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Abstra
t
When nonlinear dynami
al models are used to approximate physi
al sys-tems su
h as the weather, error arises from one of two 
auses: the initial
ondition used by the model, and the model itself. Of these two sour
es,model error is the less well understood; yet a knowledge of model a

ura
yis essential for reliable error estimates and model optimisation. This thesisdevelops a te
hnique for measuring model error in the 
ontext of nonlinearsystems, and explores the link between model error and the ability of themodel to shadow the true system. The methods are tested on a variety ofmodel/system pairs in Chapters 2, 3 and 4. In Chapter 5, issues relatedto longer term behavior are studied, and 
onne
tions with short term pre-di
tability explored. In Chapter 6, the model error te
hniques are appliedto operational weather fore
ast models. It is seen that the 
omponentof fore
ast error due to model error tends to grow as the square-root offore
ast time, and for the days tested is the dominant sour
e of error outto three days. The results are summarised, and the impli
ations furtherexplored, in Chapter 7.
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4.14 Drift 
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What a 
himera, then, is man! what a novelty, what a monster, whata 
haos, what a subje
t of 
ontradi
tion, what a prodigy! A judge ofall things, feeble worm of the earth, depositary of the truth, 
loa
a ofun
ertainty and error, the glory and the shame of the universe!Blaise Pas
al (1623-1662)
Mankind always sets itself only su
h problems as it 
an solve ...Karl Marx (1859)
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Chapter 1
Introdu
tion
Nonlinear dynami
al systems are frequently employed to model 
ompli
ated phenom-ena, be they an ele
troni
 
ir
uit, the traje
tory of a spa
e
raft, or the life
y
le ofbeetles. One of the most important appli
ations, in terms both of �nan
ial expendi-ture and impa
t on people's lives and businesses, is the fore
asting of the weather.The models in this 
ase 
ontain up to tens of millions of variables, whi
h 
al
ulate thefuture state of the atmosphere from its present measured state to give us our dailyfore
ast.The models essentially represent an understanding of how the atmosphere oper-ates. Sin
e 
ertain aspe
ts of the weather, su
h as 
loud formation, are too 
ompli-
ated or �ne-s
ale to represent, a parameterisation must be employed. The modeleris also 
onstrained by 
omputer resour
es; even with the world's most powerful su-per
omputers, resolution in spa
e and time is still limited. For example, the spa
ingof the horizontal grid is of the order of 50 kilometres, whi
h is large 
ompared to athunder storm. As a result, all weather models have one feature in 
ommon: theyare di�erent from the real weather. In other words, they all 
ontain model error.Until now, there has been no satisfa
tory method to 
al
ulate the e�e
t of modelerror on predi
tability. Te
hniques whi
h o�er partial solutions in
lude measuringthe divergen
e of the model traje
tory from observations, and 
omparing di�erentmodels. The �rst approa
h su�ers from the problem of entangling model error withinitial 
ondition errors, sin
e as soon as the model diverges slightly from observations,the two are hard to distinguish. This is espe
ially an issue in 
haoti
 systems, wheresensitivity to initial 
ondition may be large. The se
ond approa
h is useful for a
omparison of spe
i�
 models, but fails to give a bound on model error be
ause itdoesn't fully sample the spa
e of available models. Models are built up from broadlysimilar prin
iples, so the fa
t that a European weather model agrees well with an

2



Ameri
an model doesn't imply that they are both a

urate - they 
ould both bewrong in similar ways. (A third approa
h is to randomly perturb model parametersto give an idea of the likely spread, but this is just a variation on the se
ond method,and it isn't 
lear that any of the perturbed models need be 
lose to the real weather.)This diÆ
ulty in measuring model error is a problem. Measurement of error isfundamental both in s
ien
e and engineering. Without it, the modeller must rely onintuition or guesswork to improve the models [60℄. The problem is espe
ially strikingin the 
ontext of weather fore
asting - a multi-billion dollar industry, yet one, it mightbe said, without the means to 
ontrol the quality of its own produ
t; and, as a result,plagued by more than one 
ompany whi
h 
laims to be able to predi
t the weatherout to a year or beyond.The aim of this thesis is therefore to provide a method for measuring model errorin nonlinear dynami
al systems and assessing its e�e
t on predi
tability. To this end,we will address three pra
ti
al topi
s, primarily in the 
ontext of short to mediumrange predi
tion. The �rst topi
 is, how do we de�ne model error? For example,how do we de
ide whi
h of various weather models is the most a

