rm is O(ktk2). Therefore, there exists a time � > 0 suhthat kRmk < � for all t 2 [0; � ℄ whih proves the result.The linearised dynamis of the model error an then be written asem(t) � Vt: (3.18)Sine the initial veloity error V is generally non-zero, it follows that, in general,the model error will experiene an initial linear growth. This ontrasts with theexponential-on-average growth of initial ondition error, and implies that, for smalltimes and displaements, model error will dominate initial ondition error, as shownin the following orollary.
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Corollary. Let the model and system be as above, and assume that the modelerror em(�) at some time � > 0 is non-zero. Then there exists a radius r > 0 suhthat, if ked(0)k < r, then ked(�)k < kem(�)k.This follows simply from the fat that displaement error an be redued arbritrar-ily lose to zero by hoosing a suÆiently small initial displaement. An illustrationof how model error an dominate error due to displaement of the initial ondition isprovided by Figure 3.1. Model error grows roughly linearly for small times, and soonoverwhelms the error due to initial displaement. (Results are for the onstant modelwhih we de�ne next - see also Figure 3.4.)Our de�nition of veloity error is essentially the same as the de�nition of tendenyerror used in [33℄ in the ontext of weather models, where the veloity errors werestudied in an attempt to isolate their soures in the model, or in [60℄, whih proposeda statistial tehnique for assessing errors. A similiar term also appears as a residualin the data-�tting tehnique known as four-dimensional variational assimilation (4D-VAR) [13℄. The observation that model error dominates initial ondition error forsmall times is quite trivial, but often overlooked (for example, the omparison ofboth types of error in [12℄ for the Lorenz '63 system onsidered time sales of 50units, and the initial e�ets are invisible). It points to an important property ofmodel error whih we will exploit in the remainder of the thesis, namely that modelerror is best measured over small deviations from the true orbit.
3.2 Modelling the two level system - the onstantmodelThe above ideas about model error and displaement error an be demonstrated usingthe Lorenz '96 systems, with the two level system as truth. Suppose that, in the twolevel system, only the ~x variables are known, and the values of the ~y variables are notknown. More formally, we projet from the full system state spae to the model statespae using an operator T whih trunates the vetor (~x; ~y) to T(~x; ~y) = (~x). Thesituation is analogous to real atmospheri systems, where the true system dependson an in�nite number of variables that we an only parameterise.In this ase we an write the true system equations asd~xidt = ~xi�1(~xi+1 � ~xi�2)� ~xi + ~Fi(t) true system (3.19)
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Figure 3.1: Plot showing how model error (dashed line) dominates error due to dis-plaement of initial ondition (solid line) for small times, providing the initial erroris suÆiently small. Results are RMS errors for an atual model and system (see alsoFigure 3.4).
for i=1, n, where ~Fi(t) = F � hb mXj=1 ~yi;j(t) (3.20)is treated as a foring whih varies in a ompliated manner with time. Our goal isto approximate this system using models of the formdxidt = xi�1(xi+1 � xi�2)� xi + Pi(t) (3.21)where the n-dimensional vetor P(t) with omponents Pi(t) is some parameterisationof ~F(t).The simplest parameterisation sheme is to set Pi(t) equal to a onstant for all i(this is the same as the one level Lorenz system). A sensible hoie of onstant wouldappear to be the mean foring (we will see in hapter 4 that it is optimal in at leastone sense). We therefore de�ne the onstant parameterisation asP  = h ~F i (3.22)where the mean is alulated over a long orbit on the two level system attrator.In general P  is smaller than F by a small amount, so for example if F = 10 theorresponding value of P  is found to be 9.62. The model is then:dxidt = xi�1(xi+1 � xi�2)� xi + P  onstant model (3.23)
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Figure 3.2 demonstrates the kind of errors that result when we approximate thetrue system with the onstant model. The solid line is the ~x1 variable for a trajetoryof the true system. At regular times (with spaing of 0.04 on the bottom sale)model trajetories were initiated, starting on the true trajetory. The resulting x1trajetories, shown protruding like ribs from the solid line, soon diverge from truth- the errors here have been saled by a fator 20 to aid visibility. The total errormagnitude over all xi's is shown as the series of diagonal lines, again saled. Beauseit ontains all omponents, it is larger (and more onstant) than the x1 omponentalone. Our aim in this hapter will be to quantify the growth of the model error whenaveraged over a large number of points.

3.2.1 Measuring initial ondition errorOne way to quantify an average sensitivity to initial onditions is to measure theroot mean square (RMS) error growth over a number of perturbations and a numberof starting points on the attrator. Suppose that ~xk(t) is a family of K solutionsof the true system starting from di�erent initial onditions on the attrator. Foreah k=1 to K, we perturb the starting point ~xk(0) by a randomly oriented vetor
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whose magnitude has mean 0 and standard deviation �. As an example, Figure 3.3shows an ensemble of perturbations for the true system (3.20) with F = 10 about asingle starting point. The standard deviation perturbation size on the ~x variables is� = 0:01.The displaed solution ~xkd(t) will diverge from the true orbit by a vetorekd(t) = ~xkd(t)� ~xk(t);with magnitude ekd(t). Now, de�need(t) = qhekd(t)2i (3.24)where the mean is taken over the K initial onditions. Then ed(t) is the RMS errorgrowth due to displaement after a time t.For the partiular starting point in Figure 3.3, the trajetories disperse aroundt = 3, then appear to regroup at t = 5:5 before diverging again. When averaged overdi�erent starting points, however, the behaviour is more uniform. The lower urvein Figure 3.4 shows the RMS error ed(t) for the true system, while the middle urveis ed(t) for the onstant model. The error growth is haraterised by an initial expo-nential growth, as we would expet from the linearised dynamis, whih eventuallysaturates due to the �nite diameter of the attrator.

45



0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

R
M

S
 e

rr
or

time

system disp
constant disp

model error

Figure 3.4: Bottom line (solid) shows initial ondition displaement error ed(t) forthe true system with F = 10. Middle line (long dash) shows ed(t) for the onstantmodel with P  = 9:62. Top line (short dash) shows model error em(t) for the onstantmodel. Note that displaement error grows exponentially at small times, while modelerror grows linearly.
3.2.2 Measuring model divergeneDivergene of model trajetories an be measured in an analogous manner. Let ~xk(t)be a family of K true system solutions on the attrator as before, and let xk(t)be the model solutions with orresponding initial onditions, so for eah k we havexk(0) = ~xk(0). The model solution will diverge from the true orbit by a vetorekm(t) = xk(t)� ~xk(t), with magnitude ekm(t). De�neem(t) = qh(ekm(t))2i (3.25)where the mean is taken over the K initial onditions. Then em(t) is the RMS modeldivergene after a time t.The divergene of the model from truth follows a somewhat di�erent pattern thandisplaement error, as shown by the upper urve in Figure 3.4. The error starts atzero, by de�nition, and inreases linearly in the early stages. This is shown morelearly in Figure 3.5, whih is a lose-up of the initial growth. Between 0.5 and1.5 time units, the error then enters a phase of exponential growth. Finally, theerror saturates as the true solution and the model solution settle on their respetiveattrators. Therefore, the model error manifests itself at low times as an initial linear
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Figure 3.5: Initial linear growth of model error for onstant model, P  = 9:62, withrespet to true system with F = 10.
error, and at longer times as a di�erene between the attrators of the model and thetrue system. The latter is a subjet we will return to in Chapter 5.Figure 3.6 shows how the model error varies with di�erent values of F . At eahF , the parameterised model foring P  is the mean foring h ~F i. For all values of F ,initial growth is fairly linear. The extent of the linear growth phase dereases forinreasing F .
3.3 Model error for the onstant model
3.3.1 Veloity errorIn the same way that displaement error is quanti�ed by the initial exponential rateof growth, it seems natural to quantify model error by the slope of the initial linearphase of the model error urve, whih gives the veloity error, or rate of model errorgrowth, near time zero. Figure 3.7 shows the initial slope as a funtion of F . Itinreases fairly smoothly, and appears to vary, for F above 2, with the square root ofF . Note that the onstant model is near-perfet for F � 1:3. 1At time zero, the slope of the RMS model error urve an also be determineddiretly from the model equations, as in the linearised dynamis of the previous1At these values of F the ~y variables of the true system are periodi, as shown in the bifurationdiagram 2.12.
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setion. To make this expliit, suppose ~xk(t) for k=1 to K is a family of solutionsfor the true system with initial onditions on the attrator, and xk(t) are the modelsystem solutions with the same initial onditions. The model error vetors are thenekm(t) = xk(t)�~xk(t). Sine xk(0) = ~xk(0), subtration of the model equations (3.21)from the true system equations (3.20) with t = 0 givedekm(t)dt jt=0= dxk(t)dt jt=0 �d~xk(t)dt jt=0= Fke (3.26)where Fke = Pk(0)� ~Fk(0) (3.27)is an n dimensional vetor of the foring di�erene between the model and the truesystem, as alulated at the initial ondition ~xk(0). For the onstant model, eahomponent of the vetor Pk is equal to P  independent of k. The vetor dekm(t)dt jt=0 isthe di�erene between the model veloity and the true veloity on the true attrator,whih is just the veloity error. With the Lorenz system, veloity error is aused by,and equal to, the foring error Fe, sine the other terms are idential.Now, referring to Figure 3.5 and equation (3.25), the slope of the RMS error urveat time zero is limt!0 1tqh(ekm(t))2i = limt!0sh(ekm(t)t )2i (3.28)where ekm(t) = kekm(t)k. By (3.26) this is justqh(F ke )2i (3.29)where F ke = kFkek, and the average is taken over the K initial onditions on the trueattrator. Sine P  was hosen to be the mean of ~F (0) over the attrator, the initialrate of RMS model error growth for the onstant model is equal to the standarddeviation of the foring error, and initial model error an be determined diretlythrough the properties of the foring error. More generally, the initial slope of theerror urve is given by the veloity error on the true attrator.
3.3.2 Foring error for the onstant modelThe foring ~F in the true system shows a mix of periodi, quasi-periodi and haotibehaviour for di�erent values of F , as we might expet from Setion 2. Figure 3.8 is aspetral bifuration diagram for the di�erene in foring Fe (equation 3.27) betweenthe model and the true system. Again, the analysis is for one omponent only ofFe; behaviour of the other omponents is the same by symmetry. Beause the model49
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foring is the mean foring in the true system, the average foring error will vanish,and the onstant term in the Fourier expansion is zero. Other omponents, however,remain unhanged.The foring error again shows a mix of behaviour, and one might onlude thatmodel error will depend in an irregular way on the parameter F . Atually, this isn'tthe ase; for what interests us is not whether the foring error is haoti, but merely,from 3.29, its standard deviation. This an of ourse be alulated diretly, but it isalso illustrative to note that, by de�nition of the power spetrum [53℄, the sum of thepowers over all frequenies is just the variane. Therefore the sum of the spetra fora partiular F gives the foring error variane at that F . When this alulation isperformed, the omplexity of the bifuration diagram disappears, revealing a simplepattern: the almost straight line in Figure 3.9.Comparing Figures 3.9 and 3.7, we see that the standard deviation of the slopeagrees with the standard deviation of the foring, as expeted. The standard deviation(square root of the variane) is also plotted in Figure 3.9. Beause the variane ofthe foring grows approximately linearly with F , for F > 2, we an say that, for the
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3.3.3 ShadowingAn important test of a model is that it be apable of shadowing the true system fora spei�ed predition period. Various losely related de�nitions of shadowing existin the literature. The main one is �-shadowing from the Anosov-Bowen shadowinglemma [2, 5℄. A onern in modelling haoti systems is that, due to sensitivityof initial onditions, a numerial solution may rapidly diverge from the true systemtrajetory. The shadowing lemma proves that, given ertain restritions on the systemsuh as uniform hyperboliity and invertibility, there at least exists a true solution,starting from a slightly displaed initial ondition, whih �-shadows the numerialtrajetory. To take just the de�nition of �-shadowing from the lemma, it is as follows:given � � 0, a series of disrete times ti with a � ti � b, and a numerially generatedmodel orbit p(ti), then a system trajetory s(ti) �-shadows p(ti) ifks(ti)� p(ti)k � � (3.30)for every a � ti � b.Note that the shadowing lemma itself addresses a di�erent problem to the onethat we wish to solve: it states that a true trajetory shadows a numerial model51



trajetory, while we wish to do the opposite, namely determine whether model tra-jetories shadow the true orbit. The lemma also assumes that we know the truesystem trajetory, whih isn't the ase when the system is the atmosphere.A distint shadowing problem was phrased in [23℄ to address the more pratialquestion of modelling a system whih is only known through a series of observations,eah with observational unertainty. This led to the de�nition of �-shadowing: amodel is said to �-shadow the observed system for a time � at radius r if it stayswithin a radius r of the observed time series over that time. Further, the model issaid to be onsistent with the observations if it �-shadows with the shadow tolerane� equal to the observational unertainty (this an also be phrased using a Gaussianobservational unertainty).The de�nition we will use in this thesis is the same as �-shadowing, with thesole di�erene that we treat the shadow tolerane as a variable that is set indepen-dently, rather than derived from some error distribution (we disuss observation errorseparately). We therefore have the following de�nitions.De�nition: Given a true orbit ~x, and shadow radius rs, we say that a modelorbit x shadows ~x for a time � , if� = sup(ts : kx(t)� ~x(t)k � rs 8 0 � t � ts): (3.31)Suh a model orbit is alled a shadow orbit. There is also a orresponding de�nitionfor disrete time series ti.De�nition: Given a true trajetory, starting from a spei�ed initial ondition,and a shadow radius rs, the shadow time of the model for that initial ondition is themaximal time � for whih a model trajetory shadows the true trajetory within thespei�ed radius. More loosely, when shadowing is simulated numerially, the shadowtime is the longest time found by the numerial tehnique. Whih of these de�nitionsapply will be lear from the ontext.Figure 3.10 is a shemati diagram whih illustrates the de�nition of a shadoworbit. The true trajetory is shown as a solid line starting at x0. The tube of radiusrs is shown as a shaded region. The model shadow orbit, the grey line starting froms0, stays within the tube for a time � . The model trajetory starting at x0, however,shadows a shorter time.The shadowing proess depends on an interplay between model and displaementerror, and for this reason is a neessary, rather than suÆient, ondition for a goodmodel. For example, if the model is suÆiently sensitive to displaement, it may bepossible to �nd a perturbed initial ondition whih o�sets a large model error for a
52



Figure 3.10: Shemati diagram showing true orbit (blak line starting from x0) withmodel shadow orbit (grey line starting from s0). The model shadows for a time � . Amodel trajetory starting at x0, whih shadows a shorter time, is also shown.
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Figure 3.11: Plot of x1 for a typial onstant model shadowing orbit. The shadowingradius is 0.4. The orbit eases to shadow at t = 0:5 (note the radius is over allomponents of x, not just x1).
ertain time; however the majority of initial onditions will most likely diverge quiklyfrom truth (a badly ontrolled shot gun may hit its target, but only by spraying pelletsin every diretion). Therefore it would be unsafe to onlude that the model is a goodapproximation to the real system - it may be, or it may not.An example of a shadowing orbit for the onstant model is shown in Figure 3.11(a longer one, for an improved model, is Figure 3.22). It was omputed by an opti-misation routine whih searhes over the possible perturbed initial onditions withina radius rs, here 0.4, for the one with the longest shadowing time. The shadowingapabilities of a model depend on the partiular initial ondition. A histogram of theresults over 200 points is shown in 3.12.Figure 3.13 shows average shadowing times for the onstant model, evaluated atinteger values of F . The shadowing radius rs has been saled with F , in order thatit stays in proportion with the size of the attrator. Two sets of results are shown,with the saled radius rs = 0:2 for F = 10, and rs = 0:4 for F = 10. From thedi�erene between the two radii, there appears to be a roughly linear relationshipbetween shadowing radius and mean shadowing times.One might also expet a relationship between initial state spae veloity error,as omputed from the foring error, and shadowing times. Figure 3.14 shows thetotal RMS foring error aumulated over the average shadow time, normalised toshadowing radius. It is alulated by taking the standard deviation of the foring
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Figure 3.14: Total shadow foring errors for the onstant model for integer values ofF , normalised for shadowing radius (dimensionless).
error, multiplying by the shadow time, and dividing by the shadowing radius rs. Theresult is a dimensionless number. For this model, the numbers are fairly onstant atabout 2 over a range of foring. It therefore appears that, for the onstant model,shadow times vary inversely with initial model error and linearly with shadowingradius. Sine initial model error depends on the square root of F for this model, wean also say that shadowing times vary inversely with the square root of F .Of ourse, these simple, empirially dedued relationships between shadow time,shadow radius and initial model error won't neessarily generalise to other model/systempairs. In the next setion we will go on to look at more sophistiated models whihwill redue foring error, and therefore lead to improved shadowing times. We willalso re�ne our tehnique of alulating total foring error so that it holds for thesemore general ases.
3.4 An improved model - the linear modelThere are many di�erent ways that one ould go about re�ning the onstant model sothat it better approximates the true system, but in this hapter we shall look at justtwo further models: a simple model that makes the foring a funtion of the loal xivariables, and a more sophistiated approah whih utilises the fat that the systemexists on a low-dimensional attrator. In Chapter 5 we will also look at two modelsdesigned to reprodue the general `limatologial' behaviour.
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One of the �rst things to be noted about the true system in Setion 2 was thatthe magnitude of the ~yi;j variables tends to be greater in regions where the loal ~xivariable is also larger (see for example Figure 2.3). It is therefore reasonable to lookfor a onnetion between the loal ~xi omponent and the foring ~Fi experiened bythat omponent, whih depends on the loal ~yi;j's. This is shown more learly byFigure 3.15, whih is a plot of pairs (~xi; ~Fi) where ~xi is the value of a partiular ~xomponent and ~Fi = F � hb mXj=1 ~yi;j (3.32)

is the loal foring. There is a de�nite linear tendeny to the data, whih an be �tusing linear regression, leading to a formulaPli(~xi) = �0 + �1~xi: (3.33)We an then de�ne a new modeldxidt = xi�1(xi+1 � xi�2)� xi + P li (xi) linear model (3.34)and apply our various tests of model error. The onstant �0 and slope �1 must bealulated for eah value of F . Figure 3.16 shows how they vary as a funtion of F .There is a peak around F = 1:3 when the ~y variables beome non-zero, but apartfrom that they are fairly onstant.
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3.4.1 Foring error for the linear modelFigure 3.17 shows model error for the linear model for F = 10, along with initialondition displaement error. The errors are alulated in the same RMS manneras was used for the onstant model errors in Figure 3.4. Figure 3.18 is a lose-upof initial model error near time zero, ompared with model error for the onstantmodel. The model error slope is lower for the new model, and error doesn't grow atas onstant a rate (the growth urve has negative urvature). The standard deviationof foring error, whih gives the error slope at time zero, is shown in Figure 3.19 as afuntion of F . The graph is obtained as follows: at eah value of F , the true systemforing is determined, the orret values of onstant �0 and slope �1 are determinedby linear regression, the linear system foring is subtrated from the true foring, andthe standard deviation of the result is then alulated by sampling over the attrator.When ompared with the onstant model foring errors, we see an improvement ofslightly more than 50 perent.
3.4.2 Shadowing for the linear modelIf foring error is a good measure of model quality, then one might expet that a50 perent improvement in foring error would translate into a similiar improvementin shadowing times. In fat, the improvement is onsiderably greater. Figure 3.21shows the shadowing results where the shadowing radius is 0.2 and 0.4 at F = 10,
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Figure 3.19: Foring error standard deviation for onstant and linear models as afuntion of F.
and saled for other values of F as before. At F = 10, for example, the 0.4 radiusshadowing times have been improved by a fator of more than 4. Figure 3.22 is ashadow orbit for F = 10, whih ompares with Figure 3.11. The partiular shadowtime here is 2.49 as opposed to 0.5 for the onstant model ase. A histogram of theresults over 200 points is shown in Figure 3.20.The reason for this dramati inrease in shadowing ability is that the foring errorgives the initial slope of the model error, but for the linear model the slope of theerror urve dereases with time. In order to get a better measure of foring error overthe shadow period, we must take into aount the fat that it inreases nonlinearlywith time.
3.5 The integrated foring error - a spetral ap-proahThe foring error ontains power over a range of frequenies. However, the on-tribution to error em(t) of the model relative to the system over a ertain time � isfrequeny dependent, sine higher frequenies will tend to anel themselves out. Thede�nition of whih frequenies are high and low will depend on the referene time � .In terms of the linearised model error dynamis, equation 3.18, we ould say that themodel error after a time � depends on the vetor integral of the veloity error, not
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just its initial value.We therefore need a way to ompute the total foring error as a funtion of time.One way to do this, given a spei� time � , is to alulate the integral of the foringerror along a number of segments of the true attrator, all of whih have length � ,and then derive the standard deviation of the resulting integral. This will be thestandard deviation of the total foring error experiened over that time, and is theapproah we will adopt in the next hapter.Another method, whih is instrutive and aids interpretation of general lassesof error, is to use a power spetrum approah. For the onstant model, we summedthe terms of the foring error power spetrum to get the variane. Sine the foringerror inreased linearly with time, multiplying by a time � gave the variane of theintegrated foring error over that time (see Figure 3.14). We an do something similarin the nonlinear ase, by orretly weighting eah term of the spetrum to reet itsontribution to the integral. This will allow us to obtain the integrated foring errorfrom the foring error spetrum, but, more importantly, will show whih terms in thespetrum ontribute most to model error.The orret weighting for eah term in the power spetrum is determined byonsidering the ontribution of the orresponding sine wave to the total foring errorintegral. The onstant term p0 will integrate over a time � to p0� . However the powerp! at frequeny ! orresponds to a osine wave of the form os(!t+ �), where � is a
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partiular angle at time zero. The integral of the wave over the shadowing time isZ �0 os(!t+ �)dt = 1! (sin(!� + �)� sin(�)) (3.35)The orret weighting for this term of the power expansion, whih is the square ofthe Fourier oeÆient, is therefore1� 1!2 h(sin(!� + �)� sin(�))2i (3.36)where the expetation is over all initial angles �. The resulting weight is