urate? Or, if anensemble of models is being used, with the results in some way averaged over all ofthem, how do we assign weights to the di�erent models? And how do we 
omparethe magnitude of model error with the likely error in initial 
ondition?The se
ond topi
 is, how 
an we estimate how long a model will shadow (stay
lose to) a system or set of observations? Many te
hniques in weather predi
tionimpli
itly assume that there exists a model orbit whi
h shadows the true systemfor some spe
i�ed time. For small systems it is easy to �nd a
tual shadow orbitsusing optimisation te
hniques, but for large atmospheri
 models the 
omputationis diÆ
ult, and shadow times are unknown, with expert opinions ranging betweenseveral hours and many months. Therefore, how 
an we 
heaply estimate shadowtimes for a parti
ular model? Can we tell if the model is good enough for ensembles,
omprised of a 
olle
tion of perturbed fore
asts, to en
apsulate reality?Finally, given a model with a number of parameters whi
h 
an be varied, what
riterion should be used to optimise the parameters, so that predi
tability is max-imised? How do we know the model is the best that 
an be a
hieved, up to a 
hangeof stru
ture? And, armed with a knowledge of model error, 
an fore
ast a

ura
y beimproved by other means?
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1.1 OutlineWe will study model error over a range of systems, ranging from simple 3D systems,to the higher dimension Lorenz '96 [40℄ systems, right up to operational weathermodels with dimensions of the order 107. The �rst 
hapter introdu
es the problemof weather predi
tion, and the intera
tion between model error and initial 
onditionerror in the 
ontext of nonlinear dynami
al systems. It also provides some ba
k-ground on nonlinear systems, and introdu
es the spe
tral bifur
ation diagram. Thisis a new method of visualising system behaviour through the use of spe
tral analy-sis of time series, whi
h will be useful for the higher dimension systems en
ounteredlater. Chapter 2 presents the Lorenz '96 systems, whi
h 
an be viewed as highlyidealised atmospheri
 models, and their behaviour over a range of parameter valuesis explored using spe
tral bifur
ation diagrams and other tools. The Lorenz systemsare parti
ularly suited to the study of model error, and this is a feature exploited inChapter 3, whi
h develops a formal theory of model error, building up from observedbehavior of the Lorenz systems, and arriving at a new measure of model error whi
his appli
able for any model/system pair. In the fourth 
hapter, a 
omputationallyinexpensive te
hnique for estimating shadow times, based on the model error work,is developed, and a shadow law, whi
h underpins the link between model error andshadow times, is presented. The �fth 
hapter investigates 
limatologi
al 
onsidera-tions and sto
hasti
 models. Links between the optimisation of model 
limatologyand of short term predi
tability are also explored.In Chapter 6, the theoreti
al results developed thus far are applied to weathermodels at the European Centre for Medium-Range Weather Fore
asts (ECMWF).A range of model error and shadowing results are presented for di�erent resolutionmodels, in
luding the operational model. A simple formula for fore
ast error, whi
hpredi
ts the magnitude of the error for times up to three days, is developed. Finally,in Chapter 7, some future dire
tions of resear
h in this area are proposed, in
ludingthe possibility of improving fore
asts through a greater understanding of model error.Most of Chapters 3 through 6 represent new work. A summary of the main
ontributions is as follows:� A new method of presenting bifur
ations using the power spe
trum� A detailed bifur
ation analysis of the Lorenz '96 systems� A method to measure model error independent of initial 
ondition error
4