W (!; �) = 4(!�)2 sin2(!�2 ): (3.37)
Figure 3.23 shows a plot of the weighting funtion W for � = 2�. It is 1.0 for frequenyzero, and e�etively uts o� powers with orresponding periods smaller than 2�=� .The impliation is that only foring error frequenies with periods greater than 2�=�will ontribute signi�antly to total foring error, and therefore to expeted shadowingtimes (subjet to the aveat that the magnitudes of high frequeny spetra are smallompared to the shadowing radius rs: even high frequenies will prevent the systemfrom shadowing if the resulting osillations are larger than the shadow radius).In Figure 3.24 the total foring error experiened by a typial shadow orbit forthe linear model is shown. Shadow radius rs is 0.2 and 0.4 at F = 10, and saled atother values. The results have again been normalised by dividing by the shadowing63
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Figure 3.24: Total shadow foring errors for linear model, normalised to shadow radius(dimensionless). Shadowing radius is 0.2 and 0.4 at F = 10, saled for other values.
radius rs, and the numbers are again near 2, exept at higher values of foring. Therelationship is less exat than it was for the onstant model, but it seems fair to saythat the main reason the linear model shadows so muh better than the onstantmodel is beause it redues the low frequeny foring error.This is indiated more learly in Figure 3.25, whih is a plot of the foring errorfor the two systems. Foring error for the onstant model is equal to the true systemforing, minus the onstant term at zero frequeny (the onstant model foring doesn'tvary with time). The linear model, however, redues the low frequeny spetra upto a frequeny of about 3.0, while leaving the higher frequenies unhanged. Weonlude that, at least in this example, the key to improving shadowing is to reduethe low frequeny foring error. The improvement in shadowing an be large, even ifthe redution in total foring error is modest.If the foring error has a white noise spetrum, so there is equal power at eahfrequeny, then the integral of the foring error will inrease with the square root oftime, as for a random walk [11℄. Another way to interpret the suess of the linearmodel over the onstant model is therefore to say that its power spetrum is less `red'.This will be of interest in Chapter 6 when we ome to look at weather models, whereerrors have in the past been modelled as white or red noise.
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Figure 3.25: Power spetra of foring error for onstant and linear models at F = 10.
3.6 A loal linear preditor modelA more sophistiated approah to modelling the true system is to take advantage ofthe fat that the true system foring may exist on a low dimensional attrator. Twoases were examined, the normal system with F = 10, and a modi�ed system wherethe oeÆient  whih determines the oupling between the ~x and ~y variables is setto a higher value of 1.2 and F is redued to 2, as was done in Figure 2.15.
3.6.1 Preditor model at low foring and high ouplingReferring to the bifuration diagram Figure 2.13 and the system trajetories in Figure2.15 for oupling oeÆient 1.2 and foring 2, we see that the two-level system withthese parameter values is in a quasi-periodi state. If we attempt to model thissystem with the onstant or linear models, we run into the problem that at the lowlevel of foring these systems are periodi and have either the wrong amplitude or thewrong frequeny (or both). Figure 3.26 shows the best mathes that we ould �ndby varying the parameters. The onstant model has P  = 1:5, while the linear modelhas onstant term �0 = 1:8 and slope �1 = �0:2. Neither of them shadow for theinitial ondition shown as long as 3 time units.Figure 3.27 is a plot of loal foring ~Fi vs ~xi for the true system, and an beompared with Figure 3.15. The linear model uses the information in the �gure bydrawing a straight line through the data and deriving a relationship between ~xi andthe loal foring ~Fi. However for this system it is possible to do muh better, beause
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Figure 3.26: Shadowing orbits for onstant, linear and preditor models with  = 1:2and F = 2.
the foring exists on a low-dimensional attrator: in this ase, a quasi-periodi orbit.If we speify all the ~xi's then we an determine the foring to arbitrary auray.The tehnique used to do this is loal linear predition [61℄. The �rst step is toonstrut a learning set, onsisting of points ~x on the attrator of the true system(projeted into model spae) and orresponding loal foring values. The learning setis built inrementally. For eah new ~x, the existing learning set is used to preditthe foring. If the predition fails to land within a presribed tolerane of the trueforing, the point is added to the learning set. Preditions are made using the loallinear method: nearest neighbours to the point in question are seleted and a linearinterpolation performed to estimate the orresponding foring. The number of nearestneighbours used is variable, but here was set to 16. Should the foring exist on a lowdimensional attrator, the proess will almost ertainly onverge so that the learningset e�etively spans the attrator in an eÆient way.Figure 3.28 is a plot of the learning set as ~x2 versus ~x1, whih an be omparedwith the orbit in Figure 2.15(a). Figure 3.29 is (~xi; ~Fi) pairs, whih ompares withFigure 3.27. We see that the learning set just onsists of points distributed fairlyregularly over the quasi-periodi attrator.One a learning set has been onstruted, we an de�ne a preditor funtion P pi (x)as follows: given a vetor x, look up the nearest neighbours in the learning set. Eahof those points has an assoiated foring. Perform a linear interpolation to give the
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predited foring for the new point. We thus arrive at the modeldxidt = xi�1(xi+1 � xi�2)� xi + P pi (x) preditor model: (3.38)Shadowing results for this system are exellent, as we would expet. The shadow-ing orbit in Figure 3.26 for the preditor model is nearly indistinguishable from thetrue system, and appears to follow the true quasi-periodi orbit inde�nitely.
3.6.2 Preditor model at high foring and regular ouplingThe loal linear preditor method was applied to model the true system with thenormal oupling oeÆient of 1.0, and F = 10. The predition ability of the loallinear method doesn't onverge as well as for the previous ase, so with a learning setof 4096 points the variane of the foring error is about 0.6, whih is the same ahievedby the onstant model. Muh of the variane, however, is in higher frequenies, whihhave redued e�et on shadowing times. Figure 3.30 shows the model error urveompared with the other systems. The slope at time zero is the same as for theonstant model, due to the high frequeny variane, but the urve soon attens outand the slope beomes loser to that of the linear model. We would therefore expetshadow results to be somewhere between the results for the other two models, i.e. ina range [0.23,0.8℄ at a shadowing radius of 0.2, and [0.5,1.9℄ for shadowing radius 0.4.It is possible to improve this estimate by plotting the integrated foring error as afuntion of time, whih is done in Figure 3.31 for all three systems. As expeted, the
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Figure 3.30: Model error for preditor model in early stages, ompared with onstantand linear models.
preditor model aumulates foring error over a shadowing orbit at a rate somewherebetween the two other models. Also shown are lines joining the points where theonstant and linear models fail to shadow at shadowing radius 0.2 and 0.4. From thisgraph we would expet the preditor model to shadow for about 0.55 time units atshadow radius 0.2 and 1.2 time units at shadow radius 0.4.Atual shadowing alulations give shadow times of 0.65 time units at radius 0.2and 1.3 time units at radius 0.4. These are in the right range, and show that theforing error urves give a good indiation of shadowing times, even though the modelsbeing ompared are quite di�erent. Foring error has the advantage of being muhfaster to alulate than expliit shadow orbits, whih an be a fator for omplexmodels suh as real atmospheri models.
3.7 SummaryIn this hapter we have investigated model error from a mostly empirial point ofview, using the Lorenz system and its various models to explore issues suh as ve-loity error, displaement error, and shadowing. The prinipal �nding has been thatshort to medium range preditability, as measured by shadowing times, depends to alarge extent on integrated foring error, whih in turn depends on the foring errorfrequeny spetrum. For the onstant model, the integrated foring error inreasesroughly linearly with time, at a rate determined by the square root of the foring. The
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Figure 3.31: Plot of integrated foring error versus shadow time for onstant, linearand preditor models, and expeted limits for shadow radius 0.2 and 0.4
fat that this holds despite the omplexity of the foring error's spetral bifurationdiagram is an unantiipated emergent property of the model.One way to view the foring error is like the tiller of a boat. If the tiller is held�rst too far to one side, then too far to the other, but with frequent orretions - asin high frequeny foring error - then the boat will tend to stay on the right path.If, however, the tiller is held too long to one side before orreting - as is the asewith low frequeny foring error - then the boat will drift far o� ourse. This is thease even if the average error over all time is zero. The onstant Lorenz model haszero average foring error, but still gives signi�ant short to medium range preditionerrors. It therefore seems possible that a weather model whih also has zero averageforing error, and produes long term foreasts in balane with the limatology, maystill fail in the short term.Beause of the important role of low frequeny veloity error, any hange to themodel whih addresses this will improve performane. It was shown with the lin-ear model that relatively minor improvements in parameterisation, whih sueedin reduing low frequeny veloity error, an have an ampli�ed e�et on shadowingtimes.While shadowing times for the onstant model varied almost linearly with shadowradius and veloity error, the relationship was less lear ut for the linear model. Itappears that veloity error in itself is not suÆient to predit shadow times. Sine
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shadowing is the result of an interplay between initial ondition error and model error,this isn't surprising.In the next hapter, we will hange our approah from an experimental one -looking from the outside in - to a more detailed one, where we analyse the ombineddynamis of model and initial ondition error. In doing so, we develop a more sophis-tiated way to estimate shadowing times, whih will be appliable to any dynamialmodel of any system.
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Chapter 4
Linearised dynamis and the
shadow law
For the Lorenz '96 systems, it was found that shadowing times depended largelyon the veloity error of the model relative to the true system. In general, though,shadowing performane will also depend on other harateristis of the model. Ine�et, there is a trade o� between displaement error and model error, and a shadoworbit an loosely be viewed as one whih sueeds in o�setting the e�et of modelerror by a good hoie of initial displaement.In this hapter we will further investigate these two types of error, and study howthey interat. Our �rst aim is to develop a robust measure of model error, motivatedby the results of the previous hapter. By onsidering the linearised dynamis, wedevelop a hierarhy of tehniques for estimating shadow times, without the need toprodue expliit shadow orbits. A shadow law, whih gives a lower bound on shadowradius in terms of the model error, is derived. The methods are tested on a variety ofsystems, as preparation for the appliation to weather models in Chapter 6. Finally,we use the insights gained to propose fast methods of produing shadow orbits.One of the main goals of this thesis is to quantify the e�et of model error onshadow times. When we onsider the omplexity of a typial shadowing orbit, it mightseem unlikely that shadow times an easily be predited just from some measure ofmodel error, without atually searhing for shadow orbits as was done in Chapter3. For example, Figure 4.1 is another view of the shadow orbit for the linear modelshown previously in Figure 3.22. It is an attempt to piture what is going on in8 dimensional spae. The displaement vetors have �rst been projeted onto thehyper-plane normal to the true orbit. The radius of eah point is then alulated as
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Figure 4.1: Shadowing orbit for linear model, in polar oordinates with radius thedisplaement from true orbit, and angle with respet to initial o�set. The irle ofradius 0.4 represents the shadowing radius. The shadow orbit starts near the extremeradius 0.4 on the right hand side, then exits on the upper left hand side after 2.49time units.
the displaement of the shadow orbit from truth, while the angle is the angle of thedisplaement at that time with the original displaement. The shadow orbit startsnear the extreme radius 0.4 on the right hand side, then exits on the left hand sideafter 2.49 time units. (As an aside, if we ould searh for the longest shadowing orbitover all possible starting points, it would always start near the outer radius. Thisis beause, if the longest orbit started at some other radius, then we ould run timebakwards until the orbit exited. Using the exit point as an initial ondition wouldthen produe a longer orbit, ontraditing our assumption that the original orbit waslongest.)It is lear from Figure 4.1 that the ability of a model to shadow will dependnot only on model error, but on a omplex interation between model error anddisplaement error. A model with large sensitivity to initial ondition, for example,may stand a better hane of produing an orbit that shadows, simply beause nearbyorbits tend to diverge out in all diretions (the mahine gun analogy). A model's
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sensitivity to initial onditions need not be a bad thing if it is shared by the realsystem, but the point is that an estimate of shadow times based on model error aloneouldn't take this e�et into aount.A theme of this thesis (and other studies of omplex systems), though, is that thesystems are sometimes more ompliated in the details than in their overall behaviour.For that reason, as well as the results of Chapter 3, there are grounds for optimismthat even ompliated shadow trajetories an, at least in an average sense, showertain preditable properties. We begin the searh for suh properties, though, byonsidering, not marosopi behaviour, but what one might onsider the opposite:the linearised dynamis of error evolution.
4.1 The linearised dynamisIt was found in the previous hapter that a useful indiator of shadowing ability wasthe integrated veloity error, whih was alulated by linearising the model errorand integrating. Motivated by that result, we now apply the same tehnique to theinteration between displaement error and model error, by linearising both types oferror around the true orbit. The following theorem states that, even in the presene ofmodel error, the evolution of errors an be approximated by the linearised dynamis.Theorem. Let ~x(t) be a solution of the system equationd~xdt = ~G(~x); (4.1)and let x(t) be a solution of the model equationdxdt = G(x); (4.2)
where ~G and G are C1. If the true system and the model system exist in separatespaes, then as before we impliitly assume the existene of a projetion operatortaking the true system into the model system spae, but omit it from the equationsbelow for larity. De�ne e(t) = x(t)�~x(t), Ge(~x(t)) = G(~x(t))� ~G(~x(t)). The linearpropagator of the model around the true orbit isM(t) = eR t0 J(~x(t))dt; (4.3)where J is the Jaobian of G. We also de�ne the propagator from time s to time t asMs(t) = eR ts J(~x(t))dt: (4.4)
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Then given a referene time � > 0, and � > 0, there exists a radius r > 0 suh that,if ke(t)k < r for all t 2 [0; � ℄, then
ke(t)�M(t)e(0)� Z t0 Ms(t)Ge(~x(t))dtk < � 8t 2 [0; � ℄: (4.5)Proof. From the system equations, we an writededt = dxdt � d~xdt= G(x(t))� ~G(~x(t))= G(x(t))�G(~x(t)) +Ge(~x(t))= G(~x(t) + e(t))�G(~x(t)) +Ge(~x(t)): (4.6)Performing a Taylor expansion of G around ~x(t), and retaining only the zero and�rst order term, we obtaindedt = J(~x(t)) � e(t) +Ge(~x(t)) +R(t) (4.7)where the remainder term R(t) is O(ke(t)k2). Therefore, 9rt > 0 3 ke(t)k < rt=) kRd(t)k < �� . Pik r to be the minimum suh rt (possible sine [0; � ℄ is aompat set). Integrating from 0 to t for 0 < t � � then gives [48℄
e(t) =M(t)e(0) + Z t0 Ms(t)Ge(~x(t))dt+ Z t0 R(t)dt; (4.8)and ke(t)�M(t)e(0)� Z t0 Ms(t)Ge(~x(t))dtk = k Z t0 R(t)dtk < �� t � � (4.9)whih proves the result.NowZ t0 Ms(t)Ge(~x(t))dt = Z t0 Ge(~x(t))dt+ Z t0 (I�Ms(t))Ge(~x(t))dt: (4.10)Let d(t) = Z t0 Ge(~x(t))dt: (4.11)Sine the linear propagator approahes the identity matrix as time (or shadow radius)goes to zero, it is easily seen that the termZ t0 (I�Ms(t))Ge(~x(t))dt (4.12)is O(r2), and ats as a relatively small perturbation on d(t). We will therefore negletthis higher order term, but return to estimate it for weather models in Chapter 6.75



Therefore the evolution of the error e(t) an be approximated by the lineariseddynamis e(t) � y(t) + d(t): (4.13)where y(t) =M(t)e(0): (4.14)Note the approximation only holds for model orbits x(t) whih remain within thetolerane r of the referene trajetory ~x(t). In other words, it only holds for orbitswhih shadow at that radius. The size of the radius will depend on the system, themodel, and the allowed error �.Note also that the linear propagatorM(t) is now alulated along the true traje-tory ~x(t), rather than the model trajetory. It an determined by diretly integratingthe model Jaobian along the true orbit, but this is a lengthy proedure. A ommonlyused alternative is to estimate the linear propagator by omputing the trajetories of(n+1) (or more) slightly displaed orbits. In this ase, though, the tehnique annotbe applied diretly sine the orbits will be inorret. A way round this problem is toonsider the modi�ed system dxdt = G(x(t))�Ge(~x(t)) (4.15)where ~x(t) is the true orbit whih we are trying to shadow. The funtion Ge(~x(t)) isa funtion only of t, and the Jaobian of G�Ge is exatly the same as the JaobianJ of G. However the modi�ed system 4.15 also has the property that ~x is a solution.Therefore the linear propagator for this system, evaluated on the ~x orbit, is theintegral of the Jaobian over that orbit, as required.Sine G and ~G speify the state spae veloities of the model and true systemrespetively, the funtion Ge is just the veloity error. The vetor d(t) in 4.11 istherefore the integral of the veloity error along the true orbit, and has the dimensionof distane. Setting e(0) equal to the zero vetor in (4.13), we havee(t) � d(t) (4.16)so d(t) is the approximate displaement of a model solution, whih is started on thetrue initial ondition, from the true solution after a time t. De�ne the loal modeldrift after a time t to be d(t) = kd(t)k (4.17)(the drift is of ourse also dependent on the true orbit ~x whih is taken as set). Themodel drift is then a good indiator of the model's preditive apaity: the smaller76
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Figure 4.2: Foreast errors for Lorenz model/system, x1 omponent. As in Figure3.2, a number of short term model foreasts were initiated at regular intervals alonga true trajetory. The errors have here been saled by a fator 10. The total errormagnitude over all xi is also shown, again saled by a fator 10. Beause it ontainsall omponents, it is larger than the x1 error. The drift, also shown saled by afator 10, is the vetor sum of the total veloity errors. The almost linear inreaseup to t = 0:6 indiates that the error vetors are aumulating, and are therefore ina similar diretion. Above t = 0:6, however, the drift begins to redue beause theveloity error has rotated away from its original orientation, and projets negativelyonto the drift.
the drift d(t), the better the predition of the true system's position after the elapsedtime t. In the Lorenz '96 systems, veloity error on the true orbit is due entirely toforing error, so for those systems the drift is the same as integrated foring error.Figure 3.2 in Chapter 3 showed the veloity errors for the Lorenz system. Figure4.2 is similar, but the saling of the errors has been redued from 20 to 10, and thedrift, whih is the vetor integral of the veloity errors, is also shown. Beause thedrift is state dependent, it is not neessarily systemati over long periods, but it maytend to aumulate in the short to medium term. In the �gure, the drift inreasessteadily at �rst, whih one would expet if the veloity errors were in roughly thesame diretion. Above t = 0:6, however, the drift begins to redue, implying that theveloity error has now rotated so that its dot produt with the drift is negative.
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4.2 Model error vs initial ondition error (ontin-ued)The linearised dynamis provide a oneptual framework whih helps to separate outthe respetive roles in the shadow proess of model error and initial ondition error,and in the next setion this framework is used to develop a tehnique for estimatingshadow times. First, though, it is worth larifying the fat that these two formsof error, due to the model and displaement, need bear no speial relation to eahother: the latter is a property of the model alone, while the former depends also onthe true system. For example, suppose that, after a given time � , we alulate theleading singular vetors of the model's linear propagator, whih de�ne the diretionof displaement whih gives largest growth at time � . These diretions will dependpurely on the model, regardless of the true system. The drift vetor d(t), however, is ameasure of the di�erene between the model and the true system. There is no reasonfor it to be aligned, or not, with the leading singular vetors. As a onsequene, anensemble of initial onditions, formed by perturbing in the diretions of the leadingsingular vetors (as is done at ECMWF), need not o�set model error.For example, Figure 4.3 shows errors of the onstant model relative to the two levelLorenz system (ompare also Figure 3.4). In the upper panel, perturbations of size0.2 are added to the model initial ondition in the positive and negative diretions ofthe leading singular vetor, to form a two-member ensemble. Relative to the model,these perturbations have grown at time 0.34 by about a fator 5.0. Also shown in thebakground is the density of errors found by randomly perturbing the initial onditionby an amount 0.2 and taking a histogram of the resulting errors over 1000 runs. Thesingular vetor perturbations give maximum displaement for t = 0:34, as expetedby onstrution, but not for higher times.In the lower panels, where errors are shown relative to truth, the situation is verydi�erent. The errors are larger than for the previous ase, so if ensemble spread ismeasured relative to truth it will be larger than if measured relative to the modelontrol. Also, neither singular vetor perturbation e�etively o�sets model error,ompared to the random displaements. The negative perturbation nearly apturesthe maximum error, but other random displaements do slightly better: the `worst-ase' displaement now depends on the drift vetor.This �gure is a graphi illustration of two fats whih must be taken into aountwhen model error is signi�ant. Firstly, spread will appear smaller if measured with
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respet to the model than to truth. Seondly, no member of the ensemble needsueed in ounterating the e�et of model error.Figure 4.4 is a shemati diagram showing how model error an distort an ensembleand a�et the spread. The initial perturbations v+ and v�, aligned with the leadingsingular vetor, evolve to u+m and u�m under the model dynamis, but to u+t and u�tunder the true dynamis. The angle �t therefore shrinks, and the vetors u+t andu�t are no longer approximately anti-parallel. Sine the evolved perturbations withrespet to truth are larger than those with respet to the model, the model spread isexpeted to be smaller than the true spread.A similar e�et an be seen in 4.5, whih shows the osine of the angle enlosedby the positive and negative perturbations for the onstant model. At initial timethe osine angle is -1, indiating that the perturbations are anti-parallel. For timesup to about t = 0:6 the perturbations taken with respet to the model remain nearlyanti-parallel, but with respet to truth the osine angle atually beome positive.This implies that both perturbations have e�etively rossed over to the same sideof the true orbit, not a desirable property if the ensemble is supposed to enompasstruth [23℄.A good `sanity test' for any ensemble, therefore, is to take dot produts of pertur-bations in this manner, and follow their evolution with time. This was done in detailfor the ECMWF models by Gilmour [23℄, [24℄, with the di�erene that perturba-tions were measured relative to the model ontrol itself, as oppposed to the observedweather, so model error wasn't a fator. It was found that the test fails anyway dueto nonlinearity of the model - a separate problem.
4.3 The shadow estimation tehnique (SET)Beause the linearised dynamis model the evolution of small errors around a truetrajetory, they an be used to model the shadowing proess. In this setion, wedevelop a hierarhy of tests whih allow the determination of approximate shadowtimes for a given model/system pair.Referring to equation 4.14 of the linearised dynamis, we an write the linearpropagator matrix in its singular value deomposition (SVD) form [25℄ asM(t) = U(t)�(t)VT (t): (4.18)If M is an n by n matrix, then U and V are matries of the same dimension withorthonormal olumns, while� is a diagonal matrix with positive diagonal entries. The79
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Figure 4.4: Shemati diagram showing how the angle between the positive andnegative perturbations in an ensemble an shrink when taken with respet to truth(�t) as opposed to the model (�m). See also [23℄, [24℄.
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linear propagator maps the i'th olumn vi of V to the i'th olumn ui of U multipliedby the i'th diagonal entry �i of �. Hyperspheres in the spae of V olumns aretherefore mapped to ellipsoids in the spae ofU olumns, where eah axis is multipliedby a fator �i.Referring to equation (4.14), it therefore follows that if the initial ondition lieswithin a ball of radius rs about ~x(0), then after an elapsed time t the point y(t) willsatisfy the ellipsoid equation nXi=1 (y(t) � ui(t))2�i(t)2 < r2s (4.19)
where y(t) � ui(t) is the projetion of y(t) onto the i'th basis vetor given by theolumns of U(t). From equation (4.11), this is the same asnXi=1 ((e(t)� d(t)) � ui(t))2�i(t)2 < r2s : (4.20)
Now, an initial ondition displaed by the vetor e(0) will shadow until a time t ifke(t)k < rs where rs is the shadow radius. Beause e(t) is in the ellipsoid given by(4.20), this is the same as saying that the distane between the origin and the o�setellipsoid should be smaller than the shadow radius rs.82



The diret way to solve this problem is to �nd the initial displaement whih hasthe smallest �nal displaement under the linearised dynamis. Before doing so, we�rst note that, to a good approximation, the desired result will be true if the zerovetor lies within an enlarged ellipsoid, where all the axes have been inreased by anamount rs (the agreement is exat at the poles, and very lose elsewhere). This isshown shematially in Figure 4.6. The enlarged ellipse is all imagesU(t)(�(t) + I)VT (t) � e(0) + d(t); (4.21)where the identity I has been added to �(t) to streth eah axis an amount rs.We therefore obtain a simple shadowing ondition. The model will shadow the truesystem for a time � if � is the smallest positive time suh thatnXi=1 (d(�) � ui(�))2(1 + �i(�))2 = r2s : (4.22)
Sine the geometri argument of expanding eah axis of the ellipse was only ap-proximate, the above ondition will give shadow times whih are slightly inorret.In fat, it is easy to see that it will tend to slightly underestimate shadow times of thelinearised dynamis. Suppose that ondition (4.22) is satis�ed. Then the ellipse ofimages ontains the zero vetor, and there is an initial displaement e whih satis�esU(t)(�(t) + I)VT (t) � e+ d(t) = 0: (4.23)Rearrangement givesU(t)�(t)VT (t) � e+ d(t) = �U(t)VT (t)e: (4.24)Now kU(t)VT (t)ek = kek sine the matries U(t) and VT (t) are orthonormal. Also,by assumption, kek � rs, so it follows thatkU(t)�(t)VT (t) � e+ d(t)k � rs (4.25)and the point e shadows under the linearized dynamis. The approximation thereforewill tend to underestimate shadow times.A more aurate estimate of shadow times using the linearised dynamis an beattained by diretly solving the following problem:minimiseC(e) = kU(t)�(t)VT (t) � e(t) + d(t)ksubjet to ke(0)k � rs: (4.26)
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In other words, �nd the initial displaement e(0) whih has the smallest �nal dis-plaement (we neglet for now the heking of displaements at intermediate times).This optimisation problem an be solved using the Lagrange method. Dropping thedependene on time for larity, we seek stationary points of(U�VTe+ d)T (U�VTe+ d) + �eTe (4.27)where � is a salar Lagrange multiplier. Setting the variation equal to zero givesV�UT (U�VTe+ d) + �e = 0: (4.28)Solving for e, and using the fat that UTU = VTV = I, we �nde = �(V�2VT + �I)�1V�UTd: (4.29)Now it is easily seen by diret substitution that(V�2VT + �I)�1 = VA(�)VT (4.30)where A(�) is the diagonal matrix with i'th diagonal entryai(�) = (�2i + �)�1: (4.31)Substituting into the expression for e givese = �VA(�)�p (4.32)where p = UTd.The next step is to solve for �. We �rst note that the linearised dynamis mappoints e on the outside of the shadow radius ball to image points on the outside of theellipse. The maximum shadow time under the linearised dynamis (not neessarilythe real dynamis) will our when there is just one point that shadows, so we anassume that the image is on the perimeter of the ellipse, and therefore that e satis�eskek = rs. Referring to equation (4.32), this implieseTe = pT (�A(�))2p = r2s ; (4.33)whih is equivalent to nXi=1(pi�iai(�))2 � r2s = 0: (4.34)The multiplier � an therefore be found by using Newton's method to �nd zerosof the above expression. One � has been determined, we solve for e using (4.32).85



The image point U�VTe+d is then seen to be �UA(�)p, with magnitude equal tothe square root of �2Pni=1(piai(�))2.We thus arrive at a new shadowing ondition, whih is in two stages. Given aspei�ed time t, �rst alulate the initial displaement whih yields the minimumdisplaement at that time. Then hek to see whether the magnitude of the imagepoint is smaller than the shadow radius. If it is, then the model shadows until time tunder the linearised dynamis (again negleting what happens at intermediate times,whih need also to be heked).The shadowing ondition involves more omputation than (4.22), but is easy toimplement. Also, sine (4.22) will tend to underestimate the shadow time, the detailedtest need only be arried out when the simpler test fails. For the models studied here,it usually adds about a perent or less, as measured in terms of the allowable driftover a shadow orbit, and the di�erene goes to zero as the shadow radius dereases.Finally, sine the multipliers �i are all positive, we an writenXi=1 (d(�) � ui(�))2(1 + �i(�))2 � nXi=1(d(t) � ui(t))2 = nXi=1 di(t)2 = d(t)2 (4.35)
where we have also used the fat that the vetors u form an orthonormal basis. Itfollows from equation (4.22) that if the drift d(�) at time � is smaller than rs, themodel should shadow at least until that time.We therefore an apply a hierarhy of shadow tests, eah of inreasing omplexity.For inreasing times t we �rst test equation (4.35), to see if the drift is smaller thanthe shadow radius. If this fails, we test equation (4.22), to hek if the enlarged ellipseontains the zero vetor. When that fails, we an do a full solution of the eigenvalueproblem (if desired, though its e�et is small). We shall refer to this proedure asthe shadow estimation tehnique, or SET. The SET depends only on the model drift,the modi�ed linear propagator, and the shadowing radius, and is appliable wheneverthe modi�ed linear propagator is a good approximation to the system dynamis atdistanes smaller than the shadow radius from the true attrator.We an now quantify our observation that a model whih tends to satter orbits inall diretions given small displaements may shadow quite well (a shot gun may hit itstarget better than a well-aimed rie). Suh a model will have large multipliers �i, sothat a ball of initial onditions blows up into a large ellipse. This will redue the lefthand side of equation (4.22). If we ompare between models where these multipliersare similar, then the dominant fators are model drift and shadowing radius. In thenext setion, we derive a law that applies to any model whih is loally dissipative,i.e. more like a rie than a shot gun. 86



4.4 A shadowing lawUnder ertain irumstanes, shadow times an be estimated by onsidering modeldrift only, without reourse to the linear propagator. Suppose �rst that shadow timesare relatively short, so that the singular value multipliers (whih tend to unity as tgoes to zero) are lose to 1.0. Then from equation 4.22 we have
r2s = nXi=1 (d(�) � ui(�))2(1 + �i(�))2 (4.36)

� nXi=1 (d(t) � ui(t))24 (4.37)
= Pni=1 di(t)24 (4.38)= d(�)24 : (4.39)The shadowing time � then satis�esd(�) = kd(�)k � 2rs (4.40)and so is the time at whih the model drift exeeds the shadow diameter.In suh ases, the ratio of drift (or equivalently, for the Lorenz systems, integratedforing error) to shadow radius for a typial shadow orbit should be approximately 2.This is exatly what was found in Figure 3.14 for the onstant model. The number 2atually appears to be an upper bound, for all but low values of F .The property learly holds when displaement error is e�etively zero, sine, fora referene time � and drift vetor d(�), the model trajetory an simply begin at adisplaement of �0:5d(�) and end at a displaement of �0:5d(�). It will also tendto hold in a statistial sense, though, whenever

h nXi=1 (d(�) � ui(�))2(1 + �i(�))2 i � d(�)24 (4.41)
whih is a muh weaker ondition.Suppose that the model exists in a high dimension state spae, and the omponentsof the drift vetor are unorrelated either with eah other or with the diretion of thesingular vetors. In this ase,

h(d(�) � ui(�))2i = hd2i (�)i = 1nhd2(�)i: (4.42)
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Suppose now that we �x the magnitude of the drift vetor, and the multipliers �i,and take expeted values of both sides of equation 4.22 over all possible orientationsof the singular vetors. Then, from equations 4.22 and 4.42,
hr2si = h nXi=1 (d(�) � ui(�))2(1 + �i(�))2 i (4.43)

= d(�)2n h nXi=1 1(1 + �i(�))2 i (4.44)
where the shadow radius rs is now a funtion of the orientation of the singular vetors.If the model is loally dissipative in the sense that it ontrats volumes in statespae [47℄ over the �nite time � , then we laim that the sum on the right hand sidehas a minimum value of n4 when all �i = 1. To see this, onsider �rst the ase wherethe model exatly preserves volume, whih will our ifnYi=1�i = 1 (4.45)
where we have dropped the dependene on � . Writing the minimisation problem asa Lagrangian, we seek minima ofnXi=1 1(1 + �i)2 + �( nYi=1�i � 1) (4.46)
where � is a onstant multiplier. Taking partial derivatives with respet to �j, andsetting to zero, gives

0 = �2(1 + �j)3 + �Yi 6=j �i = �2(1 + �j)3 + ��j (4.47)
where we have used the fat that Qni=1 �i = 1. Therefore

�j = 2�(�j + 1)3: (4.48)This equation represents the intersetion between a straight line and a ubi in �j,and has two solutions for � > 16, and a single solution when � = 16 and all �j = 1.Sine � is the same for all j, the multipliers �j an only take on one of a maximumtwo values.We laim that the solution �j = 1 for all j represents a global minimum. The fullproof is ompliated, and is given in the Appendix. For the 2-D ase, a geometrialargument is also possible. We wish to show that1(1 + �1)2 + 1(1 + �2)2 � 12 (4.49)
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whih is the same as saying that the point x1 = 1, x2 = 1 is inside the ellipsex1(1 + �1)2 + x1(1 + �2)2 � 12 : (4.50)
When �1 = 1 and �2 = 1, the point (1; 1) is at the boundary of the ellipse. Any othervolume retaining ellipse, whih is ontrated along one axis and expanded along theother, will not ontain this point. It therefore follows that1(1 + �1)2 + 1(1 + �2)2 > 12 (4.51)
if �1 (and by impliation �2) doesn't equal 1.Sine the ritial point with �i = 1 for all i represents a global minimum, it follows,from equation 4.44, that hr2si = d(�)2n h nXi=1 1(1 + �i(�))2 i (4.52)

� d(�)2n n4 (4.53)= d(�)24 ; (4.54)or qhr2si � d(�)2 : (4.55)Therefore the allowable shadow radius, in an RMS sense, for a given magnitude ofdrift, is greater than or equal to half the drift. If the model is loally stritly dissipa-tive, rather than volume preserving, the inequality is replaed by a strit inequality.This is a powerful result, sine it applies to an extremely broad lass of haoti models,inluding, typially, those whih have an attrator [47℄.Note that we are treating the shadow radius rs as a funtion of the shadow time� , while in the shadow alulations of the Lorenz '96 and other systems we solved forthe shadow time as a funtion of the shadow radius. Sine �(rs) is a monotoniallyinreasing funtion, it is possible to invert the problem in this way. We will see inChapter 6 that for weather model it is usually more onvenient to solve for the shadowradius as a funtion of shadow time.De�ne the dissipation oeÆient q(�) asq(�) = s n4hPni=1 1(1+�i(�))2 i : (4.56)
Then equation 4.44 an be writtend(�) = 2q(�)qhr2s(�)i: (4.57)89



The dissipation oeÆient q(�) is a measure of loal model dissipation in statespae. A model where all the singular value multipliers equal 1 has a dissipationoeÆient of exatly 1. If model error is high, or the shadow radius is small, thenshadow times will be short and the dissipation oeÆient will be near 1, so RMS driftwill approximately equal the shadow diameter. The dissipation oeÆient an eitherbe alulated diretly, or estimated from some idea of the likely distribution.As an illustration of a volume preserving model, suppose that the magnitudes ofthe n singular vetor multipliers �i(�), when arranged in desending order, follow apower law distribution, so that �i(�) = �1� 2in1 : (4.58)The largest singular vetor multiplier is therefore �1, and the smallest is �n = ��11 .An equal number of diretions ontrat as expand in phase spae, and beause theprodut of the multipliers is 1, suh a model would preserve state spae volume.Given the ideal power law distribution, and assuming the dimension n is large, wean approximate the sum by an integral, sonXi=1 1(1 + �i(�))2 = Z n=2�n=2 1(1 + �1� 2sn1 )2ds (4.59)
= n2 � n2log(�1) �1 � 1�1 + 1 : (4.60)

The dissipation oeÆient is therefore
q(�) = 12q1� 1log(�1) �1�1�1+1 : (4.61)

Values of q are plotted as a funtion of �1 in Figure 4.7. The maximum value of 1.0ours for �1 = 1:0, as expeted.Real models often show a similiar, roughly power law distribution. Figure 4.8plots the distribution of singular value multipliers, and dissipation oeÆient q (wherethe expetation operator in equation 4.57 is supressed), for the onstant and linearmodels. Results are averaged over 200 shadow runs at shadow radius 0.4. The +marks the entre point: for either model, more singular value multipliers ontrat thanexpand. The models are therefore more dissipative than the power law distributiondesribed above. The onstant model has a lower q than the linear model, and so ismore dissipative. This is largely beause q is evaluated over maximal shadow orbits,and the onstant model shadows for shorter times than the linear model.
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We summarise these results with the following formal statement of the shadowlaw.The Shadow Law. Suppose that the model of a true system is loally dissipativein the sense that the singular value multipliers �i of the linear propagator, evaluatedalong the true orbit over a time � , are volume ontrating, i.e. Qni=1 �i � 1. Assumealso that the drift vetors are unorrelated with the singular vetors. Then, as afuntion of drift d(�), an approximate lower bound on shadow radius is given byqhr2s(�)i = 12d(�): (4.62)When model error is high, or shadow times are short, then the shadow radius willapproah this bound, so rs(�) � 12d(�): (4.63)The shadow law therefore provides a lower bound on shadow radius, in terms ofdrift, whenever the model is dissipative over the time tested. The shadow rule willprove indispensable for the weather models enountered in Chapter 6, for whih it isimpossible to alulate all the singular vetors, and the full SET annot be invoked.
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4.5 The model error indexWhile the measurement of model error may be ompliated by sensitivity to initialonditions, the degree to whih this holds true depends on the strength of model errorrelative to displaement error. For example, if a model is only moderately sensitiveto initial onditions, but generates huge model error, then it should be relatively easyto measure model error. If, on the other hand, the model is exellent, but both it andthe system are highly sensitive to initial ondition, then measuring model error willbe more diÆult.The relative strength of model and displaement error also determines whih plaeslimits on shadow times. When model error dominates, shadow times will be deter-mined primarily by the drift, while if model error is small the model dissipation mustbe taken into aount.We propose two di�erent measures for the omparison of model error with dis-plaement error. The �rst ompares the fores of drift with those of dissipation. Usingthe de�nition of the dissipation oeÆient q(�), the linearised dynamis in RMS formwere written in equation 4.57 asd(�) = 2q(�)qhr2s(�)i: (4.64)We de�ne the �rst model error index M1(�) to beM1(�) = h d(�)2rsq(�)i: (4.65)
M1(�) provides a measure of the relative strength of model error, as measured bythe drift d(�), ompared to the dissipation, as measured by q(�). If it is the asethat M1(�) > 1, then model error dominates dissipation, and the model won't beexpeted to shadow for the time � at radius rs.For large models, it may be impossible to evaluate the dissipation oeÆient q(�).For dissipative models, and any of the models studied in this thesis, it holds thatq(�) < 1. Therefore we have M1(�) < d(�)2rs : (4.66)Another measure of model error relative to displaement error is to use, insteadof the dissipation, the growth of the leading singular vetor. Suh a measure wouldbe useful when judging the likely impat of model error on ensembles reated byperturbing in the diretion of the leading singular vetors. We therefore de�neM2(�) = d(�)2rs�max(�) (4.67)
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where �max(�) is the maximum singular value multiplier at the shadow time, d(�) isthe drift at the shadow time, and rs is the shadow radius. If model error is high, thendrift is about equal to the shadow diameter, so the expression simpli�es to
M2(�) � 1�max(�) : (4.68)

For the onstant model typial values of M2(�) are about 0.10, and for the linearmodel about 0.017. Its preise value will vary around the attrator, espeially forsystems like Saltzman where shadow times vary enormously.Either one of these measures an be used to ompare di�erent model/system pairs.In Chapter 6, we useM2 to ompare the likely e�et of error on ensembles in weathermodels, with the orresponding e�et on ensembles of the Lorenz '96 onstant model.
4.6 Appliations of the shadow test
4.6.1 The Lorenz '96 systemsThe SET is a general method for estimating shadow times, using only the drift andsingular vetor multipliers, that an be applied to any model/system pair. In thissetion we test the method for a number of ases, by omparing the estimated timeswith atual shadow times.The �rst omparison is with the Lorenz '96 models already studied in some detail.Figures 4.9 and 4.10 show the results when applied to the onstant and linear models,where the truth is the two level system. Shadow times have been averaged over twentyruns. The shadow radius has again been saled, and takes the values 0.2 and 0.4 atF = 10. Agreement is quite good. A more detailed view of the results for the linearmodel at F = 10 is given by Figure 4.11, whih ompares a histogram of shadowtimes over 200 starting points.The shadow law states that the maximum drift tolerated over a shadow orbitis bounded by the shadow diameter. For the onstant model the bound is lose toatual shadow times, as was found in Figure 3.14 where the ratio of drift to shadowradius for the onstant model was about 2 (it atually exeeds 2 by a small amountfor lower values of forings where the model is only weakly dissipative). For longershadow times, however, the shadow law an over-estimate substantially. For example,with the linear model at F = 10 and shadow radius 0.4, an estimate of an upperbound using the shadow law would give 4.05. The SET gives an answer of 2.36,while the atual shadow time is 2.28. Using the shadow law as a guide to shadow94
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times, rather than an upper bound, works best in situations where model error islarge relative to displaement error, simply beause under those irumstanes thedissipation oeÆient q(t) will be near 1.It might seem strange that the SET an work so well at relatively long times,when one would expet that the linear propagator will no longer be aurate. Thisfear would appear to be validated by Figure 4.12(a), whih shows the images of a0.4 radius ball of initial displaements under both the full and the linearised propa-gator dynamis. The linearised dynamis produe an ellipse, as expeted, while thefull dynamis produes a somewhat ontorted distribution. For most points the twoompletely disagree, but for points near the origin, whih orrespond to shadow tra-jetories, the math is in fat quite good. Figure 4.12(b) shows the images of a ballof points of radius 0.02 around the shadow point. Both the full dynamis and thelinearised dynamis produe an ellipse lose to the origin. The essene of the SET isthat it only tries to model trajetories whih atually shadow, and for these orbits,so long as the shadow radius is suÆiently small, the linearised dynamis are valid.Of ourse, the validity of the linear approximation depends on time as well asshadow radius, and if a model shadows for extremely long times then the SET willno longer be reliable. An example of a very long shadow orbit is shown in Figure4.13. It was obtained by hanging the oupling of the two level system from 1.0 to0.5, whih redues the e�et of the �ne-sale ~y variables on the large-sale ~x variables.The resulting system was then modelled with the linear model. When the SET was
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tested with this model, it failed to onverge. The reason is that, over time periodssuh as this, higher order terms, whih are not taken into aount by the lineariseddynamis, will eventually dominate. Figure 4.14 shows the drift aumulated over theshadow orbit. The shadow law gives an upper bound on total drift over the shadoworbit of about twie the shadow radius, or 0.8, whih is well above the atual valueof 0.12.
4.6.2 The R�ossler systemThe Lorenz '96 systems have a ertain symmetry in that the equation for eah variablex is the same, and it is possible that for some reason this symmetry might makeshadow behaviour easier to predit. As a hek against this, the method was used topredit shadowing times where the system is a modi�ed version of the R�ossler system,dxdt = �y � z + �xy=dydt = x+ 0:1ydzdt = 0:1 + (x� )z; (4.69)
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and the model is the regular system of equation (1.2). The di�erene between thetwo is therefore the term �xy= in the �rst equation, whih was hosen as just oneexample of a nonlinear, asymmetri error term. Figure 4.15 shows the real andestimated shadow times for � = 0:3. The SET is equally e�etive for this system.
4.6.3 The Saltzman systemWith any suh onoted example, though, we an be aused of hoosing the systemto prove the point (just about anything an be demonstrated using simple systems,sine there are so many of them). A more onvining example might be one takenfrom the literature. It was mentioned in the introdution that we are familiar withthe e�et of Lorenz trunating the initial onditions of his onvetion model, but lessfamiliar with the e�ets of trunating the equations of the model to three dimensionsin the �rst plae. Beause of the historial importane of this 3-D model, we presenta detailed investigation of its shadowing relative to the 7-D Saltzman system fromwhih it was derived.The equations for Saltzman's 7-D system [37℄ are:dAdt = 23:521BC � 1:500D � 148:046AdBdt = �22:030AC � 1:589E � 186:429B
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If � is suh that the other parameters do indeed tend to zero, then the 3-D modeland the 7-D system will obviously agree, and shadowing times will be in�nite. Wetherefore seek regimes where this is not the ase. It was found that a ritial pointexists between � = 25 and � = 25:1, so for � > 25:1 the other parameters do not goto zero. We then ompared the model and sytem for � = 28, the typial value usedin the Lorenz system, and � = 25:1.Figure 4.16 shows orbits on the attrator for the system and model at eah valueof �. The attrators are inverted from those of the Lorenz '63 system beause of asign hange. For � = 28, the familiar buttery wings of the model have, in the aseof the full system, grown a body as well. The attrators at � = 25:1 appear in loseragreement. Of ourse, these are observations of the limatologies, rather than modelerror on a true orbit, but the shape of the attrators might lead one to expet bettershadowing performane for the lower setting of � than for the higher.This suspiion is borne out by Figure 4.17, whih shows a detailed analysis ofthe shadowing performane. The upper panels are satter diagrams of estimated andatual shadow times from 40 initial onditions, for shadow radius 0.1. The middlepanels are histograms of shadow times. Note the di�erent sale of the � = 28 (leftside) and � = 25:1 (right side) results. For � = 28, the longest shadow orbit is about2 time units (the units di�er from those of the Lorenz system). For � = 25:1, manypoints shadow for longer than that. In either ase the majority of the estimatedshadow times are in good agreement with atual times, though for longer times theSET tends to overestimate the time.The lower panels show the loation on the attrator of the longest shadow orbit.The orbit at � = 28 is shorter than the � = 25:1 orbit on the right, even though itmanages the transition from one lobe of the attrator to the other.The Saltzman system is interesting beause shadow times vary enormously de-pending on the position on the true attrator. Despite this variation, the SET doesa good job of prediting shadow times for the majority of points (the top-left satterdiagram shows two points whih fail for times under 0.5, but this only represents 5perent of the total number tested). The 3-D model appears to be a better approx-imation to the full system at the lower setting of � = 25:1, whih is just above thethreshold where other variables go to zero.Figure 4.18 is another way to view shadow orbits. The model displaements fromtruth have been projeted into a 2-D oordinate system (xp; yp) following the trueorbit, and plotted with time t as the third axis. The graph, viewed from left to right,represents the perturbations that one would experiene up and down (yp) and from
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side to side (xp) while attempting, �guratively speaking, to follow the true path in amodel ar. For either value of �, the displaements follow a regular pattern that slowlygrows in magnitude. It appears that the reason the � = 25:1 model shadows longeris beause the system spends longer in eah lobe of the attrator, thus presenting aneasier path to follow.
4.6.4 Shadowing and step sizeOne ause of model error is an insuÆiently small step size used during integrationof the model's di�erential equations. Seletion of an appropriate step size and inte-gration sheme is of ourse a �eld in itself; our aim is merely to rephrase the problemin terms of model error, and illustrate the tehniques developed so far. Figure 4.19is a shemati diagram showing how a large step integration will reate a drift error,as ompared with an integration performed using two smaller steps. The drift afterone step of � is just the di�erene between the trajetories at time 2�, whih an bewritten d(�) = (dx(�)dt � dx(0)dt )�: (4.72)The term in brakets equals the hange in veloity, so the drift an be written interms of the aeleration: d(�) � d2x(0)dt2 �2: (4.73)This quantity an easily be alulated for eah point.As an example, suppose that we wish to determine whether a step size of 0.02 issuÆiently small for integration of the Lorenz '63 system. As a test, we ould hekhow well the model at that time step shadows the system with a redued step size of0.01.Figure 4.21 is a histogram of shadow times for shadow radius 0.01, where the truesystem has a step size of 0.01, and the model has a step size of 0.02. A small numberof points, about 2.4 perent, fail to shadow for longer than a single time step. Thesepoints are marked by irles in Figure 4.20.From the shadow law that maximum drift is twie the shadow radius (shadowtimes approah the upper bound when model error is high), we would expet thepoints whih fail to shadow with the points where drift exeeds a value of 0.2. Thesepoints have also been marked in Figure 4.20. The orrespondene is almost exat.They are simply the points whih experiene high aeleration. (They also oinidewith areas of state spae ontration [65℄.)
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Figure 4.19: Diagram showing how too large a step size reates drift. The model,whih has twie the step size of the true system, overshoots it. The resulting drift isproportional to the aeleration of the true system.
This ontrasts with Figure 4.22 from Gilmour [23℄, whih shows points whereshadow orbits fail for a larger observational tolerane. She demonstrated a onnetionbetween the points where shadowing fails, and points with fastest error doubling times[62℄, whih both tend to our in the transition region between zones of the attrator.The �gures serve again to highlight the distintion between initial ondition error andmodel error.