� A te
hnique for estimating shadow times� A simple method to determine an upper bound on shadow times for dissipativemodels� Methods for 
omparing the relative magnitudes of model and initial 
onditionerror� Proofs of fundamental results 
on
erning 
limatology of the Lorenz systems� The �rst estimate of shadow times for weather models� A formula for predi
ting the magnitude of fore
ast error up to three days
1.2 Model error vs initial 
ondition errorA re
urrent theme of this thesis will be the relationship between model error anddispla
ement error, de�ned as the error due to the model equations being evaluatedat the wrong point. When displa
ement error o

urs at initial time, it is referred toas initial 
ondition error. To su

essfully measure model error, it must somehow beisolated from displa
ement error.The in
uen
e of the two types of error was 
ited in the 
ontext of weather modelsby Bjerknes [4℄, who pointed out in 1911 that the ability to su

essfully predi
t theweather requires two things: a suÆ
iently a

urate model, whi
h, given an initial
ondition, will 
orre
tly 
ompute the atmospheri
 state at the future time; and aknowledge of what that initial 
ondition is. These statements re
e
t the Lapla
ianideal [42℄ that, if we knew the present state spa
e 
oordinates of a system, and thefor
es a
ting on it, we 
ould predi
t its future.A typi
al atmospheri
 model 
an be written as a di�erential equation of the formdxdt = G(x); x(0) = x0 (1.1)where the ve
tor x represents atmospheri
 variables, the initial 
onditions at timet = 0 are x0, and the velo
ity of x at any time is governed by the fun
tion G.Analyti
al solutions for (1.1) are not generally available, but a numeri
al solution 
anbe determined by integration. The problem of weather predi
tion then redu
es toknowing the 
orre
t initial 
onditions x0, and having an appropriate model G.Now, the equations governing the atmosphere are nonlinear, and therefore 
a-pable of showing 
haoti
 behaviour. The hallmark of 
haos is sensitivity to initial5




onditions, so small variations in x0 
an qui
kly lead to radi
ally di�erent solutions.This was famously illustrated by Lorenz [37℄, who en
ountered it when he dis
overedthat rounding o� the initial 
onditions of his trun
ated 
onve
tion model 
ompletely
hanged the solutions. The idea that the atmosphere was a 
haoti
 system soon be-
ame enshrined in publi
 lore (somewhat 
onveniently for fore
asters!). What hope isthere to know if it will rain on the weekend, if a butter
y somewhere in Brazil 
ould
ap its wings and stir up a storm?It is 
ertainly true that all observations of the weather have a degree of error, andsin
e only a �nite number of observations are possible, we never know the exa
t stateof the atmosphere at any given time: the ve
tor x0 is known only to within a 
ertaintoleran
e. Therefore, be
asue of sensitivity to initial 
ondition, a single run of themodel will soon stray from the true path as it is integrated forward in time.Mu
h e�ort has gone into addressing the problem of sensitivity to initial 
ondition,and the major weather 
entres have developed methods of generating ensembles ofinitial 
onditions, 
omprised of perturbations around the observations, all of whi
hare run forward using the model [44, 67, 49℄. Statisti
al statements about the futureweather 
an, in theory, be dedu
ed by examining the ensemble of �nal states [7℄.While 
haos makes predi
tion diÆ
ult, it also obs
ures the e�e
t of model error.As soon as a fore
ast state diverges from the true weather state, displa
ement errorki
ks in. And sin
e there is always some un
ertainty about the initial 
ondition, dueto observation error and trun
ation to model resolution, it is hard to separate modelerror from displa
ement error even for small times. But that doesn't mean that its
ontribution 
an be ignored.For example, 
on�den
e in the ensemble approa
h would be improved if the model
ould shadow [23℄ the true solution, i.e. if there existed some initial 
ondition withinthe ensemble radius � around x0 whi
h remained within a tube of radius � of the truesolution as it was integrated forward. This would 
ertainly be the 
ase if our model(1.1) was a perfe
t des
ription of the atmosphere. Suppose, though, the model is
awed (a more likely possibility!), and no su
h shadowing orbit exists past a time � .Then no matter what te
hnique we use to generate an ensemble, statisti
al 
on
lusionsdrawn by examining the behaviour of the ensemble past that time will be a�e
ted, ifnot made invalid, by model error.The problems of initial 
ondition error and model error are therefore 
oupled, andit is impossible to dis
uss predi
tability of any system without assessing the e�e
ts ofmodel error. We know what happened when Lorenz rounded o� his initial 
onditions,
6