4.6.5 The Rulkov iruitThe systems onsidered so far have only existed inside a omputer. However, thetehniques of studying model error apply equally well to observations of real systems,for whih the true equations are unknown (or don't exist). In the next setion, weformalise the treatment of observed systems. As a prelude, we here onsider a modelof an atual eletrial iruit, whih will further larify the distintion between modeland initial ondition error.
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Figure 4.20: Plot of points with loal drift � 0:2, and points with shadow times � 0:1,for Lorenz '63. True system has time step 0.01, model has time step 0.02. Errorsour in regions of high aeleration.
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Figure 4.22: Distribution of the �nal points of the model to shadow observations fromthe Lorenz equations (plus signs). A trajetory of the Lorenz equations (solid line) isalso shown for referene. True system has time step 0.01, model has time step 0.02.From [23℄.
The Rulkov iruit [59℄ was presented in Chapter 2 as an example of a nonlineardynamial system. The equations model the behaviour of a real eletrial iruit, butthere will never be an exat orrespondene between the two: even simple iruitsdon't follow neat mathematial laws, when examined in detail. We therefore takethe physial iruit, projeted into model spae, to be truth, and the mathematialapproximation as the model.Figure 4.23 shows predited and observed points for a number of trajetoriesstarting from neighbouring points. Eah of the initial onditions used was a pointon an orbit of the true system, projeted into model spae. It was possible to �nda number of initial onditions in lose proximity beause the iruit is reurrent: i.e.if the system is run for suÆiently long times it experienes a near return, withina spei�ed tolerane, to the initial ondition. As a result, the ensemble of modeltrajetories an be veri�ed against an ensemble of true trajetories, whih makesmodel error muh easier to detet [63℄.Referring to the �gure, around time 7830 both the observed and predited traje-tories suddenly diverge, so at this point both the model and the system itself havehigh sensitivity to initial ondition. Therefore to say that a model has high sensitivityto initial ondition is not to say that it is wrong, or that this is an undesirable feature,

108



Observed
Predicted
nn Predicted (b)
nn Observed (+)

+
+

+

+

+
+

+

+
+

+

++

+

+
+
++
+

+

+
+

++

+

+
+
+

+

+

+

+
+
+

+

+
+

+

++
+

+

+
+

+

++

+

+
+++
+

+
++

+

+
+
+

+

+
+

+
+
+

+

++
+

+

+++

+

+

+
+

+

++

+

+++
+

+
++

+

+
+
+
+

++

+
+
+
++

+

+

++++

+

++
+++

+
+

+
++

+

+

+

+
+
+

+

+++
+
+

+

++
+

+

+++
+++

+

+
+

+
+

+

+

+++

+

++

+
+++++

+

+
++
+++
+
+

+

++

++
+
++++

+++
+
+

+
++
+
+

+
+
+
+++

+

+
++

+

++
+

++++

+

++++
++

+

+

+
+
+
++
+

+

+

+++

+

++
+
+++

+
+++
+

+

+

+

++++
+

+
+

+
+
+
++++
++
+++
+
+

+

+

+++

+

+

++
++
+
+

+

++
+

+

+++++

+
+

+
+
++++
+
+
++
+
+
++
++
++++
++
+

++

+

+

+
+
++++

+

++++
++++++
+
+
+
++
+
+
++
+++

+

+
++

+

+
+
+
++
++

++

++
++
++

+

+

+
+

+

+
+
+
++
++

+
+

+

+++

+

+

++

+

+
+
+
++
+
+
+
+

+

+

+

+

++

+

+
+

+
+
+
+
+
+

+

+

+

+

+
++
+

+

+
+

+

+

+
+

+
+

+

+

+

+

+

+
+
+

+
+
+

+
+

+
+

+

+
+

+
+

+

+

+
+
+

+
+

+

++
+

+
+

+

+
+

+

+
+

+

+

+

+
+
+

+

+

++
+
+

+
+

+

+
+

+
+

+
+

+

+

+

+

+
+

+

+

+

+

+++
+

+
+

+

+
++

+

+
+

+

+
+

+

+

+
+

+

+
++

+

++
++
+

+
+

+

+
+

+

+
+

+

+
+

+

+

+
+

+

+
++

+

++
+
+

++
+

+

+
+
+

+

+

+
+
+

+

+

+
+

+

+

+

+
++

+

+
+
+

++
+

+

+
++
+

++

+

+

+

+
++

++
+

+

+
+

+

+

+
+
+
++
+

+

+

+

+
+
+++++

+

+
+

+
+++++
++++
+

+

++++++

+

+
+

+
+

+
+

+

++

+

+

++

+

++

++

+

+
+

+

+

+

+

+

+

+

++

++

+

++

+

+

+

+

+

+

+

++

+

+

++

+

+++

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+++

+

+

+

+
++

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+++

+

+

++

+

+

+
+

+

+

+

+

+

+

++

+

+

+

+

++
+
+

+

+

+

+

+

+

+

+

++

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++
+
+

+

+

+

+

+

+

++

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

++
+

+

+

+

+

+

+

+

+
+

++

+

+

+

+

+

+

+

+

+

+

+

+

++
+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

++

+

+
+

+

+
++

+

+

+

+

+

+
+
++

+

+

+

+

+

+
++

+

+

+

+

+

+
++

+

+

+

+

+

+

+
++

+

+

+

+

+

+
+

+
+

++

+

+

+

+

+
+

+
+

++

+

+

+

+

+

+

+

++

++

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

++
+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+
+

+

+
++
++++++++

+

++++

+

+
+
++++
+
+
++++
+
+++

+
+
++
++
+
+

++
+

++
+

+
+
+

+
++
+
+
+
+

+
+
+
+
+

+
+
+

+

+

++

+
+

+
+

++

+

++

+
+

+

+

+

+

+

+
+

+

+
+
+
+

+

+

+

+++
+

+

+

+

++

+

+

+

++

+

+

+

+

+

+

+

++

+

+

+

+

+

++

+
+

+

++

+
+

+

++

+

+
+

+
++
+

+

+
+

+

+

+

+

++

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+++

+

++
+

+

+

+

+

+

+

+

+
+

++

+

+

+
+
+

+

+

+

+

+

+

+

+

+++

+

+

+

++

++
+
+
+

+

+
+
+

+
++
++

+

++

+
+

+

+
++

++

+

+

+

+

+
+
+
+

+

+

+

+

+

+
+

++

+

+

+

+
+

++

+

+

+

+

+

++

+

+

+

+

+
+

+

+

+

+

+

++

+

+

+

++

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++

+

+
+
+

+

+

+

+

+

+

++

++

+

+
+

+

+

+

+
++
+

+

+

+

+

+

+

+

+

++

++

+

+

++

+

+

+

++

+
++

+

+

+
+

+

+++

+

++++

+

+

b
b

b

b

b

b

b

b
b

b

bb

b

b
b
b
bb

b

b
b

bb

b

b
b
b

b

b
b

b
b

b

b

b
b

b

bb
b

b

b
b

b

bb

b

b
bbb
b

b
bb

b

b
b
b

b

b
b

b
b
b

b

bbb

b

bbb

b

b

b
b

b

bb

b

bbb
b

b
bb

b

b
b
b
b

bb

b
b
b

bb

b

b

bbbb

b

bb
bbb

bb

b
bb

b
b

b

b
b
b

b

bbb
b
b

b

bbb

b

bbbbbb

b

b
b

b
b

b

b

bbb

b

bb

b
bbbbb

b

bbb
b
bb
b
b

b

bb

bb
b
bbbb

bb
b
b
b

b

bb
b
b

b
b
b

bb
b

b

b
bb

b

bb
b

bbbb

b

bbbb
bb

b

b

b
b

b
b
b
b

b

b

bbb

b

bb
b
bbb

b
b
bb
b

b

b

b

bbbb
b

b
b

b
bb
bbbb
b
b
bbb
b
b

b

b

bbb

b

b

bb
bbb

b

b

bb
b

b

bbbbb

b
b

b
b
bbbb

b
b
bb
b
b
bb
b
bb
bbb
bb
b

bb

b

b

b
b
bbbb

b

bbbb
bbbbbb
b
b
b
bb
bbbbb
bb

b

b
bb

b

bbb
bb
bb

bb

bb
bb
bb

b

b

b
b

b

b
b
b
bb
bb

b
b

b

bbb

b
b

bb

b

b
b
b
b
b
b
b
b
b

b

b

b
b

bb

b

bb

bb
b
b
b
b

b
b

b
b

b
bb
b

b

bb

b

b

b
b
b
b

b

b

b

b

b

b
b
b

b
b
b

b
b
b
b

b

b
b

b
b

b

b

b
b
b

b
b

b

b
b
b

b
b

b

b
b

b

b
b

b

b

b

b
b
b

b

b

bbb
b

b
b

b

b
b

b

b

b
b

b

b

b

b

b
b

b

b

b

b

bbb
b

b
b

b

b
bb

b

b
b

b

b
b

b

b

b
b

b

b
bb

b

bb
bb
b

b
b

b

b
b

b

b
b

b

b
b

b

b

b
b

b

b
bb

b

bb
b
b

bb
b

b

b
b
b

b

b

b
b
b

b

b

b
b

b

b

b

b
bb

b

b
b
b

bb
b

b

b
bb
b

b
b

b

b

b

b
bb

bb
b

b

b
b

b
b

b
b
bbb
b

b

b
b
bb
bbbbbbb
b
b
bbbbb
bbbb
b

b

bbbbbb

b

b
b

b
b
b
b

b

bb

b

b

bb

b

bb

bb

b

bb

b

b

b

b

b

b

b
bb

bb

b

bb

b

b

b

b

b

b

b

bb

b

b

bb

b

bbb
b

b

b

b

b

bbb

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

bbb

b

b

b

bbb

b
b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

bbb

b

b

bb
b

b

b
b

b

b

b

b

b

b

bb

b

b

b

b

bbb
b

b

b

b

b

b

b

b

b

b
b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bbb
b

b

b

b

b

b

b

b
b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

bb
b

b

b

b

b

b

b

b

b
b

bb

b

b

b

b

b

b

b

b

b

b

b

b

bb
b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

bb

b

b
b

b

b
bb

b

b

b

b

b

b
b
bb

b

b

b
b

b

b
bb

b

b

b

b

b

b
bb

b

b

b

b

b

b

b
bb

b

b

b

b

b

b
b

b
b

bb

b

b

b

b

b
b

b
b

bb

b

b

b

b

b

b

b

bb

bb

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b
b

b

b

bb
b

b

b

b

b

b
b
b

b

b

b

b

b
b
b

b

b

b

b

b

b
b

b
b
bbb
b
bb

b

b
bbb

b

bbbbbbbb

b
b
b
b
b

bb
b

b
bb
b
b
b

b
b

b
b

b

b
b

b
b
b

b

b

bb

b

b

b

b

b
bb
b

b

bb

b

b

b

bb

b
b

bb

bb

b

bb

bb

b

b

b
b

b

b
b

b
b

b

b
b

b
b
b

bbb
b

b

b

b

bb

b

b

b

bb
b

b

b

b

b

b

b

bb

b

b

b

b

b

bb

bb

b

bb

bb

b

b
b

b
b
b

b
bbb

b

b
b

b

b

b

b

b
b
b

b

bb
b

b

b

b

b

b

b
b

b

b

b

b

b

b
b

b

b

b

b

b
b

b
bbb
b

b

bb
b

b

b

b
b

b

b

b

b
b

bb

b

b

b
b
b

b

b

b

b

b

b

b

b

bb
b

b

b

b

bb

bb
b
b
b

b

b

b
b

b

bb
bb

b

bb

b
b

b

b
bb

bb

b

b

b

b

b
b

b

b

b

b

b

b

b

b
b

bb

b

b

b

b
b

bb

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

bb

b

b

b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

bb

b

b
b
b

b

b

b

b

b

b

bb

bb

b

b

b

b

b

b

b
b
b
b

b

b

b

b

b

b

b

b

bb

bb

b

b

bb

b

b

b

bb

b
bb

b

b

b
b

b

bbb

b

bbbb

b

b

7800 7820 7840 7860 7880 7900
-2

-1.5

-1

-0.5

0

0.5

Figure 4.23: Ciruit errors. From [63℄.
sine the system itself may have the same behaviour. Rather, it means that the initialondition must be hosen very exatly to get an aurate predition. In this ase, themodel seems to trak the observations quite well for the majority of points.In the zoomed view, Figure 4.24, however, it is seen that, near the loal maximumat time 7825, the foreasts are systematially lower than the observations. This is aresult of loal model error.Reurrene makes model error at a partiular point easier to detet, beause anensemble of foreasts an be ompared with an ensemble of true trajetories. Sinethe atmosphere is unlikely to repeat itself even one before it eventually boils awayinto spae, reurrene isn't a feature that we an exploit to generate initial onditionsfor weather models. However, this needn't be a limitation; model error and shadowtimes are determined prinipally by the linearised dynamis, whih don't distinguishwhether the initial onditions lie on an attrator or not.
4.7 Observed systemsThe development of the linearised dynamis assumed that we know the underlyingequations of the true system. For most systems of pratial interest, suh as the
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Figure 4.24: Zoom of iruit errors. From [63℄.
weather, this won't be the ase. The best that we an do is interpolate through aseries of observations, eah of whih will be orrupted to some extent by observationerror (in weather foreasting the arrived at interpolation is known as the analysis [17℄).Fortunately, beause the linearised dynamis refer only to the spei� trajetory of thetrue system whih we are trying to shadow, it isn't neessary to know the equationsthat underlie it. Suppose that the true system is expressed, as with the weather, froman analysis, so that ~x = xa + ha (4.74)where xa is the analysed solution and ha is an error term due to imperfet observationsand analysis. We further assume that xa is ontinuous and pieewise di�erentiable. Ifthe analysis is only known at disrete points, then we an use some smooth interpola-tion for intermediate points, or alternatively the equations below ould be written indisrete form (we prefer the ontinuous form for larity and onsisteny with previousresults).Linearising the equations as before, we an writededt = dxdt � d~xdt= J(~x(t)) � e(t)) +G(~x(t))� d~xdt +Re(t)
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= J(xa(t) + ha(t)) � e(t)) +G(xa(t) + ha(t))� (dxadt + dhadt ) +Re(t)= J(xa(t)) � e(t)) +G(xa(t)) + J(xa(t)) � ha(t) +Re(t) +Rh(t)� (dxadt + dhadt )where the remainder term Re(t) is O(ke(t)k2), and Rh(t) is O(kha(t)k2).If we neglet the seond order remainder terms, and integrate, we then obtaine(�) �Ma(�) � e(0) + Z �0 G(xa(t))dt� xa(�) + xa(0) +E(�) (4.75)where the error termE(�) = Z �0 J(xa(t)) � ha(t)dt� ha(�) + ha(0) (4.76)depends only on the analysis error and the model. If the likely analysis error dis-tribution is known, then the error term E an be estimated without needing furtherinformation about the true system. Note that in the above formulation it is not ne-essary to alulate the veloity of the true system, sine this term has been integratedout. Only the start and �nish analysis points xa(0) and xa(�) need be known.The linearised equations an be used to obtain model drift and estimate shadowingtimes as for the ase without error. The only di�erene is that there will now be anadditional error term. Consider for example the alulation of the analysed modeldriftda(�) = kda(�)k, whereda(�) = Z �0 G(xa(t))dt� xa(�) + xa(0) +E(�): (4.77)If we assume that observation errors are unorrelated, then averaging the results overmany integrations should give a good measure of average model drift, and henemodel quality.As an example, suppose that the vetors ha(t), sampled every � time units,follow a white noise distribution with variane K = hh2a(t)i, and suppose the vetorsJ(xa(t)) �ha(t) follow a similiar distribution but with variane �K. Then the integralin the expression for E(�) is just a random walk, and we an writeh(Z �0 J(xa(t)) � ha(t)dt)2i = �K�: (4.78)Therefore hE2(�)i = �K� + 2K (4.79)and the expeted value of the error in the drift alulation due to observation erroran be expliitly alulated. 111



The onlusion is that model drift is a robust measure of model error, whihdoesn't neessitate a diret alulation of the true system veloity. Of ourse, if ob-servation error is greater than model error it will be diÆult to separate the two.When we look at weather models in Chapter 6, we will onern ourselves with shad-owing the analysis, whih is the best approximation to the weather, rather than theobservations themselves (if the model an't shadow the analysis within the analysisunertainty, then it an't shadow the real weather either).
4.8 Error due to the projetionUntil now, we have ignored the role of the projetion operator P whih maps the truesystem state spae into that of the model. However, the projetion an introduesigni�ant errors. In the ase of the weather, for example, the projetion operatormaps the real weather onto the model grid, using an assimilation proess whih isdependent on observations but also to a large extent on the interpolation sheme,whih itself is a funton of the model [17℄. In data-poor regions, the assimilationproess will be partiularly prone to error.To see how suh errors a�et the drift alulation, suppose that there exists apartiular projetion PT and a orresponding modeldxdt = GT(x(t)) (4.80)suh that x(t) = PT(~x(t)) (4.81)provided x(0) = PT(~x0), where ~x0 = ~x(0). In other words, the model is perfet giventhe partiular projetion PT. Taking derivatives with respet to time at initial time,we have GT(PT(~x0)) = ddtPT(~x0) = �PT(~x0)�~x ~G(~x0): (4.82)Now, suppose that the atual projetion is given by the funtion P = PT + PE,where PE is an error term, and the atual model is given by G = GT +GE. Thenthe error will be e(t) = x(t)�P(~x(t)) (4.83)with initial veloityde(0)dt = G(P(~x0))� �P�~x ~G(~x0) (4.84)
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= G(P(~x0))� �PT�~x ~G(~x0)� �PE�~x ~G(~x0) (4.85)= G(P(~x0))�GT(P(~x0))� �PE�~x ~G(~x0) (4.86)= G(PT(~x0))�GT(PT(~x0)) +G(P(~x0))�G(PT(~x0))� �PE�~x ~G(~x0) (4.87)where the �rst two terms reet error in the model relative to the perfet model, andthe last three terms reet error in the projetion operator. In the perfet model asewhere G = GT, we have de(0)dt = ��PE�~x ~G(~x0); (4.88)so even with a perfet model, there will be a veloity error term aused by theprojetion operator.As a simple example, onsider the 2-D ase whereP(x1; x2) = (x1; x2 + f(x1; x2)) (4.89)PT(x1; x2) = (x1; x2) (4.90)PE(x1; x2) = (0; f(x1; x2)) (4.91)where f is some C1 funtion. The x1 variable ould orrespond to a well-observedarea, while the x2 variable orresponds to a poorly observed area. Then we �ndde(0)dt = �( �f�x1 dx2dt ; �f�x2 dx2dt ): (4.92)
Therefore the error due to inaurate observation of x2 also reates errors in x1.From our alulation of the drift, therefore, we annot tell if the error is dueto the model parameters being inorret, or the projetion operator being wrong.This is beause the de�nition of the model impliitly assumed a ertain projetionoperator when the initial ondition was piked. This does not mean, however, thaterrors whih appear to be due to the model are in fat due to sensitivity to initialondition. All we have done in the above treatment is deompose the model errorinto two parts: that due to model equations, and that due to the projetion. Theshadow law still states that if model error is large, no orbit an be found by takingsmall perturbations around the initial ondition that will shadow for a long time.For weather models, projetion is likely to our over data-poor regions where theinterpolation sheme, whih involves the foreast model, fails to give an aurateestimate of the real weather.
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4.9 Potential problems with the shadow estima-tion tehniqueWhile the SET has worked quite well with a number of models, and should hold ingeneral providing the shadow radius is suÆiently small, there will be situations whereit fails to work orretly. This will be the ase, for example, if the shadow radius is solarge that the model error inside the shadow tube varies signi�antly from its valueon the true orbit. The drift, whih is alulated on the true orbit, may then give amisleading indiation of the real model error experiened by a shadow orbit.Situations where the model error either dramatially inreases or dereases awayfrom the true orbit are easy to produe, and may our with real weather models;it is sometimes said of a weather model, for example, that it experienes an initialspin-up error beause it is in some way out of balane (similiar to the way that a lowdimension model experienes a transient orbit before settling on its attrator). Aninterpretation of model error might then be that the model is out of balane at startbut soon moves bak towards balane. The model error may then derease as themodel trajetory moves away from the true trajetory, even while remaining withinthe spei�ed shadow radius. In this ase the alulation of the drift ould give anarti�ially high value.The linearised dynamis an still be applied, but in suh situations it is preferableto linearise around a model trajetory that starts from truth, rather than the truetrajetory itself. The reason for this is that model error near the true trajetorydoesn't reet model error at points o� that trajetory, but still within the shadowradius. (The main reason we linearised around the true orbit was to allow alula-tion of model error over a range of predition times, partiularly in ases where themodel an shadow for long periods.) Equation (4.13) will remain the same, with thedi�erene that the linear propagator M is alulated around the model orbit ratherthan around the true orbit, and the drift vetor d beomes the foreast error. Thelinearisation will only be valid, as before, until the time at whih the model orbitleaves the shadow radius. The SET an also be used, with the same limitation, andthe shadow law remains valid.An example of a model whih is `out of balane' with truth is shown in Figure4.25. The equations of the true system aredxdt = x� y � x(x2 + y2)=a2
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Figure 4.25: True system has a stable periodi orbit with radius 1.0, model hasperiodi orbit with same angular veloity at radius 0.8.
dydt = x+ y � y(x2 + y2)=a2 (4.93)with a = 1:0, whih has a stable periodi orbit at radius 1.0, while the model hasthe same equations but with a = 0:8, so the periodi orbit is at 0.8. When startedfrom the point (0; 1), as in the �gure, the model quikly moves away from truth tothe smaller radius.Figure 4.26 shows how drift aumulates along the true orbit. The veloity error,shown in the x diretion, ontinually pulls the orbit towards the smaller radius, andthe drift aumulates steadily. For a predition period of 0.5, the drift is about 0.1.If model error is high, we ould therefore expet a shadow radius of half the drift, or0.05. The multipliers of the linear propagator over that predition period are 0.249and 0.816, whih are both smaller than one so the state spae is ontrating (i.e.the model is loally dissipative). For a displaement of 0.05 the maximum error dueto initial ondition is 0.816 times 0.05, whih is 0.041, muh smaller than the drift.Beause the model is highly dissipative, it is reasonable to estimate shadow timesfrom the drift alone, so that shadow diameter should approximately equal the driftover the predition time.A feature of this model, though, is that the drift will depend ritially on thetime step used for the integration. Figure 4.27 shows the drift alulated with timestep 0.01 (equal to the integration step for the system) and 0.5. The drift for the
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Figure 4.26: Foreast errors for x omponent. As in Figure 3.2, a number of shortterm model foreasts were initiated at regular intervals along a true trajetory (shownunsaled). The total error magnitude over both x and y is also shown, as well as thedrift, whih aumulates steadily.
longer time step is onsiderably lower. This isn't due, however, to the e�et of dis-plaement error dampening out model error; rather, it is beause the model errorredues as the model trajetory approahes its attrator. Model error therefore de-pends on the shadow radius. If the shadow radius were spei�ed as 0.2, then themodel ould shadow inde�nitely, sine the periodi orbit at radius 0.8 is within theshadow tolerane of the true orbit at 1.0.This e�et an be seen in Figure 4.28, whih shows the shadow diameter as afuntion of predition time, along with the drift and the foreast error starting fromthe point (0,1). Shadow times approah in�nity for a shadow diameter of 0.4. Theshadow law, whih states, in the ase of high model error, that drift approximatelyequals shadow diameter, doesn't hold beyond a shadow diameter of about 0.2. Forlarger shadow diameters, linearising the dynamis about the true orbit is no longervalid, so it is better to linearise about the model trajetory. The shadow law thenstates that shadow diameter is about equal to the foreast error. From the �gure, wesee that this relationship holds up to times of about 0.6.To summarise, the SET should work for any model/system pair, suÆing theshadow radius is hosen suÆiently small. If the shadow radius is hosen too large,then model error may vary with distane from the true orbit, and the drift alulationmay be sensitive to integration step. In suh ases, it may be preferable to use foreast
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Figure 4.27: Drift alulated with an integration step of 0.01 and 0.5. The driftredues with the higher step size.
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error as a guide to shadow times rather than the drift.Of ourse, the best way to determine shadow times is to test for atual shadoworbits. We disuss below ways in whih this an be ahieved, even for extremelylarge problems suh as weather models. First, though, we examine another kind ofdiÆulty that arises in the alulation of model error, when errors are measured, notover all variables, but only an unrepresentative subset.
4.10 Errors over a subset of variablesThe treatment so far, and the development of the linearised dynamis, has assumedthat errors are measured using a norm whih takes into aount all variables of modelspae. In this setion, we onsider the likely problems that an our if this require-ment is not satis�ed, and the norm measures only a subset of variables. For example,weather models are often veri�ed against analysis, mostly for historial reasons, usingthe 500 hPa geopotential height. Sine the variables in the model typially inludesurfae pressure, two horizontal wind omponents, temperature, moisture and geopo-tential height [43℄, knowing the last of these alone, and at only one level, won't be avery omplete indiation of the atmospheri state. For the Lorenz system, it is theequivalent of measuring only x1, and trying to determine the quality of the modelbased on this alone.The linearised dynamis assume that the model equations and initial onditionare ompletely known, so restriting error measurements to a subset of variables willa�et their auray. For example, equation 4.13 states that the error at any time isapproximately given by the sum of the drift, and the initial displaement multipliedby the linear propagator. For small times and zero initial displaement, the linearterm vanishes and the error is about equal to the drift. This is shown in Figure 4.29for the Lorenz onstant model. The drift losely approximates the error up to aboutt = 0:2.It isn't the ase, however, that errors over individual omponents ei are equallywell approximated by omponents di of the drift. Figure 4.30 ompares the error andthe drift for eah omponent. The �rst omponent e1, for example, has departed fromits drift equivalent by about t = 0:1. It seems that drift is better at approximatingthe magnitude of the error than its diretion. This is evident also from the top panelof Figure 4.29, where the magnitude of the di�erene between the drift and the erroris shown to grow in an exponential manner, and the lower panel of the same �gure,whih plots the osine angle between the drift and the error vetor.
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Figure 4.30: Foreast errors (solid lines) and drift (dotted lines) ompared for eahomponent.
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The reason for this behaviour is that the linear propagator ats on displaementsin two ways: by rotating, and by strething (for example, it rotates the �rst singularvetor v1 into u1, and strethes by a fator �1). Rotations don't a�et the magni-tude of the displaement, but they will transfer error in one omponent into error inanother. It follows that individual omponents will be more sensitive to the e�etsof the linear propagator than the total error. It is also muh harder to separate outthe e�ets of model and initial ondition error, sine displaements may be large inthose omponents not measured, and reate exaggerated errors.Shadowing times will also be inuened if errors are measured over only a subsetof variables. For example, it is easy to imagine that the Lorenz onstant model mightshadow the two level system for longer times if only x1 was taken into aount, sineenormous distortions ould be aommodated in the other variables. For weathermodels, this would be like having a model whih shadows inde�nitely at 500 hPa, butis ompletely wrong at ground level. Model error is best understood by onsideringall variables, and for this reason the work with weather models is performed using anenergy metri whih represents the energy in the atmosphere over all levels.
4.11 Fast tehniques to �nd shadow orbitsThe SET allows one to assess the shadowing apability of a model without atuallyhaving to produe the shadowing orbit, and therefore takes muh less time. Howeverthe linearised dynamis an also be exploited to produe atual shadow orbits.Shadow orbits to this point have been found by a multi-dimensional optimisationtehnique known as the simplex method [53℄. The simplex method is a somewhatbrute fore approah sine it doesn't use any derivative information and requiresmany points to be tested. It is therefore impratial for larger systems suh as weathermodels, for whih derivative information an be extrated by using the adjoint, as wesee in Chapter 6.In this setion we briey outline two tehniques to produe atual shadow orbits,using derivative information, in a more eÆient way. The �rst method will requireomputation of singular vetors, while the seond method has been designed to workas losely as possible with existing weather model ode at ECMWF. The methods areillustrated using the Lorenz '96 system. Sine we limit ourselves to a single startingpoint, the shadow times will generally be shorter than those found by the simplexmethod; in some situations there will be more than one loal maximum, so the brute
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fore approah is neessary to �nd them all. However omputation times are ordersof magnitude smaller.
4.11.1 The linear approximation methodTo �nd a shadow orbit is to seek a point in the ball of initial onditions, with radiusequal to the shadow radius, whih will remain within the shadow radius of the truesystem for the longest amount of time. It is therefore possible to pose the shadowingproblem as a general optimisation problem. Beginning with an initial predition timet, we solve minimiseC(e) = ke(t)eT (t)ksubjet to ke(0)k � rs (4.94)where e is the error term. The optimal solution will minimise the o�set from truthat time t over all initial onditions within the shadow radius. If the �nal error alsosatis�es ke(t)k � rs (4.95)then the predition time t an be inreased, and the proess repeated.Stritly speaking, we should demand that the error e(t) remain within the shadowradius for all intermediate times between 0 and t; however we shall relax that onditionfor the time being, beause for the systems onsidered here it will usually hold so longas the trajetory is within the shadow tube at the initial and �nal points.Were the system perfetly linear, the minimisation problem ould be solved in asingle step just by solving the Lagrangian problem of equation 4.27. With nonlinearsystems, a one-step approah isn't feasible, sine the system is sensitive to smalldisplaements, and if the step is too large it is likely to miss the optimum ompletely.The standard optimisation approah in suh ases is to begin with a starting point,and iterate slowly from it, using a rule to determine the step diretion, until furthersteps no longer produe an improvement [22℄.The problem then beomes how to hoose the step diretion. One method whihhas been proposed is to searh in the spae of the leading singular vetors, the rationalebeing that these are the perturbations whih give the maximum �nal displaementand are therefore most likely to o�set model error. A topi we have often returnedto, however, is that model error and displaement error are not the same thing, andare generally in di�erent diretions.
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In fat, it is easy to imagine situations where the largest step must be taken inthe diretion of the trailing, rather than leading, singular vetor. Referring to theshemati diagram of the linearised dynamis, Figure 4.6, suppose that the modelerror is aligned with the evolved trailing singular vetor u2. Then the initial pertur-bation to o�set it must be in the diretion of u1, and, if the multiplier �2 is muhsmaller than unity, then the initial displaement must be muh larger than would bethe ase if the model error were aligned with the leading singular vetor u1.In the ase of weather models, searhing for an optimal displaement in the sub-spae of leading singular vetors, whih typially has a dimension of about 25 in anoverall spae of millions, would be limiting one's self to a rather impoverished set ofstep diretions. (One advantage of singular vetors, though, is that they give the max-imum �nal displaement for a given initial displaement, so if no other informationis available they may be a good plae to start.)The approah adopted here is again based on the linearised dynamis, whih hasbeen shown to hold to a good approximation for those trajetories whih shadow(the ones we are interested in). We �rst transform the minimisation problem to anapproximate linear one:minimiseC(e) = kU(t)�(t)VT (t) � e(t) + d(t)ksubjet to ke(0)k � rs: (4.96)This is a onstrained optimisation problem, whih is more ompliated than an un-onstrained one, sine the optimal diretion will depend on whether the boundary onthe initial ondition e(0) is ative or not, i.e. if ke(0)k = rs. The onstraint is impor-tant, beause solving the unonstrained problem won't give the same solution, evenif the proess is stopped when the initial ondition exeeds the boundary ondition[22℄.Various tehniques exist to solve this problem, but the shemati diagram of thelinearised dynamis, Figure 4.6, suggests a simple and novel approah. It was alreadyseen in the development of the shadow test that the ball of initial onditions willontain one point that shadows if the enlarged ellipse, where eah axis is inreased byunity, ontains the zero vetor. Therefore the onstrained problem an approximatelybe solved by �nding an initial ondition e(0) whih satis�esU(t)(�(t) + I)VT (t) � e(0) + d(t) = 0: (4.97)The vetor e(0) an be solved for diretly:e(0) = �VT (t)(�(t) + I)�1UT (t)d(t): (4.98)123



Note that �(t) + I is positive diagonal, hene invertible. The atual step would betaken in this diretion, but with a redued magnitude determined by the optimisationroutine.A sheme was implemented whih proeeded as follows. The initial onditionwas hosen to oinide with the true orbit. The initial predition time was hosen(typially 0.05 units), and the �rst step taken in the diretion suggested by the zeroof the enlarged ellipse. The step size was hosen to be a fator (typially 0.5) of thedi�erene between the initial ondition's magnitude and the shadow radius. Thus thesteps would never exeed the shadow radius. The new initial ondition was then runforward under the full dynamis until it eased to shadow. This time beame the newpredition time. The proess was then repeated until it eased to improve shadowtimes.The method was tested by alulating shadow times of the Lorenz '96 linearmodel relative to the two level system. With shadow radius 0.2, the tehnique gave amedian shadow time of 0.95, as opposed to 0.97 for the brute-fore simplex method.Considering that the new method only begins from a single starting point, and isorders of magnitude faster, this is an exellent result. For shadow radius 0.4, themedian shadow time is 1.80, as opposed to 2.35 for the simplex method. For theinreased shadow radius, there is a greater possibility of multiple loal minima, whihan only be found by using a number of starting points. Figure 4.31 shows a histogramof shadow times for the linear model using the new optimisation method. It an beompared with Figure 4.11.
4.11.2 The `pinh' methodWhile the linear approximation method is muh faster than the simplex method, itrequires the omputation of singular vetors. For weather models it is possible toalulate the linear propagator matrix M, using the adjoint (see Chapter 6), butthe dimension of the matrix prohibits omputation of all the singular vetors. Wetherefore need an optimisation sheme whih an work with the linear propagator inits raw form. Also, optimisation methods are urrently used with ECMWF modelsfor purposes suh as 4D-Var data assimilation, so the method should be apable ofexploiting existing ode for those models.The linearised optimisation problem, written now without the singular value de-omposition, is minimiseC(e) = kM(t) � e(t) + d(t)k
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subjet to ke(0)k � rs (4.99)whih again is a onstrained problem. One approah to suh a problem is the penaltymethod, whih transforms the onstrained problem into an unonstrained one byadding a penalty term:minimiseC(e) = kM(t) � e(t) + d(t)k+ �(ke(0)k � r2s) (4.100)where � is some suitably large onstant. The above formulation will fore the initialondition e(0) to have radius rs; alternatively, the penalty funtion ould swith ononly if the radius exeeds the shadow radius.There is a symmetry to the shadow problem, however, whih doesn't distinguishbetween the initial and �nal displaements; we ould equally well minimise the initialdisplaement subjet to the �nal displaement being within the shadow radius, i.e.minimiseC(e) = ke(0)ksubjet to kM(t) � e(t) + d(t)k � rs: (4.101)This would mean that the �nal displaement beame the penalty term, instead of theinitial displaement.A balaned approah, then, is to minimise the sum of the initial and �nal dis-plaements minimiseC(e) = kM(t) � e+ d(t)k2 + ke(0)k2 (4.102)without speifying what the shadow radius rs should be. For a partiular preditiontime t, this method should produe the orbit whih minimises the initial and �naldisplaements. The shadow radius rs an then be taken as the maximum of these twovalues. We assume that intermediate values will remain within bounds; this is easilyheked for.One method to determine the step diretion would be to �nd the gradient of theost funtion C(e), whih is given by2MT (t)(M(t) � e+ d(t)) + 2e(0) (4.103)and step along the negative of the gradient (the so-alled steepest desent method).This approah was used in early versions of the ECMWF sensitivity ode [55℄. Adisadvantage of the method is that it tends not to onverge well if the gradientmatrix is ill-onditioned [22℄.
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A more robust tehnique, ommonly used in 4D-Var [16℄, is to take a step in thediretion determined by Newton's method. Beause of the quadrati form of the ostfuntion, the Hessian of the ost funtion an be alulated as2MT (t)M(t) + 2I: (4.104)By using the Hessian information, Newton's method an ahieve quadrati onver-gene. (Implementing it with low dimension models is more straightforward thanwith 4D-Var, whih is a subjet in its own right [36, 15℄.)The optimisation sheme is then as follows: for an initial predition time, deter-mine an initial ondition e(0) whih minimises the sum of displaements, by takinga sequene of steps in the Newton diretion. The shadow radius is taken to be thelargest of the initial and �nal displaements. Then inrease the predition time byan inrement, and repeat the proess, using the previous shadow point as the newstarting point. The proess is repeated until the spei�ed shadow time is exeeded(or a urve of shadow radius versus shadow time stored, and the time for the spei�edradius read o� by interpolation).This `pinh' method, whih �nds the shadow orbit by simultaneously minimisingthe initial and �nal displaements, gives results whih are less aurate than theprevious method: at a radius of 0.2, the average shadow time is 0.94 (the brute-foremethod gives 0.97), while for shadow radius 0.4 the average shadow time is 1.62, asubstantial redution from the 2.28 of the brute-fore method. For good models withlong shadow times and ompliated shadow orbits as seen in 4.1, the `pinh' methodmay not be adequate.A useful feature of this tehnique, however, is that it an be implemented inthe ECMWF ode with a fairly minimal degree of work; and it is this whih hasmotivated its development here. Its eÆieny will depend on how long the ECMWFmodels an shadow (if shadowing times are suh that the model eases to shadowbefore it beomes nonlinear, then just about any optimisation routine will suÆe).In the next hapter, we will disuss the longer term harateristis of the Lorenzsystem and its models. In other words, we will turn our attention from the shortto medium range `weather' to the longer term `limate'. Before doing so, we brieysummarise the progress made so far in the understanding of model error.
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4.12 SummaryIn this hapter, results from experiments on variants of Lorenz '96 and other model/systempairs have been translated into a number of insights into model error and shadow-ing. Equation 4.22, whih desribes the linearised dynamis near a true orbit for anymodel/system pair, summarises the relationship between the two. Shadow times anbe estimated using the SET, whih is based on the linearised dynamis, and inludesthe drift and a linear propagator term. For any loally dissipative model, the shadowlaw gives an approximate upper bound on shadow times in terms of the drift alone;and when model error is high, the allowable drift over a shadow orbit is about equalto twie the shadow radius.The methods have been tested over a range of model/system pairs. The SETwas found to work well for both the onstant and linear Lorenz models, though thetehnique fails when oupling in the true system is redued to half its normal value,beause shadow times beome exessively long (the shadow law still holds) A modi�edversion of the R�ossler system showed that the equations need not be symmetri, whileomparisons of the full 7-D Saltzman system with its 3-D model showed that the SETan work even when shadow times vary greatly over the attrator.As a method to measure model error, it is worth distinguishing between loalmodel drift, and other measures suh as foreast error after a ertain period, or thetendeny error at a partiular time. Foreast errors onvolute initial ondition andmodel error, while tendeny error doesn't allow for the fat that model error an benon-additive over the predition period.In the introdution, three questions were raised, asking how do we measure modelerror, how do we estimate shadow times, and how do we optimise a model's param-eters. From the above disussion, we are now in a position to address these points.The researh into model error indiates:� Model drift, as de�ned in terms of integrated veloity error, is a useful measureof model error, and the primary determinant of preditability� Shadow times an be estimated for any model/system pair using the modeldrift and (for longer shadow times) a modi�ed version of the model's linearpropagator matrix, without the need to produe an atual shadowing orbit� For loally dissipative models, shadow times are bounded above by the shadowlaw, whih states that RMS drift over shadow orbits must be smaller than twiethe shadow radius
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� Preditability is best optimised by minimising the model drift (whih is deter-mined by the model's low frequeny veloity error)As an example of the last point, the onstant model was hosen to have its foringequal to the average true foring, whih minimises the RMS veloity error. This isequivalent to minimising the drift in the limit as the integration time goes to zero. Ingeneral, a model an be optimised by minimising its drift over a spei�ed preditiontime. For example, if the goal is to predit over a �ve day period, the 5 day driftan be alulated at various points on the true attrator, and the model parametershosen to minimise it. Alternatively, if the veloity error power spetrum is alulatedon the attrator, the drift an be minimised over a range of predition times simplyby adjusting the weighting of the power spetra to alulate the expeted drift ateah time.The key result from this hapter is the shadow law, whih provides an easilyomputable upper bound on shadow times. It is a mathematially demonstrable andeasily veri�ed statement whih applies aross a broad range of dispersive, haotimodels. Figure 4.33 is a graphi illustration of the shadowing law: for the more than60 experiments onduted with a number of model/system pairs, the ratio of drift toshadow diameter over a shadow orbit is near or below 1. We will later use this simpleresult to address the question of model error in weather foreasting.
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Chapter 5
Climatology
5.1 IntrodutionPredition problems have been desribed by Lorenz [39℄ as falling into two ategories.Problems whih depend on the initial ondition, suh as short to medium rangeweather foreasting, or El Nino, are desribed as `preditions of the �rst kind'. Longerterm problems, suh as e�ets on the Earth's limate of volani emissions or arbondioxide levels, are referred to as preditions of the seond kind.In general, modelling the limatology seems to be a somewhat easier problemthan modelling short term behaviour. For example, numerous models have beenonstruted whih do a reasonably good job of modelling ertain aspets of �nanialtime series, yet prediting the next stokmarket rash is still an elusive goal. Theonverse also holds: it is easy to onstrut a model of the Lorenz '96 system whihpredits short term, but, due to a small damping term, eventually trends to zero.It should also be noted that, while model limatology is a�eted by model error, itdoes not seem possible to measure model error in a meaningful manner by analysingthe limatology alone. In general the true system is only known through observationsof a true orbit. Therefore model error is stritly speaking only de�ned on projetionsof true orbits into model spae (for how an we measure model error in a region ofstate spae that the true system never enters?).Despite these aveats, there appear to be some links between short and long rangepreditability. For example, referring to Figure 4.16, it was notied that the attratorof the Saltzman 7-D system was loser to that of the redued 3-D model at a parametervalue of � = 25:1 than at the higher value of 28. It also turned out that shadowingwas muh improved at the lower parameter setting. Intuitively, it seems reasonable
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that there be a onnetion between the two kinds of preditability. Also, shadowingwas seen in Chapter 3 to depend primarily on low frequeny errors - preisely thetype that one might expet to inuene long-term limatology.In this hapter, we turn our attention to issues related to limatology and pre-ditions of the seond kind, onentrating on the Lorenz '96 system and its models.We will examine how limatology of the model or system depends on foring; whatproperties hold over a range of forings; and how the system limatology might bemodelled at a partiular foring.One question, of speial relevane in high dimension systems, is how to judge whenone attrator is similar to another. A possible measure of a system's limatology isthe amount of power ontained at di�erent frequenies. Spetral bifuration diagramsexpress this information over a range of forings, and therefore provide a snapshot oflimatologial variation.Figure 5.1 shows suh diagrams for the true system and onstant model. Alsoshown is the di�erene between the two, i.e. the mismath between the attratorsas expressed in terms of power spetra. For the onstant model there is learly adi�erene around F = 6 where the true system is haoti but the onstant model isperiodi or quasi-periodi. Also around F = 2:5 there is a mismath in the frequeniesof the periodi orbits, whih appears as a split in the lines. The linear model showsa general improvement of �t over the onstant model.These �gures enapsulate a great deal of detailed information, but it is hard todraw any general onlusions from them - espeially if we are more interested ingeneral behaviour rather than whether the model is haoti or periodi. Another,somewhat simpler, measure of limatology is to onsider the �rst and seond ordermoments, i.e. hxii and hx2i i. We might then ask whether optimising the model forthese marosopi quantities is the same as optimising for short term preditability.In the next setion we prove that this depends on the model; in one ase the two aimsare at odds, while in another they appear to agree.
5.2 Chaoti in the small, preditable in the largeThe Lorenz '96 systems undergo omplex hanges in behaviour as foring is inreased.Nevertheless, it was seen in Chapter 3 that quantities suh as foring error varyin a simple manner as a funtion of foring. Similar relationships an be deduedfor hxii and hx2i i by averaging the model equations over long time periods. These
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(b) Linear model
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Figure 5.1: Spetral bifuration diagrams for onstant model, linear model, and truesystem, and model mis-math with true system.
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relationships an then be exploited to determine how best to model the system'smarosopi behaviour with the onstant or linear model.The one level system equation 2.1 is:dxidt = xi�1(xi+1 � xi�2)� xi + F: (5.1)Multiplying eah side of this equation by xi, we obtain
xidxidt = 12 dx2idt = x1xi�1(xi+1 � xi�2)� x2i + Fxi: (5.2)Summing over all i, the advetion terms anel out, leaving12 nXi=1 dx2idt = � nXi=1 x2i + F nXi=1 xi: (5.3)

Let L be a real number. Then1L Z L0 12 nXi=1 dx2idt dt = � 1L Z L0 nXi=1 x2idt + 1LF Z L0 nXi=1 xidt: (5.4)
Now, taking the limit as L goes to in�nity, the left hand side is just

limL!1 1L 12 nXi=1 x2i : (5.5)
It is easily seen, for example by the Trapping Region Lemma [1℄, that xi is bounded,and so the above term goes to zero in the limit. The �rst term on the right handside, meanwhile, onverges to nhx2i i, where the average is over the attrator, and theseond term is nhxii. Therefore we obtain the result that the mean of x2i is equal tothe foring times the mean of xi: hx2i i = F hxii: (5.6)A similar tehnique an be applied to the two level system. Equation 2.2 for thelarge sale variables isd~xidt = ~xi�1(~xi+1 � ~xi�2)� ~xi + F � hb mXj=1 ~yi;j: (5.7)
The same proedure as that followed above gives a similar result, but now there is anadditional term due to the ~yi;j variables:

h~x2i i = F h~xii � mhb h~xi~yi;ji: (5.8)
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The system equation for the ~yi;j variables isd~yi;jdt = b~yi;j+1(~yi;j�1 � ~yi;j+2)� ~yi;j + hb ~xi: (5.9)Multiplying now by ~yi;j and proeeding as above gives
h~y2i;ji = mhb h~xi~yi;ji: (5.10)Combining these equations yields

h~y2i;ji = 1m(F h~xii � h~x2i i): (5.11)This result means that information about the �ne-sale ~yi;j variables an be deduedby observing only the large-sale ~x variables.Suppose now that we wish to model the marosopi behaviour of the two levelsystem using the onstant model with foring P . For the model, we havehx2i ihxii = P  (5.12)
while for the system we have h~x2i ih~xii = F � mh~y2i;jih~xii : (5.13)
If we demand that the ratio of the �rst and seond moments agree, sohx2i ihxii = h~x2i ih~xii ; (5.14)
then it follows that P  = h~x2i ih~xii : (5.15)The value of P  arrived at is not the same as the value used in Chapter 3 forshadowing purposes. At F = 10, for example, the optimal foring is 8.87 as opposedto 9.63 for shadowing. Also, the hosen value of P  gives the orret ratio of hx2i i tohxii, but never the orret value of either term. This is seen in Figures 5.2 and 5.3,whih show h~xii and h~x2i i respetively, along with the orresponding values of hxiiand hx2i i for the onstant model with foring P . In either graph, the urve for themodel is below the urve for the system, so it is impossible to arrive at a onstantmodel whih has both hx2i i and hxii orret simultaneously.An interesting feature of the graphs is that the quantities vary in a regular mannerwith foring. The mean h~xii goes approximately with the square root, and h~x2i i with135
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the square of foring. It seems reasonable that model error should also vary in asimple way with foring.One might expet to do a better job of modelling the two level system with thelinear model, whih has two parameters to adjust. The relationship between hx2i i andhxii an be omputed for the linear model just as for the onstant model. Reall thatthe linear model has a foring term Pl with omponents given byPli(~xi) = �0 + �1~xi: (5.16)Following the proedure above, we alulate thathx2i ihxii = �01� �1 (5.17)
with the additional linear term in the parameterisation introduing a fator 1��1 inthe denominator. Thus, to preserve the ratio hx2i ihxii of the true system, we require�01� �1 = h~x2i ih~xii (5.18)
whih solved for �1 gives �1 = 1� �1 h~x2i ih~xii : (5.19)Therefore, given a value of �0, the orresponding value of �1 an be found.Figure 5.4 shows how the ratio of hxii to h~xii hanges with the foring o�set �0�F .A graph of the ratio of hx2i i to h~x2i i is indistinguishable. The ratios is approximately1.0 when the o�set is zero, or �0 = F . The orresponding value of �1 is then

�1 = 1� F h~xiih~x2i i : (5.20)
For F = 10, the resulting slope is �1 = �0:127079. To the margin of error, theseoeÆients are indistinguishable from the values �0 = 10 � 0:046 and �1 = �0:122used in the linear model for shadowing purposes.In fat, the linear model, as derived for shadowing, turns out do a �ne job ofreproduing the true system's marosopi behaviour over a range of forings. Figure5.5 shows hxii for the linear model ompared to h~xii for the system as a funtion ofsystem forings, while Figure 5.5 shows hx2i i ompared to h~x2i i. Agreement is exellentexept in the regions near F = 1:3 and F = 7. The area around F = 1:3 was found inChapter 3 to be a problem for both the onstant and linear models, sine this is thepoint where the �ne-sale variables beome non-zero in the true system. Referring to
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the spetral bifuration graphs in Figure 5.1, the problem around F = 7 appears tobe that the system is already haoti, while the model is in a quasi-periodi region.Apart from these areas, orrespondene is almost exat. The linear model is ertainlythe simplest model whih suessfully reprodues the marosopi behaviour of thetrue system.Beyond hxii and hx2i i, one might ask what other aspets of the limatology anbe modelled. In the next setion we look at the F = 10 two level system limatologyin greater detail, and onsider other ways of approximating it.
5.3 Modelling the limatology of the two level sys-temThe linear model may be the simplest model to apture the mean and variane of thetwo level system, but, as seen by the spetral bifuration diagram Figure 5.1, it is stillnot perfet at modelling the power spetrum. In this setion we try other approahesto �nd models whih produe a similar limatology to that of the true system, forthe spei� foring F = 10, where the de�nition of `similar' is broadened to inludephase spae plots and the power spetrum.Along with the onstant and linear models, we onsider also two other models
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onstruted using stohasti methods. The motivation here for stohasti models isto see if the limatology an be improved by adding random terms whih make themodel statistially similar to the true system.
5.3.1 Stohasti modelsThe �rst stohasti model we will onsider draws the foring at eah point from adistribution of observed forings. Suppose we observe the true system foring ~F(t) atK points on the attrator, where the points are hosen so their distribution reetsthe natural measure. We then de�ne the modeldxidt = xi�1(xi+1 � xi�2)� xi + P ri randommodel (5.21)where P ri is hosen at random from the distribution at eah time step. In pratie,the size of the distribution was 10,000 points, taken from an orbit at intervals of 0.185time units, whih is the deorrelation time for ~F(t).The seond stohasti model attempts to better model the data by using an AR(1)�t [11℄ to generate a time series of the formPAR(n) = h ~F i+ a1PAR(n� 1) + a0: (5.22)The ovariane term a1 is given by e�1=nd, where nd is the (non-integer) number oftime steps orresponding to the deorrelation time for ~F(t). For this model, theresulting ovariane was a1 = 0:97. The term a0 is a random term, with zero meanand variane 0.165 hosen to make the AR(1) series variane math the true variane.The model is thendxidt = xi�1(xi+1 � xi�2)� xi + PARi AR(1) model: (5.23)Adding stohasti terms to a model seems unlikely to improve shadowing perfor-mane, sine random perturbations will only add to the foring error variane, whihwas seen in Chapter 3 to limit shadowing times. In fat, we have to be areful abouthow we de�ne shadowing times for these systems. In the ase of the random model,for example, there will be one series of random hoies of the foring whih will beexatly the same as for the true system, and therefore shadow inde�nitely. What wean ask instead is whether adding the random terms on average inreases or dereasesthe time that the model will trak the true system. As expeted, the answer is that itdereases traking times. The onstant model shadows at F = 10 and shadow radius
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0.4 for about 0.6 time units, while the random model traks on average 0.46 timeunits, and the AR(1) model an average 0.32 time units.Note also that, if reduing the drift is the goal, then, beause the drift measuresthe integral of the veloity error over a �xed time, it follows that a parameter variedstohastially with time will give the same drift as one where the same parameteris held onstant at some intermediate value over the predition period. Thereforestohasti models o�er no real advantage over non-stohasti models in improvingshort term preditability. The question is then whether they a�et the long termbehaviour.
5.3.2 Projetion on EOF'sOne tehnique used by meteorologists to analyse the limatology is to look at theprojetions of the system onto the empirial orthogonal funtions, or EOF's. TheEOF's are de�ned as the eigenvetors of the matrixOTO, whereO is aK by n matrixontaining K points distributed on the attrator, and n is the dimension of the model(in this ase 8). The eigenvalues indiate the degree of variane attributable to eahEOF. Therefore the EOF with highest eigenvalue will have the highest variane.The �rst four EOF's for the true system are shown in Figure 5.7. Model EOF'sare similar. The �rst two pairs of EOF's an be viewed as pairs of standing wavesaround the irle, whih are out of phase by a quarter period. Beause the indiesare yli, the starting point is arbitrary, and only the phase and the relative phasedi�erene is important.There is a small but signi�ant di�erene between models in the degree of vari-ane for whih eah EOF is responsible. The results are summarised below, and areaurate to about 0.1 perent. The linear model is in good agreement, while thestohasti models and the onstant model are all out by the same amount, whih isabout 1 perent for the �rst two EOF's and 0.5 perent for the next two.
Table of perentage of variane in EOF's.model 1 and 2 3 and 4truth 22.6 14.3onstant 21.5 13.8linear 22.7 14.1random 21.5 13.8AR(1) 21.5 13.9
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Figure 5.7: EOF's for true system. The horizontal axis is the index i of the variablesxi around the irle.