but how about when he trun
ated his equations from the full 
onve
tion model in the�rst pla
e?Matters are further 
ompli
ated by the fa
t that we are dealing with nonlinearsystems. Even simple nonlinear systems are 
apable of showing highly 
omplex be-haviour, and the e�e
t of altering a parti
ular parameter (whi
h is one example ofmodel error) 
an be hard to analyse. It is therefore ne
essary to understand somebasi
 properties of nonlinear systems before exploring the topi
 of model error. Be-
ause the systems to be studied are high dimension and fairly 
ompli
ated, we shall�rst illustrate some properties of nonlinear dynami
al systems, as well as the toolswhi
h are used to analyse them, in a simple system due to R�ossler.
1.3 The R�ossler systemThe R�ossler system [58℄ is given by the equationsdxdt = �y � zdydt = x+ aydzdt = b+ (x� 
)z: (1.2)The 
onstants a and b are here set to 0.1, while 
 will be treated as a parameter whi
h
an be varied. An advantage of this system is that it is very simple - there is only onenonlinear term - and is easier to visualise than the higher dimensional systems whi
hwe will 
ome to later. It will also serve as a basis for 
omparison for those systems,in terms of both similarities and di�eren
es.A standard method of studying the behaviour of dynami
al systems is to look forattra
tors, whi
h 
an either be a �xed point, a periodi
 orbit, or a 
haoti
 `strangeattra
tor' [26℄. Some of the attra
tors for the system (1.2) for various values of 
 areshown in Figure 1.1. The left hand 
olumn is a time series of x, the 
entre 
olumn isy versus x, and the right hand 
olumn is a power spe
trum of x. Note that not all ofthe three dimensions are shown: it isn't always ne
essary to plot the attra
tor in thefull dimension of the spa
e to understand its stru
ture. This will prove useful whenwe go on to look at 40 dimensional systems! Computations were performed using afourth order Runge-Kutta s
heme [52℄ with step size 0.01.For low values of 
, su
h as 
 = 3, the attra
tor in the xy plane is a periodi
orbit 
onsisting of a single loop. The power spe
trum 
onsists of a base frequen
y of

7



0 20 40

−5

0

5

−5 0 5

−5

0

5

0 0.5 1
−8

−6

−4

−2

0

2

0 20 40

−10

−5

0

5

10

−10 0 10

−10

−5

0

5

10

0 0.5 1
−8

−6

−4

−2

0

2

0 20 40
−20

−10

0

10

20

−20 0 20
−20

−10

0

10

20

0 0.5 1
−8

−6

−4

−2

0

2

0 20 40

−20

−10

0

10

20

−20 0 20

−20

−10

0

10

20

0 0.5 1
−8

−6

−4

−2

0

2

0 20 40

−20

0

20

−20 0 20

−20

0

20

0 0.5 1
−8

−6

−4

−2

0

2

F=3

F=6

F=9

F=12

F=17

x vs t y vs x log(power) vs freq for x

Figure 1.1: Plots of x versus time, y versus x and power spe
tra versus frequen
y forvarious values of 
 for the R�ossler system.

8



about 0.16, plus its integer multiples (as required for periodi
ity). As 
 is in
reased,the system passes through a bifur
ation point, and the single loop be
omes a doubleloop, as shown for 
 = 6. The power spe
trum pi
ks up an extra base frequen
y ofabout 0.08, and its multiples. Further period doubling bifur
ations ensue, at smallerand smaller intervals, until by 
 = 9 the system is 
haoti
, so there is no periodi
orbit. The power spe
trum 
ontains a full range of frequen
ies. This route to 
haos,
onsisting of an in�nite number of 
onse
utive period doublings, appears in a widevariety of nonlinear systems [26℄.For higher values of 
 there are o

asional windows where the system 
eases to be
haoti
 and reverts to periodi
 behaviour. For example at 
 = 12 there is a period3 orbit, and on
e again there is regular stru
ture in the power spe
trum. As 
 isin
reased the system again period doubles to 
haos. By 
 = 17 the 
haoti
 attra
torhas grown in size.Clearly the behaviour of the system depends in a vital way on the parameter
. Rather than examining individual values of 
, it is desirable to try to pi
turehow the system 
hanges, and parti
ularly where bifur
ations o