In Chapter 2, we studied the system by looking at orbits of x1 versus x2. We nowre�ne this approah by �rst projeting the orbit onto the higher variane EOF's. Thiswill apture the high variane aspets of the system behaviour in an eÆient way. Forexample, the �rst two EOF's are responsible for about 45 perent of the variane,while the next two are responsible for another 27 perent. A further improvement isto do a ontour plot of the probability density in the EOF's, rather than a simpletrae of the orbit.Beause of the rotational symmetry in the systems, the �rst two EOF's are phaseshifted versions of one another, as are the next two. One approah is to projet ontoEOF's 1 and 3. Another method, whih gives slightly learer �gures, is to alulatethe projetion onto the �rst two EOF's, get the modulus, projet onto the next twoEOF's, get the modulus, and plot a histogram of these two numbers. This has beendone in Figure 5.8. The di�erene between the true system and the models is shownin Figure 5.9. Again, results for the stohasti models are similar to the onstantmodel, while the linear model gives the best results. The histograms were generatedby alulating 250,000 points, sampled one every 0.2 time units from a long orbit.A test was also performed with only 50,000 points. Results are similar to the longorbit, suggesting that the di�erene between the true system and the models is a realone, and not a numerial artefat.The �nal method onsidered for viewing the limatologies was to look at the powerspetrum of an orbit's projetion onto the �rst EOF. Figure 5.10 shows the spetrafor eah model ompared with the full system. The linear model again has the best
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Figure 5.10: Power spetrum of orbit projeted onto �rst EOF for true system andmodels.
�t.
5.4 SummaryIn this hapter we looked �rst at analytially derived properties of the Lorenz systemlimatologies. Properties relating the mean to the variane were found, whih donot depend on whether the system is in a haoti or periodi state. It was shownthat optimising the mean and variane of the onstant model result in a onstantforing whih is di�erent from that used for short term predition, while for thelinear model the parameters losely mathed those used for shadowing. Therefore theoptimisation of short term preditability may, or may not, be the same as optimisingfor limatology, depending on the partiular model/system pair.Attempts were then made to model the two level limatology, using variants ofthe one level system. The onlusion appears to be that the linear model, whih isbest for shadowing, is also best at reproduing the limatology of the full system.This may be related to the fat, seen in Chapter 3, that the linear model redues low145



frequeny (and therefore long term) model error. Adding stohasti terms does littleto improve the onstant model, even if the term is an AR(1) �t to the real errors.This result seems unsurprising, sine, in general, we would expet the limatologyto be inuened by the average foring, and less by short term random utuations.The random models are atually worse at shadowing than the onstant model, whihis onsistent with the hypothesis that model error is dominated by the foring errorvariane.
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Chapter 6
Operational weather foreasting
models
Up until this point the theory related to model error has been applied to low andmedium dimension systems. Sine the key results have been determined from thelinearised dynamis, whih are valid for any model/system pair provided the shadowradius is suÆiently small, the methods are equally appliable to models with veryhigh dimension, suh as weather models.Referring to the linearised dynamis equation (4.13), a fair amount is known aboutthe linear propagator M for suh models, beause of the investigations into singularvetors and diretions of fastest growth for perturbations in initial onditions. Thenegleted part of the equation is the drift d, about whih very little is known [30℄.In this hapter we begin to retify that imbalane by studying the dynamis of anumber of di�erent resolution models in use at ECMWF. In the same way as for theone-layer Lorenz model versus the two-layer system, we will alulate model drift andshadow times, �rst between the di�erent models, and then between the operationalmodel and the analysis (the losest thing available to the real weather). Finally wedisuss methods to improve the foreasts by using information about the likely error.Before going on to examine the models in detail, though, we �rst desribe some ofthe hief harateristis of weather models to understand how they work and whereerror an arise. A summary of results from previous investigations into model errorwill also hopefully ast some light on how we arrived at the odd situation of knowingmore about the error's �rst order term - the linear propagator - than its zero orderterm - the drift.
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6.1 Causes of model errorGlobal weather predition models of the type used at ECMWF and other nationalor international meteorologial entres are extremely omplex models, with the orderof 107 variables. The models are formulated using Galerkin trunations of the uiddynami partial di�erential equations, whih desribe the evolution of mass, energy,momentum and omposition, inluding terms representing soures and sinks [49, 69℄.The models are integrated on some of the fastest omputers in the world, with typialspeeds of 1011 oating point operations per seond.One problem with suh huge models is that they are too omplex: there are manythings that an go wrong, and the size of the models makes it diÆult to analyse theerrors and determine the ause. Another problem is that they are not omplex enough.A typial spatial resolution is about 50 km horizontally and 1 km vertially. The limitto the resolution is determined, not by some sienti� hoie, but by the apaity ofthe omputer. Therefore any �ne-sale proesses must be parameterised, in the sameway that the foring in the Lorenz one-level model was used to parameterise thetwo-level system.Apart from the �nite resolution, there are many other possible auses of model er-ror. The Earth's atmosphere must be one of the hardest modelling tasks that mankindhas ever attempted. Anyone who has built a �nite element model of a mehanialstruture is aware of the potential for unforeseen error (the author's own experienein this regard is with superonduting magnets, where auraies of parts in 104 orbetter are attainable in theory, but less often in pratie [46℄). For example, the mostimportant onstituent in the atmosphere for the uid dynamis is water (in its variousphases). Unfortunately it is also one of the most diÆult to model, and proessesto do with the formation and dissipation of louds need to be modelled parametri-ally. Other potential soures of error are the interation between the weather andthe earth, suh as surfae heat uxes or momentum transfer through tomography;inorret assessment of radiation due to poor loud foreasts; and inaurate modelinterpolation over data-poor regions, whih leads to projetion errors. The modelsurrently in use are therefore de�nitely wrong; the question is, how wrong are they?
6.2 The perfet model assumptionWhile model error ertainly has a role to play in weather foreasting, most inves-tigations into error, at least over the last deade, have onentrated on the initial
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ondition, and led to the development of ensemble methods. The reason for thisemphasis on initial ondition isn't lear, though it may have been due in part tothe interest in haoti systems engendered by Lorenz's disovery in 1963 [37℄ thatthe atmosphere is haoti. They say that a sienti� revolution takes thirty yearsto be absorbed: a key paper exatly thirty years on was that by Toth and Kalnaywhih introdued the breeding vetor method for produing ensemble perturbations(a method similar to the singular vetor method, but hoosing diretions whih havegrown most quikly in the reent past). Here is a quote from that 1993 paper [67℄:
The replaement of single operational foreasts by an ensemble of initialforeasts reet expliitly the reognition that the atmosphere is a haotisystem. As pointed out by Lorenz (1963), even an in�nitesimally smallperturbation (as would be produed, for example, by the `wings of a but-tery') introdued into the state of an atmosphere at a given time willresult in an inreasingly large hange of the evolution of the atmospherewith time, so that after about two or three weeks the trajetories of theperturbed and the original atmosphere would be ompletely di�erent.Lorenz's disovery led to ... the realization that many apparently deter-ministi systems, like the atmosphere and its numerial models, are alsohaoti: arbritrarily small perturbations evolve into large di�erenes withtime.If we are willing to run an ensemble of foreasts from slightly perturbedinitial onditions, then averaging the ensemble an �lter out some of theunpreditable omponents of the foreast, and the spread among the fore-asts should provide some guidane on the reliability of the foreasts.

The stated aims of ensemble foreasting, therefore, are to provide a more aurateforeast, from the mean, and a on�dene level, from the spread. The tehniquewill obviously work best when model error is small, and it was felt that models hadimproved enough over those of the 1960's and 70's that model error had beomealmost irrelevant. From Toth et al [68℄:In the early years of NWP, foreast errors due to simpli�ed model for-mulations dominated the total error growth. The traditional pereptionthat foreast errors are primarily due to model errors date bak to thoseearly years. By now, however, models have beome muh more sophisti-ated and it is the errors that arise due to instabilities in the atmosphere149



(even in ase of small initial errors) that dominate foreast errors. Thereognition of this situation requires a major shift in the pereption ofNWP.For the purposes of the alulations, then, the model was assumed to be perfet:In this paper we will assume that our numerial model is essentially perfet... As Reynolds et al. (1993) have showed, the foreast error in the extra-tropis is dominated by the error originating from the unstable growth ofinitial errors, and not by model de�ienies.A similar assumption was made for the ECMWF ensemble predition sheme(EPS) in Buizza et al [7℄:From its ineption, the EPS has been based on the premise that medium-range foreast errors are predominately assoiated with unertainties ininitial onditions.These are statements of what is known as the `perfet model assumption', and itunderlies most of the development of ensemble tehniques based on perturbations ofthe initial ondition (other tehniques perturb the model as well, and we will ome tothem below). The assumption appears in di�erent forms whenever suh tehniquesare disussed. Usually it is posed only as a working assumption, but sometimes it isexpressed almost as a statement of fat. From Buizza et al [7℄:... the hypothesis of the dominant role of initial unertainties is ertainlyvalid in the early foreast range ...The same paper goes on to say that the perfet model assumption doesn't alwayshold: in fat,... model errors an beome as important as initial ondition unertaintiesin the medium foreast range.The belief that model error is only important for longer foreast times ould bedubbed the `nearly perfet model' assumption. It is e�etively saying that model erroris initially small, ausing a perturbation whih is then ampli�ed by `ow-dependentinstabilities of the haoti limate attrator' [49℄. It atually refers, not to modelerror itself, but to the displaement error whih is initiated by a small perturbation.The drift for suh a nearly perfet model would still be small, and the model errorindex low. 150



Papers quoted in support of the nearly perfet model assumption inlude Downtonet al [21℄ and Rihardson et al [57℄. The �rst paper noted that di�erent modelsoften gave di�erent results, and set out to disover whether this was due to themodels themselves or the fat that they were initiated from di�erent analyses. Itexamined in detail six ases during the autumn/winter of 1985/86 where the UKMeteorologial OÆe (UKMO) operational foreast disagreed signi�antly with theECMWF foreast. The approah used was to run the ECMWF foreast from theinterpolated UKMO analysis, and vie versa. In most instanes, it seemed thatthe models produed similar foreasts providing they were initiated with the sameanalysis. `Similar' here was not so muh in terms of RMS �elds, but in variousqualitative properties of the 500 hPa heights, suh as development of lows, highs,troughs, ridges and so on. The emphasis was on errors after �ve days.The seond paper studied the relative e�ets of using di�erent analyses and dif-ferent models for 25 ases in the winter/spring 1996/97 period. In eah ase, a per-turbation was made to the ECMWF analysis approximating the di�erene betweenit and the UKMO analysis. Foreasts with the ECMWF model from this analysiswere ompared with the EPS ontrol foreast, to determine analysis di�erenes, andwith the UKMO model to determine model di�erenes. It was found that the e�etof using a di�erent analysis was `substantially greater' than that of using di�erentmodels, as measured by RMS errors in the 500 hPa height. At day 5, model di�er-enes were found to aount for only 25 perent in the Northern and 15 perent in theSouthern hemispheres, though this was onsidered an upper bound sine it ontainedalso errors in the representation of the UKMO analysis.Another paper taking a similar approah was Harrison et al [28℄. It noted thatthe `the weight of evidene appears to suggest that analysis di�erenes are the moreritial in ontrolling foreast divergene', but also that `the overall ontribution ofmodel and analysis dependenies to the divergene of foreasts have not been fullyeluidated and further evaluation is desirable'. The paper went on to examine twoase studies omparing the ECMWF T63 model with the UKMO Uni�ed Model atomparable resolution. Four ensembles, eah with 33 members, were onstrutedusing all permutations of models and analyses. The initial perturbations for the en-semble were generated from ECMWF singular vetors. It was found that `signi�antdi�erenes between all four ensemble sets were found in eah ase-study', where theemphasis was again on the medium range (5 days). The writers onluded that itmight be preferable to inlude both models, so that the ensemble ontained, not onlydi�erent initial onditions, but di�erent models: a multi-model ensemble.
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6.3 Multi-model ensemblesThe use of ensembles omprised of di�erent models is an extension of the tehniqueof initial ondition ensembles. If di�erent models give di�erent results, then inorpo-rating all the models in the ensemble should take that e�et into aount.The onept of using a ombination of models to provide a foreast is atually notvery new [28℄. Meteorologists have aess to produts from all the major weather en-tres, and have always used their experiene of model performane and atmospheribehaviour to hoose the model whih seems most appliable. (The �nal foreast,though, was usually based on a single model.) This tradition is arried on by om-panies like Risk Management Solutions, whih, when prediting hurriane traks forinsurane ompanies, use a ombination of available models and historial data, orby the Fleet Numerial Meteorologial Centre whih regularly produes a 72 hourforeast whih is the mean of the foreast from several entres [30℄. It has been foundthat the di�erene between foreasts an be a good preditor of foreast skill [75℄.Multi-model ensembles ome in two avours. The �rst is to use a ombination ofmodels from di�erent entres. The seond approah is to perturb the parameters ofa single model, analogous to the randomly perturbed Lorenz models of Chapter 5.This an be viewed as an attempt to add a perturbation to the model whih apturesthe likely nature and extent of model error.In the past, attempts were made to aount for model error by adding randomperturbations to the entire model, rather than partiular parameters. Philips [51℄suggested using a white noise desription for the model error. Bennet and Budgell [3℄laimed that the tail of the spetrum should be onstrained, so as to be onsistentwith regularity of model solutions. Suh a model error desription was used by Cohnand Parrish [14℄, who adjusted the length sale of the model error to the length saleused in the National Centers for Environmental Predition regional analysis system.Dee [19℄ investigated the estimation of model error parameters using an analysis ofinnovations.As Houtekamer et al. [30℄ pointed out, it wasn't lear whether suh an idealisedmodel error had the same harateristis as the real error, or whether their additionwould aid an ensemble system. The whole priniple behind ensembles, to put thingsrather bluntly, is that we add garbage to the solution in the hope that the ensembleof perturbed solutions will give an improved piture of where truth lies; but we atleast want to add the right kind of garbage.
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A more sophistiated sheme is to atually perturb those physial parameters inthe model whih are felt to have a degree of unertainty. When ombined with initialondition errors, this means that every unertain variable is perturbed - a methoddubbed the system simulation experiment, or SSE [73, 74, 31, 50℄. Houtekamer et al.[30℄ inorporated into their SSE di�erent parametrizations of a number of model areas.Partiular attention was foused on the areas of orography and deep onvetion, whihwere thought to be partiularly de�ient [56℄, and the treatment was also extendedto horizontal di�usion, radiation, and gravity wave drag.A similar approah was taken by Buizza et al. [8℄ at ECMWF, foussing on theparametrization of the diabati tendeny. The diabati foring term for eah gridpoint was hosen randomly from a presribed range. The foring term also variedwith time: it was noted that `even if the parametrized and atual diabati heating�elds agree on average (i.e. over many time steps) at the hosen grid point, theremust inevitably be some standard deviation in the time-step by time-step di�erenebetween observed and modelled heating'. The sheme was therefore similar in prin-iple to that in Chapter 5 where random perturbations were assigned to the foringof the one-level system.The SSE approah doesn't make the perfet, or nearly perfet, model assump-tion; but it does assume that the models an be orreted, or at least substantiallyimproved, by varying the parameters. This is what we might all the `struturallyperfet assumption'.
6.4 Problems with the ensemble approahThe use of ensembles has beome quite broadly aepted in the meteorologial om-munity, and ensemble alulations have been exeuted routinely at ECMWF sine1992. They seem well adapted to the problem of addressing initial ondition error,beause the error in that ase is in an unknown diretion, but is (probably) withina ertain magnitude. It is also possible to hoose the perturbations whih grow thefastest, and therefore estimate the likely spread of foreasts.Referring to Figure 4.3, though, the usefulness of an ensemble foreast, in termsof the mean and, to a lesser degree, the spread, will depend on the model error. Ifmodel error is high, then the ensemble mean may be no more aurate than a singleontrol foreast. As stated in [68℄:The ensemble strategy will work only if the models are good enough thatmodel-related errors do not dominate the �nal error �elds.153



Therefore we are brought bak to the perfet, or at least the near-perfet, modelassumption. Unfortunately, evidene for the near-perfet model assumption is mostlyirumstantial, and is based on the observation that models from di�erent weatherentres produe similar results. In fat, this is hardly surprising, beause of theproess by whih the models are built: the meteorologists all read the same booksand attend the same onferenes, so when an advane is made in one area it isadopted fairly quikly by the others. It is notable that the one paper whih founda distint di�erene between foreasts [29℄ atributed it to a problem with one of themodels, whih was eventually orreted. In pratie, it has been found that ensemblesonsistently underestimate the spread, and that the mean is no better than the ontrol[6, 70℄; harateristis whih are both ompatible with high model error.The use of ensemble tehniques to understand model error is even more prob-lemati than its use for initial ondition error, though for di�erent reasons. It hasbeen stressed in this thesis that model error and initial ondition error are di�er-ent entitities; therefore they demand di�erent approahes. Ensemble methods are atleast theoretially suited to initial ondition error, sine the true initial ondition isassumed to lie within some ball of radius orresponding to the analysis error. Modelerror, in ontrast, is more diÆult to address. It ould be simply impossible to on-strut a suitable set of equations [63℄. Perturbing model oeÆients won't help if themodel is struturally de�ient. With initial onditions, we know the type, if not thediretion, of the garbage that we want to add; with the model, we an make eduatedguesses about unertainty of ertain parameters, but have no guarantee that we haveaddressed the real soure of error.The most important di�erene between ensembles of initial onditions and ofmodels, though, is that we an hoose those initial onditions whih, out of all possibleperturbations, will reate the largest error, but we an never do the same for models.An ensemble of models from di�erent entres is a very poor sample of model spae;and a stohastially perturbed model will not represent the real errors if the modelis not struturally perfet. Indeed, there may be no aessible set of equations thatperfetly mimi the dynamis of the system [63℄.The fous here will therefore be, not on reating ensembles, but on measuringmodel error and determining its harateristis. (After all, the onstant model wasimproved, not by taking an ensemble of models with di�erent onstant forings, butby looking at how a simple parameterization ould redue error: the linear model.)This is not to say that the ensemble approah isn't adaptable to model error; ratherthat, as for initial onditions, if we intend to perturb our model by adding garbage to
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it, we need to have a very good idea whih kind of garbage we should add. We beginthat investigation by omparing ECMWF models of di�erent resolution.
6.5 Error between models of di�erent resolution
6.5.1 The range of ECMWF modelsThe foreast models at ECMWF have undergone a number of hanges in resolutionsine operational foreasting began over 20 years ago. Here is a brief summary oftheir historial development.In April 1983, a 15-level �nite di�erene model, based on a regular longitude/latitudegrid, was replaed by a T63 16-level spetra model, with the extra level in the plan-etary boundary layer. Spetra models exploit the spherial geometry of the globeby using a trunated series of spherial harmonis (produts of sinusoidal funtionsin the zonal diretions and Legendre funtions in the meredinial diretion). A T63model trunates the series above order 63.Further improvements followed. In May 1985, the horizontal resolution inreasedto T106. A year later, vertial resolution beame 19 levels, with the three extra levelsin the stratosphere. In September 1991, horizontal resolution beame 213 and vertial31, with layer spaing redued by a fator of about two. In April 1998, spetral reso-lution beame T319, but used a `linear-grid' option in whih the omputational gridremained the same (about 60 km) as for the old T213. In Marh 1999, vertial layersinreased to 50, with a layer spaing of about 1.5 km over most of the stratosphere.The EPS sheme, meanwhile, was initiated in 1992 with a T63L19 model (the 19refers to the vertial levels, the `L' refers to the linear grid option). In Deember 1996the resolution was inreased to T159L31. The singular vetors, whih are expensive toompute, are based on a lower resolution T42L31 model. There also exists a tangentlinear version of T42L31, whih linearises the adiabati omponent of the model sothat an adjoint an be onstruted [10℄.There therefore exists a fairly extensive suite of models from whih to hoose.The resolution experiments in this thesis were based on the lower resolution T42L31and T63L31 models, using T159L31 as `truth'. These models have the advantage ofkeeping the same number of vertial levels, so interpolation isn't required over thatsale. Also an adjoint exists for T42L31, whih is required for the omputation ofshadow orbits.
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Figure 6.1: Model errors in the 500 hPa height norm. Left olumn shows analysisheights for days 1 to 4, middle olumn shows predited heights, right olumn showserrors. Contour interval is 25 for the heights and 2 for the errors.
6.5.2 The energy metriIn order to alulate RMS errors, it is �rst neessary to hoose a metri. One possiblehoie, whih is used ommonly by meteorologists, is the 500 hPa height. Figure 6.1shows how error grows in this metri over a typial four day foreast. After a ouple ofdays the di�erene between the analysed heights (left olumn) and predited heights(middle olumn) has beome notieable. The error (right olumn) appears to have a�ner struture than the height �elds themselves.The 500 hPa height metri may be useful for meteorologial interpretation of theweather, but it is less suitable for shadow alulations sine it only takes into aounta limited set of atmospheri variables, namely the geopotential at one level. Thesituation would be the same as doing shadow omputations for the 8D Lorenz system
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Figure 6.2: Errors for temperature T integrated over Europe, for a typial week.
with a single variable; as mentioned in Chapter 4, it may be possible to shadow forexample x1, but only by introduing huge distortions into the other variables. Inweather terms, the pressure might be �ne in the middle atmosphere, but ompletelywrong at ground level.A more omplete measure of the atmospheri state is given by a simpli�ed versionof the total energy metri. The vetor used to desribe the atmospheri state x at apartiular time is x = (u; v; T ) (6.1)where u and v are the zonal and meridional wind omponents, and T is the tempera-ture. Figure 6.2 shows errors for one of these variables, the temperature T , integratedover Europe. We de�ne the energy norm to be