ur, as 
 is varied
ontinuously. One method to do this is analogous to the bifur
ation diagrams ofmaps su
h as the logisti
 map, whi
h simply re
ord the points on the attra
tor asthe bifur
ation parameter is in
reased, either by a s
atter plot or a density plot. Forexample, the top panel of Figure 1.2 shows a density plot of the x variable. For ea
hvalue of 
, it re
ords the density of the x time series, of the sort shown in the left
olumn of Figure 1.1.While the resulting diagram is interesting and 
aptures mu
h of the behavior, adisadvantage of the method, whi
h doesn't o

ur with maps, is that be
ause x isa 
ontinuous variable, the periodi
 orbits appear as a 
ontinuous band rather thandis
rete points, and it is hard to distinguish areas of 
haos. This is improved in themiddle panel, whi
h is again a density plot, but only in
ludes those values of x whi
hare either a lo
al maximum or a lo
al minimum. It is now mu
h easier to distinguishbetween the areas of 
haos, su
h as 
 = 11, and the periodi
 window beginning after
 = 12. A period p orbit produ
es p separate lo
al maxima, while in a 
haoti
 region,we expe
t an in�nite number of su
h maxima.
1.4 Spe
tral bifur
ation diagramsThe lower panel of Figure 1.2 is a new kind of bifur
ation diagram, dubbed thespe
tral bifur
ation diagram. It was inspired by a te
hnique used to do on-the-
y

9



measurements of �eld harmoni
s in super
ondu
ting magnets while the 
urrent isbeing ramped [45℄. The diagram is 
omposed by 
ombining the power spe
tra atdi�erent values of 
, as shown in the right 
olumn of Figure 1.1, into a 
ontinuouspower histogram. The verti
al axis shows frequen
y, while the greys
ale indi
atesthe power at that frequen
y. For example, at 
 = 3 the heavy line at frequen
y 0.16
orresponds as before to the periodi
 orbit with that frequen
y, and the period doubleat 
 = 6 is indi
ated by the appearan
e of a lower frequen
y line. Chaoti
 regionsdisplay a smear of frequen
ies. The periodi
 window after 
 = 12 appears as a 
learband, with lines present only at multiples of the base frequen
ies. Another, smallerperiodi
 window is also visible just after 
 = 10. The advantages of the spe
tralbifur
ation diagram will be
ome parti
ularly evident in the next 
hapter.From the bifur
ation diagrams, it is evident that 
haoti
 systems su
h as theR�ossler system are sensitive not just to slight variations in initial 
onditions, but alsoto slight variations in parameters. This is one kind of model error, and perhaps themost basi
. Below we present two other systems whi
h will be useful in our laterinvestigations into model error.
1.5 Other low dimension systems
1.5.1 The Lorenz '63 systemThe story behind this 
lassi
al system [37℄ is well known, but worth repeating here.In 1961, Lorenz, a meteorologist with MIT, visited Barry Saltzman of the TravelersInsuran
e Company Weather Centre in Hartford. Saltzman had been studying the
onve
tive motion of a 
uid heated from below and 
ooled from above, a problem�rst examined by Lord Rayleigh. By 
onsidering variations in only two dimensions,Saltzman expanded the solution fun
tions in a Fourier series, substituted this seriesinto the original partial di�erential equations, and trun
ated the resulting in�nitesum to a set of seven terms (the equations are presented in Chapter 4). In an e�ortto further simplify the system, and noting Saltzman's 
omment that under 
ertain
onditions all but three of the Fourier 
oeÆ
ients went to zero, Lorenz retained onlythose terms, and res
aled to obtain the following set of equations:dxdt = ��x+ �ydydt = xz + rx� y

10
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Figure 1.2: Bifur
ation diagram for x as a fun
tion of 
 in the R�ossler system. Upperpanel is a density plot, middle panel is density of lo
al max/min, and lower panelshows power spe
tra.
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dzdt = xy � bz: (1.3)The 
lassi
al values are � = 10, b = 8=3, and r = 28. The approximation is a
tuallyonly valid for 
ertain (low) values of r, and the behaviour of these redu
ed equationsno longer says mu
h about 
onve
tion between plates. However they yield a mathe-mati
ally very interesting system, whose butter
y-shaped attra
tor is something of a
haos i
on. Staying with the original spirit of ignoring physi
al reality, we show thebifur
ation behaviour for r between 25 and 275 in Figure 1.3 for the z variable. InChapter 4, we will 
ompare the Lorenz system with the original Saltzman equations.
1.5.2 The Rulkov Cir
uitAnother system we shall 
onsider later, as an example of a low dimension system whi
ha
tually approximates a physi
al system, is given by the Rulkov Cir
uit equations [59℄:

dxdt = ydydt = �x� Æy + zdzdt = 
(�f(x)� z)� �y: (1.4)where 
 = 0:2, Æ = 0:534, � = 1:52, and � is a parameter to be varied in the range10 to 30. The fun
tion f(x) is given by:
f(x) = �sgn(x)(qd(f1(x)� a)2 + 
� ad ) (1.5)and f1(x) = kxk if kxk � a (1.6)= �q(kxk � p) if a < kxk � b (1.7)= �a if kxk > b (1.8)where d = a2�
a2 , q = 2ab�a , p = a+b2 , a = 0:5, b = 1:8, and 
 = 0:03.The bifur
ation behaviour of the 
ir
uit equations is shown in Figure 1.4 for � inthe range 18 to 23, whi
h is where most of the interesting 
hanges o

ur. Figure 1.5is a zoomed view of the spe
tral bifur
ation diagram, showing the existen
e of manysmall periodi
 windows. A possible appli
ation of the spe
tral bifur
ation diagramsis to sear
h for periodi
 or quasi-periodi
 orbits whi
h are diÆ
ult to spot using otherte
hniques. 12
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Figure 1.5: Zoomed view of bifur
ation diagram for the 
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uit model.
1.6 The danger of low dimension systemsAt this point, one might obje
t that the R�ossler, Lorenz or 
ir
uit systems have littlein 
ommon with atmospheri
 models. The Lorenz '96 systems, presented in the next
hapter, are higher dimensional, but in general, if we only do our experiments on`toy' models, how do we know whether the results will generalise to real atmospheri
models?A similar point was raised at the Newton Institute in Cambridge during its 1996dis
ussion of atmospheri
 predi
tability [64℄, where it was put as follows:Many linear-dynami
s-based intuitions are violated in low-dimensionalnonlinear systems, like the Lorenz 1963 model; yet these NWP modelsappear to behave 
onsistently with these intuitions. Is there some prin
i-ple whi
h indi
ated that there are pathologies whi
h happen only in loworder systems. Do these o

ur `Even In, Or Only In' low order systems?Toy models are at their most e�e
tive when used as a kind of thought experiment.An example is James Lovelo
k's Daisyworld model [41℄ whi
h proposes an imaginaryplanet populated with white and dark daisies. As a result of their growth rates, itis seen that they e�e
tively regulate the temperature of the planet. No one thinksthis is an a

urate model of the real world, but it su

eeds in demonstrating a simple
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prin
iple whi
h otherwise may not have been evident. It 
aptures the imagination,and its impa
t is as mu
h rhetori
al, like a good analogy, as s
ienti�
.Simple models, however, 
an easily be misapplied. For example, in many lowdimension models, the model error is lo
alised to parti
ular regions of the attra
tor.If we were to 
on
lude that the atmosphere shares this prin
iple, so that model errorvaries greatly from day to day, then we may well be mistaken. There is no rulewhi
h says that nonlinear dynami
al systems have to behave like one another. Theproblem is exa
erbated when results are interpreted graphi
ally; for example, it iseasy to argue that the attra
tor or error pattern of one system might `look like' thatof another, an a
tivity whi
h is more sport than s
ien
e.For this reason, the results here are stated wherever possible in su
h a way thatthey 
an be applied to as broad as possible a 
lass of model/system pairs. The newmethod for measuring model error, for example, is system independent, and we applyit equally to low dimension systems, or, in Chapter 6, operational weather models
ontaining millions of variables.There is one key di�eren
e between low and high dimensional systems, whi
h hasan immediately visible e�e
t when 
omparing the two, and that is related to the
on
ept of orthogonality. Pairs of randomly 
hosen ve
tors in a high dimension spa
ehave a high probability of being nearly orthogonal. More pre
isely, the varian
e of theangle between su
h ve
tors in a dimension n spa
e is 1n . (To see this, let x and y beve
tors. Sin
e we are only interested in the angle, we 
an assume that ea
h ve
tor hasmagnitude 1. By symmetry, we 
an also 
hoose x to be any ve
tor we want. Choosex to be the ve
tor with �rst 
oordinate x1 = 1 and all other 
oordinates zero. Thenx � y = y1. But Pni=1 y2i = 1, so the varian
e of y1 is 1n , whi
h proves the result.) Forfull weather models, where n is around 107, two un
orrelated ve
tors 
an thereforebe treated as if they are orthogonal. This simple observation a

ounts for mu
h ofthe di�eren
e in behaviour that we will experien
e here between weather models andlow dimension systems.
1.7 SummaryIn this se
tion we have seen that even simple, low dimension systems su
h as theR�ossler, Lorenz or Rulkov Cir
uit Equations show a ri
h mix of behaviour, whi
hdepends in a highly sensitive fashion on model parameters: slight alterations 
anthrow the system from a periodi
 orbit into 
haos, or vi
e versa. Sin
e in
orre
tparameters are just one example of model error (if the model is stru
turally di�erent
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from the true system, then no setting of the parameters need remedy it), in order tounderstand model error we must be able to visualise model behaviour over a range ofparameter values.Spe
tral bifur
ation diagrams are an ex
ellent tool for this purpose. They 
learlyindi
ate when a model is in a 
haoti
, periodi
, or, as we see in the next 
hapter, aquasi-periodi
 orbit. The diagrams also give information about the model's attra
tor,or `
limatology', in terms of the prin
iple frequen
ies.Be
ause of the 
omplexity of nonlinear systems, it might seem that 
omparingtwo di�erent systems would be a hopelessly 
ompli
ated task. Fortunately, we willsee in 
hapter 3 that the problem 
an be made easier by 
ertain emergent propertiesof the systems. In fa
t, one unanti
ipated result for the Lorenz '96 systems is thatthe question of whether they are 
haoti
 or not has little bearing on the subje
t ofmodel error.
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Chapter 2
The Lorenz '96 systems
2.1 The one and two level system equationsThe Lorenz '96 systems were �rst introdu
ed as idealised one-dimensional models ofthe atmosphere [40, 27℄. They produ
e time series whi
h are qualitatively similar tothe behavior of variables su
h as temperature. Another useful property, en
ounteredin Chapter 6, is that, if the parameters are 
hosen 
orre
tly, the model error is seento resemble that en
ountered in weather models, in terms of its variation with timeand its magnitude 
ompared with displa
ement error.The �rst system, whi
h we shall refer to as the one level system, 
ontains nvariables x1; x2; :::; xn, and the equations aredxidt = xi�1(xi+1 � xi�2)� xi + F; i=1,. . . ,n (2.1)where F is a 
onstant, and the index i is 
y
li
 so that xi�n = xi+n = xi. The xi's 
antherefore be viewed as variables around a 
ir
le, as shown in Figure 2.1(a). In physi
alterms, they 
ould be values of some atmospheri
 quantity su
h as temperature at nequally spa
ed latitudes around the globe. The 
onstant term F in the equationsis external for
ing, the linear term is internal damping, and the quadrati
 terms,whi
h introdu
e information about the spatial variation of x, represent adve
tion. Of
ourse, the system is only meant to be evo
ative of atmospheri
 behaviour, not ana

urate model. A typi
al time series of the system is shown in Figure 2.2, whi
hplots x1 versus time for F = 10, for whi
h the system is 
haoti
, as seen below. Notethe equations are the same for ea
h xi regardless of index, so ea
h variable has thesame statisti
s.
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(a) The one level system variables with n = 8.