hx;xi = 1=2 Z 10 Z Z�(u2 + v2 + (Cp=Tr)T 2)d�(�pr=��)d�: (6.2)The energy norm equals the sum of the kineti energy of the wind error and thepotential energy stored in the temperature error, and is the same as the total energynorm but with the relatively small surfae pressure omponent omitted. Tr is areferene temperature, pr a referene pressure, and Cp the spei� heat at onstantpressure for dry air. � is the horizontal domain, taken here to be northwards of 30degrees, and � the vertial oordinate. Details are in [9℄.The energy norm appears more ompliated than the standard Eulidean norm,but it an be viewed numerially as a weighted sum of squares of (u; v; T ) errors over a
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�nite element grid. Quantities suh as singular vetors an be alulated in this normjust as they were for the Lorenz models in the Eulidean norm, with the di�erenethat the matrix transpose of the linear propagator beomes an adjoint model [20℄,alulated with respet to the total energy inner produt.
6.5.3 Foreast errorsThe upper panel of Figure 6.3 shows RMS errors in the energy metri at �ve di�erent�ve-day foreasts starting at di�erent dates. For omparison, the typial analysisvariane, whih is used to determine perturbation size in ensemble foreasts, is about45 units on this sale. The model trajetories diverge from the true system (TL159)at a fairly onstant rate, with T63 onsistently performing better than T42 as onewould expet. The lower panel shows the ratio of T42 errors to T63 errors. What issurprising is the uniformity of the results; there is little evidene of �kle sensitivityto initial onditions for these �ve starting dates. Nor does growth appear to beexponential in shape, whih is the typial harateristi of initial ondition error.Rather, the urvature is negative, so rate of growth atually dereases with time.Interpretation of the foreast results is ompliated by the ambiguity in the start-ing points. The foreast errors are not all zero at time zero beause of the trunationoperator whih translates TL159 �elds to T42 or T63 �elds. For the foreasts onsid-ered here, the mismath is about 40 energy units for T42 and 25 for T63. This stillallows the possibility that trunation error is responsible for the divergene of fore-asts: a small initial error is magni�ed by the nonlinear dynamis, and the problemwould not then be of model error, but of sensitivity to initial onditions. In that aseit would be possible to shadow for extremely long times, sine the negligible modelerror ould be ounterated by an appropriate hoie of initial displaement.
6.5.4 Calulation of the driftFrom the foreast alone, we an't separate out the e�ets of model error and initialondition error, sine as soon as the model diverges from the true orbit initial ondi-tion error begins to grow. We therefore alulate the drift. A number of short, twelvehour foreasts were made with T42 and T63, starting at twelve hour intervals alongthe TL159 foreast, and the results integrated numerially to give the drift. Figure6.4 shows how the drift aumulates with time for T42 and T63. The ratio of thedrifts is also shown in the lower panel of Figure 6.3; as for the foreasts, it is nearlyonstant at 1.4 over the foreast time.
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Figure 6.4: The upper panel shows a plot of T42 errors with respet to TL159 forstarting date 15/10/99. Solid line is the foreast, dashed line is the shadow trajetorywhih minimised error at 48 hours, dotted line is the drift. The unorreted drift isin plaes larger than the foreast error, due to a spin-up error whih is probablyaused by trunation error. The two estimates for the lower bound on shadow radius,omputed using estimates of the drift, are shown by the shaded region. Errors areomputed in the energy norm, relative to TL159. The lower panel shows the samefor T63.
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Figure 6.5: Comparison of drift for T63 vs TL159, omputed with step sizes of 3, 6and 12 hours.
If model error were truly negligible, then we would expet the drift to be smallerthan the foreast error, sine the tendeny di�erene is always alulated on theTL159 orbit where displaement error is minimal. In fat, the magnitude of the driftis lose to the magnitude of the foreast error. At times it is even larger: the reasonappears to be that there is an initial spin-up error assoiated with eah short foreast,whih may be an artefat due to the initial trunation error. Tests with di�erent timesteps show that the drift alulation is dependent on step size. For example, Figure6.5 shows the drift for T63 versus T159 for step lengths of 3, 6 and 12 hours. Theresults show a marked disrepany between the di�erent step sizes, with the 6 hourstep length giving a drift about 50 perent higher than the 12 hour number, and the3 hour step drift higher by the same amount again.This spin-up error, whose signature is a lak of sale invariane in the drift al-ulation, appears to be an unavoidable feature of the inter-model omparisons. Itmeans that a portion of the drift is due to spin-up e�ets, and the alulated drift isarti�ially high. We will therefore attempt to deal with it using two methods, andnote that the same problem does not our in the next setion, where the operationalforeast is ompared with the analysis, and the drift alulation is seen to sale withtime step.The �rst approah is to redue the drift by the errors inurred during eah small
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foreast. For example, the drift alulation over 48 hours involves four short foreasts,so ompared to a normal foreast there are three additional 20 unit errors. We ouldtherefore orret the 48 hour drifts by 60 units, giving a drift of 156 units for T42and 99 units for T63.The seond approah is similar to that adopted for the system of Chapter 4 withperiodi orbits on a irle, shown in Figure 4.25. In that example we irumventedthe problem of spin-up error by linearising the error around the model ontrol ratherthan truth. The ontrol error therefore serves as a proxy for drift. This method givesa result for 48 hour drift of 168 units for T42, and 114 units for T63.Given an estimate of the drift, we an determine its e�et on shadow times fromthe shadow law. The law has been shown to work for a range of low and mediumdimension models, but does it apply to full weather models, in all their omplexity?The onditions for the law to hold are that the model must be loally dissipative,and the shadow times must be suÆiently short so that the linearised dynamis arevalid for shadow orbits. The �rst ondition surely holds. For the seond ondition,it is known that the model beomes nonlinear within a day or so [23℄. However, ifthe linearisation is done about truth, and only shadow orbits are onsidered, thenthe linearisation will hold for longer times beause the displaement is limited by theshadow radius (the error is O(kr2k)). It therefore seems reasonable to expet thatthe shadow law will apply.The shadow law states, in an RMS sense, that the minimum shadow radius for aset drift should be equal to half the drift. As mentioned above, there are two methodsfor estimating the drift given the large trunation errors. If we orret the drift bysubtrating the initial errors, we obtain an expeted minimum shadow radius of about78 units for T42, and 50 units for T63. If we use instead the ontrol error as a proxyfor drift, we �nd a radius of 84 units for T42, and 57 units for T63. The results ofthe two di�erent methods are shown by the shaded region in Figure 6.4.To summarise, it appears that both T42 and T63 have signi�ant model errorrelative to TL159. Drift varies with step size, but is highest for the shorter step,implying that it is not due to initial ondition, and even when spin-up e�ets are sub-trated it still aounts for most of the total foreast error. Estimating the minimumahievable shadow radius at a spei�ed time of 48 hours from the drift gives for T63a radius of around 50-57 units, lose to the analysis variane, and for the T42 modelaround 78-84 units.
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6.5.5 ShadowingThe above results are approximate, and hampered somewhat both by the initialtrunation error and the (perhaps related) fat that drift inreases with lower stepsize. It might still be possible to onstrut some senario where the drift is due,not to the model, but to the trunation error being onsistently in the same, rapidlygrowing diretion (for example, the diretion of the leading singular vetor). Werethis the ase, and model error was in fat small, then it should be possible to �ndshadow orbits whih shadow for two days with a muh smaller shadow radius thangiven above. The only way to test this is to look for atual shadow orbits.An ECMWF algorithm, originally designed to �nd optimal perturbations to o�setforeast errors [55℄, was employed to searh for suh orbits. The method, based onthat used in 4DVAR data assimilation [36, 15℄, uses a Newton step minimisationproedure, and is similar to the 'pinh' method desribed in Chapter 4, with thedi�erene that only the �nal energy error at 48 hours is minimised rather than thesum of the initial and �nal. The method is therefore not perfet, but sine theoptimisation time is quite short and the model reasonably linear over that period[34, 54, 71℄, it should produe satisfatory results. The gradient of the ost funtionis determined by use of the T42 adjoint, whih will only be an approximation to thetrue adjoint for T63. A total of 50 iterations were performed.Figure 6.4 shows the orbits whih the program found for T42 and T63. At timetwo days, the minimised error of the T42 foreast is 114 units, while for T63 it is 82units.The optimisation proedure gradually inreases the initial error while it dereasesthe �nal error, and sine for both T42 and T63 the initial ondition error is still smallerthan the �nal error it appears that the proess isn't quite omplete. Convergene waslimited by omputer time and the eÆieny of the algorithm, but it seems reasonablethat trajetories ould be found whih had the same initial and �nal displaementsequal to the average of the two. For T42, the average of initial and �nal is about 99units, while for T63 it is about 63.5. These are still above the lower bound estimateshown in Figure 6.4.Orbits with longer shadowing times may exist, as the method used isn't optimal;however, this onern would be more of an issue for longer shadow times where themodel was less linear. The fat that shadow behaviour is onsistent with results fromthe drift implies that the drift does not overestimate the ontribution of model error,and on�rms that both T42 and T63 have signi�ant model error relative to T159. Atypial shadow tolerane for operational purposes would be the same as the analysis
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variane, i.e. 45 units. It therefore appears that both models fail to shadow at thatradius while they are still in what would be onsidered a linear regime.
6.5.6 Ensemble alulationIf model error is signi�ant ompared to displaement error, then the behaviour ofinitial ondition ensembles will be a�eted, as disussed in Chapter 4 for the Lorenzsystems. A suitable guide to the possible impat is the model error indexM2(�) givenin equation 4.68, whih ompares the drift with the growth of the leading singularvetor.Leading singular vetors normally grow in the energy norm by a fator of about20 over 48 hours (the energy itself may inrease by 400, so RMS errors will be thesquare root of that). From equation 4.68, the model error index for T42 will be

M2(�) = 1�1 = 0:05: (6.3)
To ompare with the Lorenz systems, this is loser to the onstant than the linearmodel. Sine model error had a signi�ant e�et on ensembles for the Lorenz onstantmodel, we an expet it to do the same here.To test the e�et, an ensemble was formed for the T42 model by adding saleddisplaements, equal in magnitude to the analysis variane, in the subspae of theleading 25 singular vetors. A total of 50 initial onditions were generated fromthe positive and negative perturbations. Figure 6.6 shows the resulting errors withrepet to both the T42 ontrol (upper panel) and the T159 ontrol (middle panel).The lower panel was generated by summing the errors in the upper panel with theontrol errors, with the assumption that they are orthogonal. If the upper panel errorsare aused by initial ondition error, while the ontrol errors are primarily aused bythe model, then, beause of the high dimension of the spae, it is safe to assume theyare orthogonal. The agreement between the entre and lower panels on�rms this.Figure 6.7 ompares the two only leading singular vetor perturbations of theweather model with those of the Lorenz system (see also Figure 4.3). It illustratessome of the key similarities and di�erenes between the weather models and theLorenz systems, and between high and low dimension systems in general. The upperpanels follow quite similar urves for either system. In the lower left panel, the T42ontrol has a negative urvature, unlike the Lorenz system. We will see later thatthis urvature is harateristi of model error in high dimension systems. The biggestdi�erene is that in the lower dimension Lorenz system the model error signi�antly
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a�ets the error for the singular vetor perturbations, inreasing it in one ase anddereasing it in the other, while in the weather model the errors appear largely un-a�eted. Also the lower panel for the Lorenz system, whih assumed the errors wereorthogonal, is a less good �t to the real errors than for the weather model. Theexplanation lies in the dimension of the spae: in a low dimension system the initialondition and model errors have a muh higher probability of interating than in ahigh dimension spae, where we an assume they are orthogonal.The onlusion is that, for weather models, we may not only assume that initialondition error and model error are unorrelated, as demanded by the shadow law,but also that they are nearly orthogonal. As a result, no ensemble member managesto redue model error. The ensemble mean, also shown in the entre panel, loselytraks the perturbed foreasts; this is not surprising, sine, if the model is in a linearregime, the positive and negative perturbations will tend to anel in the average.The impliation, at least for this partiular day, is that running an ensemble of T42foreasts wouldn't be muh more informative than a single deterministi foreast.
6.6 The ECMWF operational modelOf ourse, T42 and T63 haven't been used operationally for some time; the urrentstandard at ECMWF is TL319. Also, we want to shadow the real weather, notTL159. Our real interest is therefore to ompare TL319 with the analysis (our losestapproximation to the real weather).Previous alulations of model error in this thesis have primarily been with re-spet to a true system whih is desribed by di�erential equations. For the Lorenzmodel, the true system was the two-level equations. For the experiments above, thetrue system was TL159. As mentioned in Chapter 4, though, the same model errortehniques an be applied equally well to omparisons between a foreast and aninterpolated set of observations or analysed trajetory.To further illustrate this point, one goal of measuring model error is to estimateshadow times. Shadow orbits an be found expliitly, as in the previous setion, bya ode whih minimises the RMS error at a spei�ed future time (here 48 hours).However the program doesn't distinguish whether the target trajetory (spei�ally,the desired value at 48 hours) omes from an analysis or a model; it an be usedwith either. In the same way, our estimates of shadow times, derived from the driftvetor, are appliable whether the drift is alulated relative to a model trajetory oran analysed trajetory.
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Figure 6.6: Upper panel shows plot of errors wrt T42 ontrol for a T42 ensemblegenerated from leading singular vetors at 1999/10/15, 12 hours GMT. Centre panelshows errors with respet to a TL159 ontrol for the T42 foreast (solid line), theensemble (dotted) and the ensemble mean (dashed). The lower panel shows theerrors whih would our if the error vetors in the upper panel are added to theontrol error, assuming orthogonality. It an be ompared with the entre panel.
166



0 20 40 60
0

100

200

300

400

en
er

gy
 e

rr
or

T42 Ensemble Errors wrt T42 Control

sv
t

0 0.1 0.2 0.3
0

0.5

1

1.5

R
M

S
 e

rr
or

Lorenz model

sv
t

0 20 40 60
0

100

200

300

400

en
er

gy
 e

rr
or

T42 Ensemble Errors wrt T159 Control

control
mean   
sv

m
   

0 0.1 0.2 0.3
0

0.5

1

1.5

R
M

S
 e

rr
or

Lorenz model wrt truth

control
mean   
sv

m
   

0 20 40 60
0

100

200

300

400

hours

en
er

gy
 e

rr
or

sv
e
=sqrt(sv

m
2 +control2)

control
sv

e
   

0 0.1 0.2 0.3
0

0.5

1

1.5

t

R
M

S
 e

rr
or

sv
e
=sqrt(sv

m
2 +control2)

control
sv

e
   

Figure 6.7: The left hand panels are as for Figure 6.6, but only the �rst two ensemblemembers are shown. The right hand panel shows the orresponding �gures for theLorenz system, from Figure 4.3. Solid line is the ontrol, dashed is the mean, dottedare the two ensemble members.
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We will therefore use the analysis, not as a proxy for truth, but as the trueorbit ~x(t) itself (in, of ourse, a disrete form). An advantage when omparing theoperational foreast with the analysis is that there is no trunation error, sine bothare at the same resolution. And beause the foreast is always initiated at the analysisfor that day, the two have the same initial ondition. Therefore we don't have theproblem, enountered in Figure 6.4, that trunation error ontributes to foreast error.It also appears that the spin-up error whih ourred with the inter-model om-parisons is not an issue when the trunation error is removed. Figure 6.8 shows errorgrowth for a single foreast, along with the drift. The drift was alulated by sum-ming short 6 hour foreasts for the �rst day to apture the fast initial growth, followedby 24 hour foreasts for days 2 and 3. Unlike with the inter-model omparisons, thealulation is not sensitive to step size, so summing 6, 12 or 24 hour foreasts givesimilar results. This an be seen, for example, by the fat that the drift over one day,alulated by summing four 6 hour foreasts, agrees losely with the foreast error at24 hours, whih would be the value of the drift if a 24 hour step were used. Spin-uperrors, whose signature is a strong time-step dependene in the drift alulation, arenot present to a notieable extent.The drift losely traks the foreast error out to three days, in a manner ompatiblewith high model error, and the initial slope is about three times greater than that forT63 versus TL159. The most striking feature of the urve, though, is its pronounednegative urvature, whih is hard to reonile with the exponential-on-average [65℄growth expeted from displaement error.The shape of the urve makes more sense when we examine the nature of the shortforeast errors whih make up the drift alulation. Figure 6.9 shows histograms of theosine of the enlosed angle of the 24 hour drift vetors, for onseutive and randomlyhosen days over a hundred day period. The mean for the onseutive days is 0.081,whih is a signi�ant orrelation onsidering the dimension of the spae. Note thatthe distribution for onseutive days in the upper panel is shifted signi�antly to theright of the distribution for random pairs of days, implying that drift is persistenton a timesale of one day. (We return to disuss the fat that neither are mean zerobelow.)One might expet that this orrelation would inrease for shorter times, but thereality is less straightforward. The left two panels of Figure 6.10 show the magnitudesand osine angles for drift vetors alulated every 6 hours instead of daily. Themagnitudes fall into two amps: those to the left of the dashed line are initiated at0 or 12 hours GMT, while those to the right are initiated at 6 or 18 hours GMT.
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Figure 6.8: Plot of TL319 foreast error (solid line) with respet to analysis. Alsoshown is the drift (dotted). The drift is alulated using a time step of 6 hours forthe �rst day and 24 hours for days 2 and 3.
The variation is probably related to the amount of data available to onstrut theanalysis at eah time. The mean osine angle for onseutive vetors is 0.084, whihis little higher than for 24 hour vetors. In order to smooth out some of the variation,onseutive drift vetors were ombined to give 12 hour drift vetors, shown in theright hand panels. Both the magnitude and the osine angle are more tightly foussed,with a mean osine angle of 0.125.We an use information about the mean magnitude and osine angle of driftvetors to build a theoretial equation for model error. Suppose the drift over Thours has average magnitude dm, and the osine angle for onseutive days has meanm (we assume that orrelations beome negligible for periods of over one day). Thenthe drift is given by d(t) = dms tT (1 + 2m)� 2m (6.4)where t > T is the time in hours.This modi�ed square-root urve has negative urvature, as did the drift of theLorenz '96 models (see for example Figure 3.31). If the orrelation m equals zero,then the drift is a square-root urve. This would be the ase if the veloity error wasequivalent to white noise.
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Figure 6.9: Upper panel shows the osine angle for 24 drift vetors at onseutivedays over a 100 day period from 15 Ot 1999. Lower panel shows the same for 100randomly hosen pairs of days from the same period.
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Figure 6.10: Magnitude and osine angle of onseutive 6 and 12 hour drift vetorsover a 30 day period from 15 Ot 1999. In the upper left panel, 6 hour drift vetorsfall to the left of the dashed line when initiated at times 0 or 12 hours GMT, andto the right for times 6 and 18 hours GMT. The 12 hour drift vetors for the lowerpanels are formed from two onseutive 6 hour vetors.
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Figure 6.11: Plot of TL319 foreast errors (solid lines) with respet to analysis at fourdi�erent starting dates, along with the theoretial approximation for model error from24 hour drifts (dashed) and 6 hour drifts (dotted). The dates used were 1999/10/15,1999/12/22, 2000/01/15, 2000/02/15, all at 12 GMT.
Figure 6.11 shows foreast errors for �ve starting dates, along with the model erroras estimated using equation 6.4 with parameters alulated from 24 hour and 6 hourforeasts. The 24 hour urve has T = 24, dm = 315 and m = 0:081. For the 6 hoururve, vetors were ombined as above to form 12 hour drifts, in order to �lter outsome of the short-term variability, and redue orrelations between non-onseutivedrift vetors. The values used were then T = 12, dm = 205 and m = 0:125. In eitherase the theoretial urves losely math the foreast errors up to a time of threedays.It seems remarkable that foreast errors for �ve di�erent days in �ve di�erentmonths an be modelled using suh a small amount of information, namely the meanmagnitude and osine angle of onseutive drift vetors. The weather itself may behaoti, but our degree of ignorane of its future state is extremely reliable. Note thatthe tehnique will work less well in low dimension spaes, where orrelations betweenrandom vetors is higher.Although model error appears to dominate foreast error, displaement error willof ourse play a role, if only as a by-produt of model error, as soon as the modeldeparts from truth. The onvolution of model error and displaement error will be
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omplex, but a rough piture an be obtained by assuming that, on top of the modelerror, an additional displaement error term, whih is initiated by the model error,is added to the theoretial urve. For example, the drift alulation is performedby summing a series of short foreasts. We then suppose that eah of these errorsreates a displaement whih magni�es exponentially. Therefore the model error overthe �rst six hours leads to a displaement, whih then grows at an exponential ratefrom that time on. The next six hours brings another displaement whih also willmagnify at the same rate. Eah of these displaement error urves, initiated every 6hours, are shown at the bottom of Figure 6.12. We assume a doubling time of 2.5days, in aordane with the estimate given in [38℄. Eah displaement urve startswith magnitude zero, beause it represents the additional error after the originaldisplaement. After 2.5 days the error has doubled, so eah urve has a magnitudeequal to that of the original displaement, whih is the same as the 6 hour drift.Summing eah of these separate urves, and assuming orthogonality, whih is justi�edgiven the dimension of the spae, gives the total displaement error urve shown asthe dot-dash line. When this displaement error is added to the drift, again assumingorthogonality, we arrive at the upper dashed line, whih is an exellent �t to the RMSforeast errors.Of ourse, the plot isn't meant to be an aurate representation of how modelerror and displaement error onvolute. Nor does it on�rm that error doublingtimes are 2.5 days; indeed, the displaement error is assumed to be orthogonal tothe original error, whih di�ers from the usual de�nition of doubling times. Thegraph's aim is merely to show that observed foreast errors are onsistent with aombination of a large model error term, and a seondary displaement error term.It also seems reasonable, though, that foreast error, being a mix of model error anddisplaement error, ould be loosely viewed as the sum of square root and exponentialgrowth urves. The resulting urve has an initial negative urvature phase, followedby a nearly linear growth phase in the middle term, before eventually saturating.Interpolating Figure 6.12 forward, the model error and displaement error portionsbeome roughly omparable in magnitude after about �ve days, though saturatione�ets will also ome into play by that time.The displaement error urve, being a sum of lagged exponential terms, isn't quitean exponential itself. It an be alulated expliitly by adding eah of the separateerror terms exatly as desribed above. If the e-folding time is 1=a (so the doublingtime, again assuming that error growth is orthogonal to the original displaement, is
173



log(2)=a), and the individual drift vetors initiated eah tr time units have magnitudedr, then the total displaement error p(t) is seen to be
p(t) = drvuut eat � 1eatr � 1  eat + 1eatr + 1 � 2!+ ttr : (6.5)

In Figure 6.12, for example, tr is 6 hours and dr is the drift at 6 hours. Taking thelimit as tr goes to zero, we have
p(t) = ss 12a(eat � 1)(eat � 3) + t (6.6)

where s = limtr!0 drptr , whih an be estimated for example from the 6 hour drift (thelimit will exist if the drift varies with the square root of time).The displaement error p(t) reated by the drift orresponds to the term in Eq.4.12 whih was omitted from the linearised dynamis. We see that for weather models,it is a relatively small e�et. At 24 hours, it is about 10 perent of the drift, and at12 hours it is only �ve perent.The e�et of the drift on shadow times an be estimated by using the shadowlaw to determine the likely drift for a ertain shadow radius. The mean 24 hourdrift over the days tested was 315, while the mean 6 hour drift for the days testedis 138. An upper estimate of shadow time from the 6 hour drift for a radius of 45units is then about three to four hours. This result is de�nitely on the low end ofwhat has been onsidered the likely range, and is a rather surprising result. It meansthat the dominant term in equation 4.13 is d rather than M; model error ratherthan displaement error, drift rather than haos. Weather models may be sensitiveto initial onditions, but aording to these results, they fail to shadow after just afew hours, and well before haoti nonlinear growth beomes an issue.
6.7 Modelling the model errorWhile the onlusion that model error is responsible for the majority of foreast errorover times of three days may seem less than enouraging, one positive note is that,beause the drift vetors show a degree of oherene with time, it might be possibleto develop tehniques whih ompensate for it. For example, suppose we are makinga 24 hour foreast, and we know the drift dp from the preeding 24 hours. If the24 hour foreast gives d, and we assume that the osine angle with dp is m, thenvetor algebra shows that using d� mdp as the orreted foreast yields a frational
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Figure 6.12: Plot showing how foreast error is onsistent with a ombination ofmodel error and displaement error. The + signs shows TL319 RMS foreast errors,with respet to analysis, over �ve di�erent starting dates. Solid line is the theoretialapproximation for model error from equation 6.4. Dotted lines at bottom show seriesof displaement error urves initiated by the model error after eah 6 hour period.Dot-dash line is the sum of the displaement error urves, assuming orthogonality.The dashed line whih losely mathes the data is the sum of the model error anddisplaement error urves, again assuming orthogonality. The dates used for theforeast error were 1999/10/15, 1999/11/15, 1999/12/22, 2000/01/15, 2000/02/15,all at 12 GMT.
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improvement of 1 � q1� 2m. For m = 0:081 the orretion is 0.33 perent. Theorretion inreases to 0.78 perent if the 12 hour drift vetors, with mean orrelation0.125, are used instead. These are small improvements, but don't ost anything, andan probably be improved by onsidering more sophistiated shemes.Suh tehniques are similar to the statistial approah for orreting foreast errorsof [60℄ or [35℄, or the method proposed in [18℄. Model parameters ould also be tunedto redue the foreast error, as suggested in [72℄.An unexpeted result was that the 24 drifts taken at random days in Figure 6.9also shows a degree of oherene, with an average of 0.038. This implies that themodel drift will not tend to zero over at least seasonal time sales. A �rst step toimprove the model would therefore be to tune out this onstant drift.The square root shape is of ourse reminisent of the integrated errors aused by awhite noise spetrum, as disussed in Chapter 3. Perhaps a white or red noise modelsimiliar to that in [51℄ is appropriate as a desription of model error. It seems morelikely, though, that the model error is not entirely random, and probably exists ina subspae of smaller dimension than the full spae. What is ertain is that addingwhite noise to the model won't make it more realisti, any more than stohastiallyvarying the foring improved the Lorenz model's performane in Chapter 5.One topi that we haven't investigated is the spatial struture, or preise ause, ofthe model error, whih is a topi of future work. Nor have we attempted to determinewhat omponent of the model error is due to model formulation and what is due to theprojetion. One method may be to examine data-rih and data-poor areas separately.The approah must be used with are, though, beause the mathematis behind thelinearised dynamis assumes that the model is well desribed by the equations and bythe initial ondition. If the model is limited to a small region, this ondition will beviolated, sine the behaviour of the model in the spei�ed region will be inuened byevents in the other regions, and measurement of the drift vetor will to some extentbe a�eted.
6.8 Model error in the 500 hPa heightWe have used the total energy norm beause it provides a fairly omplete desriptionof the atmospheri state. If the weather is viewed as a ow of energy, then the totalenergy gives the amount of that energy assoiated with error. It also has the bene�tof desribing the sensible omponents of the atmospheri state, namely heat andwind. Meteorologists, though, often prefer to use the 500 hPa height to desribe the
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atmospheri state and reord errors. The reason appears to be more historial thanorresponding to any speial property of this partiular height [35℄.As mentioned earlier, the 500 hPa height isn't an appropriate variable for ourinvestigations into model error, sine it is too inomplete a desription of the atmo-sphere. However there is no reason why we shouldn't look at 500 hPa errors, and tryto interpret them using the tools developed so far.Figure 6.13 shows a plot of 500 hPa RMS height errors from ten separate foreasts.The errors no longer follow a square root urve, but grow quite linearly. One mightthink that the drift vetors are highly orrelated, so that they add almost linearly asfor the lower dimension Lorenz system, but Figure 6.14 shows this is not the ase:the osine angles have mean 0.13, whih is higher than the total energy angles butstill small.Figure 6.13 also shows the approximate proportion of error due to displaementerror, alulated using equation 6.5. A doubling time of 1.8 days was used in orderto �t the data, whih is faster than the 2.5 days used for the total energy error. Thefaster time makes sense when we ompare the situation with the Lorenz system inFigures 4.29 and 4.30. When an inomplete set of parameters is used as a metri, theerrors will be suseptible to the e�et of rotations whih preserve error magnitude butrotate error from one omponent to the other. Therefore one reason for the di�erenebetween the total energy errors and the 500 hPa errors is that 500 hPa model erroris more sensitive to rotational displaement error, and therefore more likely to feedinto a rapidly growing mode.Another possible reason for the di�erene is that weather models may be better atprediting 500 hPa heights than they are at prediting other variables suh as wind ortemperature throughout the atmosphere, for example near the Earth's surfae. (Thefat, though, that the 500 hPa height was not a strong soure of model error wouldnot imply that it is una�eted by model error, whih an advet in from other loales,or enter from other parameters through the primitive equations.)In general, model errors are best analysed using as global a measure as possible.Just as attempting to predit the future diretion of a highly omplex stok marketusing only a single index is a risky (but popular) endeavour, so it may be misleadingto interpret model error by its e�et on height level.
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Figure 6.13: Plot of TL319 RMS 500 hPa height errors (solid line) with respet toanalysis over ten di�erent starting dates, along with the drift (dashed line) and thetheoretial approximation for ombined model and displaement error (dotted line).The ten foreasts were launhed eah ten days from 12 GMT on 1999/10/15.
6.9 Summary and disussion of resultsIn this hapter we have applied the methods for measuring model error to operationalforeast models. Inter-model omparisons show that the T42 and T63 models havesigni�ant error relative to the TL159 ontrol. Calulations of drift are hampered byspin-up e�ets, but indiate that model error is signi�ant. Estimates of minimumshadow radius using the shadow law are in aordane with shadow orbits obtainedusing a sensitivity algorithm, and ensemble behavior is also onsistent with highmodel error.When the tehniques were applied to the TL319 model relative to the analysis,it was found, unsurprisingly, that model error was higher than for the inter-modelomparisons. The foreast error was found to be dominated by model error out tothree days, and ould be represented as a sum of a square-root model error urve,together with exponential displaement error urves. Estimated shadow times at theobservational tolerane are in the region of only 3-4 hours.We did not attempt to loate the ause of the model error, nor determine whatproportion of the error is due to model struture and what to projetion error overdata-poor areas. We have onerned ourselves only with the magnitude of the error.
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Figure 6.14: Magnitude and osine angle for 24 drift vetors at onseutive days overa 100 day period from 15 Ot 1999 in the 500 hPa height norm.
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What is lear is that making small displaements around the initial ondition will noto�set the e�et of the error or, from the shadow law, produe a shadow orbit.The above results indiate that model error has serious reperussions for manyaspets of foreasting. For example, the tehnique for generating an analysis is es-sentially an attempt to fore a model solution into �tting a set of observations. Itappears, however, that the TL319 foreast is already generating errors of the samemagnitude as the observation error after just a few hours. This ompliates theanalysis proedure and makes onvergene unlikely.Ensemble tehniques whih generate multiple initial onditions will also be af-feted. The usefulness of an ensemble is diretly related to the model error: if modelerror is negligible, then the ensemble tells us everything we need to know about er-ror distribution; but if model error is muh larger than initial ondition error, thenthe ensemble tehnique is just an expensive way of produing many wrong foreastsinstead of one. For weather foreasts, we are in an intermediate position, so ensem-ble tehniques ontain information about some fration of the error, but neglet animportant omponent.Ensemble tehniques were designed to takle the problem of sensitivity to initialonditions; however their use as a method to similarly takle model error appears tobe less justi�ed. Singular vetors give a preise measure of initial ondition error, interms of the maximum error growth after a ertain time, whih an be used to generateinitial onditions for an ensemble. No suh method exists to produe the modelperturbations whih give maximum growth. Taking a olletion of existing modelsand lumping them together in an ensemble may be an e�etive way of sreening outpartiularly dud foreasts, but doesn't really address the problem of model error.Models whih inorporate stohasti perturbations su�er from the same problem;there is no way to tell whih are the orret perturbations to make.Model error has usually been treated as some inherently unmeasurable quantity;but the fat is that model error, a zero order term, is easier to measure than initialondition error, a �rst order e�et that requires alulation of singular vetors orsimilar. Only when model error is so small that it is dwarfed by initial onditionerror will it beome diÆult to measure. The assumption that atmospheri modelshave reahed that state appears to be optimisti. Estimates of model error for T42 andT63 with respet to TL159, arrived at by drift, shadow and ensemble alulations, allindiate that error, even between these foreast models, is dominated by the modelrather than initial ondition. It is unsurprising, therefore, that drift alulations
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indiate an even greater error between the operational foreast and the analysedweather.Weather models are extremely ompliated entities whih have to inorporate allkinds of interations between air, water, the ground and so on. They are also look-ing for a fairly small signal - weather utuations - on a large bakground �eld -the limate. Any �nite element modeller or other person with experiene of mod-elling physial systems must view the weather as one of the most omplex problemsimaginable, and regard with awe the progress that meteorologists have made. At thesame time, suh a person would �nd the perfet or nearly-perfet model hypothesespuzzling. Models may have improved substantially in reent years, but, as analysisof foreast errors has shown, they are ertainly not perfet. The best way to proeedmust be to measure the error, optimise the model to redue it, and then do whateveris possible to predit and possibly o�set the residue error.
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Chapter 7
Conlusions
7.1 Summary of resultsIn this thesis we have studied model error over a range of systems, from the smallest3D to the largest operational weather model. Of partiular interest were the medium-dimension Lorenz '96 systems of Chapter 2: small enough to ompute rapidly, butlarge enough to produe behaviour qualitatively similar to atmospheri variables. Theintriate beauty of these systems, with their interplay of periodi, quasi-periodi andhaoti orbits, was revealed, for the �rst time, with spetral bifuration diagrams.In Chapter 3, it was shown that a fundamental di�erene between model errorand initial ondition error is that model error has a non-zero initial slope. This slopewas termed the veloity error. The omplexity of the Lorenz system behaviour as theforing parameter F was varied led one to suspet that veloity error would be equallyomplex; yet it was found that emergent properties of the systems made veloity errorsurprisingly smooth as a funtion of the foring. For the onstant model, the modelerror, both in terms of initial veloity error and shadowing times, simply varied withthe square root of F .The linear model, whih employed a simple linear parameterisation of the foringerror, gave dramatially improved shadowing behaviour, even though the redutionin initial veloity error was relatively modest. The reason was found to be that lowfrequeny foring error was the primary determinant of shadow times, and sine thelinear model had a less `red' foring error power spetrum than the onstant model,its performane was improved.This result led to the detailed investigation of the shadowing proess in Chapter 4.By linearising around the true attrator, the displaement of a shadow trajetory from
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truth was approximated by a linear equation, involving a zero order drift term and the�rst order propagator term. The linearised dynamis were used to develop a shadowestimation tehnique (SET), whih was seen to aurately predit shadow behavioureven over predition times when the system itself had eased to be linear. This wasbeause the linearised dynamis applied only to shadow orbits, whih remained withinthe shadow radius of the true orbit.The linearised dynamis, when applied to loally dissipative models, led to thedisovery of a shadow law, whih states that, in an RMS sense, minimum shadowradius is bounded below by half the drift. When model error is high, the minimumshadow radius approahes the bound, and drift is approximately equal to the shadowdiameter. Even with an estimate of shadow times, it is always desirable to omputeatual shadow orbits for veri�ation; therefore optimization shemes to �nd shadoworbits, even for large models with long omputation times, were proposed and tested.The usefulness of ensemble tehniques, in terms for example of the auray ofomputed spread, was found to depend ritially on the model error. If the modelerror dominates displaement error, then it is natural that ensembles should give lessinformation about the likely orret foreasts. It was noted that in high dimensionspaes, model error and displaement error are expeted to be nearly orthogonal,making it unlikely that model error ould be o�set by searhing in the spae ofsingular vetors.Chapter 5 turned attention away from the short and medium range, and looked atthe question of preditability of the seond kind; long term limate. Analyti resultsonerning the mean and variane of the Lorenz '96 systems were derived, and it wasfound that the linear model, something of a hampion among simple models, wasapable of mathing both quantities over a large range of forings, and suggested alink between short term and long term preditability. Other models, whih invokedvarious stohasti shemes to simulate the properties of the true foring, were alsotested. For the models studied, the stohasti approah appeared to have no bene�tover the non-stohasti models.Finally, Chapter 6 applied the tehniques developed for the lower dimensionalsystems to full weather models. First, the T42 and T63 models were ompared withTL159. An upper bound on shadow times was estimated using the drift, and om-pared with results using an optimisation program. The two methods gave ompatibleresults.The fat that model error outweighed displaement error was on�rmed when anensemble of T42 initial onditions was run. As expeted, no ensemble member redued
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error, and the ensemble mean o�ered no improvement over the ontrol foreast. Any`return to skill' by an ensemble member would be due to hane, sine, if it isn'tbetter after a day, there's no reason to expet that it should be better after a week.The initial ondition errors were also seen to be nearly orthogonal to the model error,in agreement with theory.The operational TL319 foreast was then ompared with the analysis to estimatehow long the foreast ould shadow the true weather. The drift alulations indiatedthat model error was higher than for the inter-model omparisons, and shadow timeswere estimated to be in the region of 3 to 4 hours, whih would have severe impaton analysis and ensemble tehniques. Another square root law emerged: model error,and indeed foreast error, varied with a simple square root formula up to about threedays. It meant that foreast error ould be predited just from a knowledge of themean drift magnitude and osine angle between onseutive drift vetors, both ofwhih are fairly stable quantities. Despite the immense omplexity of the weather,and of the model, the di�erene between the two after a ertain time is remarkablyonstant from day to day or month to month. To globally onserved quantities suhas momentum or mass, we may now add a new one: error.Knowing the size of the error is one thing; knowing its diretion is another. (Itmay be interesting that all foreasts are wrong by the same amount, but it isn't veryuseful.) The fat that model error was so large and onsistent was at least seen to o�era potential solution. If the error had preditable features, then it ould be possible toe�etively model the model error, and thus orret the foreast. Similar tehniques,based on preditor methods, had been used to some e�et with the Lorenz systems.The model ould also be improved by tuning parameters to minimise drift. Withoutsuh a measure of model error, though, it would be impossible to make muh progressin improving the model, sine to do so would be like working in the dark.
7.2 Does haos matter?As Bjerknes �rst said, foreast error is due to a ombination of model error and initialondition error. The former is mostly a question of physis or engineering; how wellan we model the ompliated physial laws governing the atmosphere with a set ofdi�erential equations trunated to a �nite grid? The latter e�et is related to haostheory; how sensitive is the atmosphere (or the model) to small perturbations in theinitial ondition?
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Whih of these soures of error is more important will depend on the partiularsystem and model. In the ase of the atmosphere, the answer to this question hasn'tbeen known. Good estimates of initial ondition error are available, from singularvetor and other methods, but there hasn't been a orresponding measure of modelerror; at the same time, and ontraditorily, it has been widely assumed to be small.In fat, onsidering the enormous number of artiles written for meteorologialjournals, a searh reveals that relatively few refer to model error in the abstrat (mostof those have been referened in this thesis). It is slightly puzzling why more attentionhasn't been paid to the subjet of model error. As mentioned earlier, it is easier tomeasure model error, a zero order e�et, than it is to measure initial ondition error,whih depends on ompliated �rst order derivative estimates based on a large numberof foreasts and requiring the use of an adjoint model. Also, an examination of typialRMS foreast error plots reveals not the quasi-exponential growth harateristi ofdisplaement error, but the square root urve that is harateristi of model error. Sowhy was it assumed that foreast error was primarily due to initial ondition error,and not the model? Why jump to the more ompliated �rst order explanation beforeeliminating the simple zero order ause?Some reasons suggest themselves. Initial ondition error shifts the blame for badforeasts away from the foreast entres towards the inherent unpreditability of theweather. Model error, meanwhile, isn't as ulturally important in meteorology as itis in other �elds (say bridge design) whih also employ sophistiated and ompliatedmodelling tehniques. Any engineer is familiar with the sense of anxiety that mingleswith antiipation as a projet nears ompletion: the omputer models are replaedby a physial objet whih will follow not quite the same rules, and at the same timeany mistake or omission in the alulation will beome very evident (onsider theMillennium bridge). Meteorologists, in ontrast, aren't responsible for the weather,and therefore by impliation their responsibility is dimmed when, as in any asealways happens, it does something other than predited. And meteorologists don'tget sued (though people have tried [32℄).Part of the reason, though, must also be due to the entity pitured in Figure 7.1.Butteries, it seems, an do more than stir up storms by apping their wings. Theyan also deet the ourse of entire branhes of siene. This partiular example wasspotted to his great redit by Ed Lorenz in 1963, but, like other revolutions of its type,took 30 years to fully develop. It was then that the tehnique of ensemble foreastingwas introdued: a net in whih to ath the unruly but attrative buttery of haos.
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Figure 7.1: Buttery. Speies Lorenzus. First spotted 1963. Inubation period 30years.
Chaos may well plae an upper limit on predition times of a ouple of weeks. Itseems premature, though, to worry too muh about that if the models are alreadyintroduing signi�ant errors after just a few hours. The ensemble net has missed itstarget almost before it is thrown, and the buttery esapes.Weather foreasting ranks as one of siene's greatest and most prodigous mod-elling endeavours; but, like most human pursuits, it has yet to banish the e�ets oferror, unertainty, or haos. Ensemble tehniques have played their part in improv-ing our understanding of the latter. In seeking methods to further improve foreasts,though, it would be preferable to devote additional resoures to analysing model er-ror, and using the information thus gained to develop the model. For it is here, ratherthan in the e�ets of haos or the apping of an inset's wings, that the primary auseof near and medium range foreast error lies.
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Appendix A
Proof of the shadow law
Referring to equation 4.44, the proof of the shadow law rests on showing that, for adissipative model, the sum nXi=1 1(1 + �i)2 (A.1)has a minimum value of n4 . Suppose �rst that the model is volume preserving, sonYi=1�i = 1: (A.2)
Writing the minimisation problem as a Lagrangian, we seek minima ofnXi=1 1(1 + �i)2 + �( nYi=1�i � 1) (A.3)
where � is a onstant multiplier. Taking partial derivatives with respet to �j, andsetting to zero, gives �j = 2�(�j + 1)3 (A.4)whih has two solutions for � > 16, and a single solution when � = 16 and all �j = 1.Sine � is the same for all j, the multipliers �j an only take on one of a maximumtwo values apart from 1, and they must also satisfy equation A.2.We laim that the solution �j = 1 for all j, for whih the sum in equation A.1is equal to n4 , represents a global minimum. We do this by examining the otherritial points. Suppose that some other arrangement of �j's satis�es the ritialityrequirement. For a partiular value of �, there are only three possibilities for eah�j: �1, �2, or 1, where �1 < 1 and �2 > 1 are roots of equation A.4. We set n1 equalto the number of ourenes of �1, n2 the number of �2's, n3 the number of 1's, andns = n1 + n2, so ns + n3 = n.
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Let � = 2� . Then from equation A.4,�1 = �(�1 + 1)3 (A.5)and �2 = �(�2 + 1)3: (A.6)From equation A.2, 1 = nYi=1�i = �n11 �n22 (A.7)so, taking the ns'th root of eah side, �a1�b2 = 1 (A.8)where a = n1ns and b = n2ns . Substituting the expressions from equations A.5 and A.6into A.8, we an solve for � as� = (1 + �1)�3a(1 + �2)�3b (A.9)so equation A.5 then beomes�1 = �(�1 + 1)3 = (1 + �1)3�3a(1 + �2)�3b: (A.10)Solving for �2, we obtain �2 = �� 13b1 (1 + �1)� 1: (A.11)Substituting into equation A.8 gives g(�1; a) = 1, where the funtion g is de�ned as
g(�1; a) = �a1(�� 13(1�a)1 (1 + �1)� 1)1�a: (A.12)For a given value of �1, the requirement that g(�1; a) = 1 an be used to solve fora = f(�1). It is easily seen that f is monotonially dereasing from 0 to 0.2364 andnegative for 0:2364 < �1 < 1 (�1 is less than 1 by assumption). Sine we requirea > 0, it follows that �1 is in the range 0 to 0.2364. The funtion f , for �1 in thatrange, is shown plotted in Figure A.1.We now show that the sum A.1, evaluated at suh a ritial point, has a valuegreater than n4 . We an writenXi=1 1(1 + �i)2 = n1(1 + �1)2 + n2(1 + �2)2 + n34 (A.13)

= ns( a(1 + �1)2 + b(1 + �2)2 ) + n34 (A.14)
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Figure A.1: Plot of f and h, whih are de�ned in the text, as a funtion of the singularvalue �1 over the range for whih f is non-negative.
= ns( a(1 + �1)2 + b�� 23b1 (1 + �1)2 ) + n34 (A.15)
= ns( f(�1)(1 + �1)2 + 1� f(�1)�� 23(1�f(�1))1 (1 + �1)2 ) + n34 (A.16)
= h(�1) + n34 (A.17)where h(�1) = f(�1)(1 + �1)2 + 1� f(�1)�� 23(1�f(�1))1 (1 + �1)2 : (A.18)

The funtion h(�1), shown in Figure A.1, is also monotonially dereasing over therange 0 to 0.2364, and has a minimum value of 14 at �1 = 0:2364, for whih a = 0. Inthe nontrivial ase that a > 0, we have h(�1) > 0:25, sonXi=1 1(1 + �i)2 = nsh(�1) + n34 > ns4 + n34 = n4 : (A.19)
It thus follows that the ritial point with �i = 1 for all i represents a global minimum,as desired. The ase where the model is stritly dissipative, so thatQni=1 �i < 1, followseasily.

190



Appendix B
Glossary

Analysis. Meteorologial term denoting the best approximation to the realweather, as expressed in terms of model variables. It is obtained by interpolatinga ombination of observed data and model preditions.Displaement error. Error due to model equations being evaluated at a pointother than the true point projeted into model spae.Drift. Magnitude of integrated veloity error, evaluated over the projetion intomodel spae of a segment of a true orbit. Used as a measure of model error, and toestimate shadow times, via the SET, or bound them via the shadow law.ECMWF. The European Centre for Medium-Range Weather Foreasts, loatedin Reading, UK.Foring. Refers to a term in a system or model ode, usually to represent someexternal input to a physial system, suh as solar heat in the ase of the weather, orforing of a pendulum.Foring error. Veloity error due to error in foring term.Four-dimensional variational assimilation (4D-VAR). A tehnique whihdetermines the analysis by ombining observed data with a model foreast initiatedusually 6-12 hours earlier.Initial ondition error. Displaement error at initial time, aused by inor-ret initial ondition. May be large for haoti systems due to sensitivity to initialondition.Initial veloity error. The veloity error measured at initial time.Integrated foring error. Foring error integrated over the projetion intomodel spae of a segment of a true orbit.Integrated veloity error. The veloity error integrated over the projetioninto model spae of a segment of a true orbit. Has dimension distane. See drift.
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Model error. Refers to error due to the di�erene between model equations andtrue system, as measured on the projetion of a true orbit into model spae.Shadow estimation tehnique. A proedure for estimating shadow times fora given initial ondition and shadow radius, without expliitly produing a shadoworbit. Referred to as SET.Shadow law. A law whih states that, for any dissipative model, and in an RMSsense, an approximate lower bound on shadow radius is given by half the drift.Shadow orbit. Given a spei� radius r and true orbit, a shadow orbit is amodel trajetory whih stays within the radius r of the true orbit, as measured inmodel state spae.Shadow radius. The radius used in shadowing alulations.Shadow time. The time for whih a shadow orbit stays within the shadow radiusof the true orbit.Veloity. The rate of hange of a system or model variable. In the ase of modelvariables the veloity an be alulated using the ode.Veloity error. The di�erene between the system veloity at a partiular point,measured in model spae, and the model veloity at the projetion of that point intomodel state spae.
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