(b) The two level system variables with n = 8 and m = 4.
Figure 2.1: System variables
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Figure 2.2: Time series of x1 for the one level system given by equation 2.1 withF = 10.
The other system to be dis
ussed will be referred to as the two level system, andin
orporates smaller s
ale motions with shorter time s
ales. There are n variables ~xi,together with an additional nm variables ~yi;j whi
h 
an be viewed as sitting insidethe ~x's as shown in Figure 2.1(b). The equations [40℄ ared~xidt = ~xi�1(~xi+1 � ~xi�2)� ~xi + F � h
b mXj=1 ~yi;jd~yi;jdt = 
b~yi;j+1(~yi;j�1 � ~yi;j+2)� 
~yi;j + h
b ~xi (2.2)for i = 1; : : : ; n and j = 1; : : : ;m. Again the variables are 
y
li
 so that ~yi+n;j = ~yi;jand ~yi;j�m = ~yi�1;j. Following Lorenz [40℄, we set b = 
 = 10, whi
h has the e�e
t ofmaking the ~y's 
u
tuate ten times more rapidly than the ~x's. The ~y's 
an be thoughtof as 
onve
tive s
ale quantities in the atmospheri
 analogy. The 
oupling 
oeÆ
ienth is set (ex
ept when otherwise spe
i�ed) to 1. For this thesis we have primarily usedn = 8 and m = 4, though Lorenz originally looked at higher dimensional systems[40℄.Figure 2.3 shows a two level system time series of ~x1 and ~y1 for F = 10 whi
h
an be 
ompared with Figure 2.2. It 
an be seen that a large lo
al value of ~x tendsto ex
ite the ~y variables, due to the feedba
k between the two (this is a relationshipthat will prove useful in Chapter 3).Our motivation for studying these systems is to examine the e�e
t of model error.Suppose that we 
onsider the two level system to be `truth', and the one level system20
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Figure 2.3: Time series of ~x1 and ~y1 versus time for the two level system given byequation 2.2 with F = 10.
to be a model. If we 
ompare the x equations with the ~x variables, we see thatthe model 
ontains a 
onstant for
ing, while in the true system the for
ing dependson the lo
al ~y variables. In Se
tion 3, we will 
onsider the 
onstant for
ing of theone level system to be a parameterisation of the two level system for
ing, just asreal atmospheri
 models in
orporate parameterisations of 
ompli
ated, small s
alephysi
al pro
esses. First, though, it is ne
essary to see what role the for
ing has inthe stru
ture of the solutions for either system.
2.2 Behaviour of the one level system with n = 4In this se
tion we will 
onsider the one level system with n = 4, whi
h is the simplestnon-trivial variant. We will derive some of the basi
 properties of the system, beforeembarking on a numeri
al study of the bifur
ation behaviour. The equations are:dx1dt = x4(x2 � x3)� x1 + Fdx2dt = x1(x3 � x4)� x2 + Fdx3dt = x2(x4 � x1)� x3 + Fdx4dt = x3(x1 � x2)� x4 + F (2.3)By substituting into the equations, it is easily seen that x1 = x2 = x3 = x4 = F21



is a �xed point for all F . The stability of this �xed point 
an be determined by
onsidering the Ja
obean [26℄, whi
h is:0BBBBBB�
�1 x4 �x4 x2 � x3x3 � x4 �1 x1 �x1�x2 x4 � x1 �1 x2x3 �x3 x1 � x2 �1

1CCCCCCA
For F = 0, the Ja
obean at the solution x1 = x2 = x3 = x4 = 0 is minusthe identity, and the only eigenvalue is -1 whi
h ensures stability. For F = 1, theJa
obean at the solution x1 = x2 = x3 = x4 = 1 is0BBBBBB�

�1 1 �1 00 �1 1 �1�1 0 �1 11 �1 0 �1
1CCCCCCA

An eigenve
tor of this matrix is (i,-1, �i, 1), with asso
iated eigenvalue i. At F = 1an eigenvalue passes through the real axis in the 
omplex plane. This is asso
iatedwith a Hopf bifur
ation [26℄, where a periodi
 orbit is produ
ed from a �xed point.Indeed, in Figure 2.4 we see that for F just above 1, the system attra
tor plotted as x1versus x2 is a near 
ir
ular stable periodi
 orbit with period of approximately 2�. Thevariables x2, x3 and x4 (not shown) also follow periodi
 orbits but are out of phasewith x1 by �=2, � and 3�=2 respe
tively. Viewed as variables on a 
ir
le, the solution
an then be seen as a wave propagating in a 
lo
kwise dire
tion. This dire
tionof propagation is noti
eable even when the system is 
haoti
, and is a 
onsequen
eof the adve
tion term. The power spe
trum of the time series of x1 shows a peakat frequen
y 1/2�, as expe
ted, but also reveals a number of higher harmoni
s atmultiples of the base frequen
y.As F is in
reased, the x1 time series pi
ks up extra lo
al maxima due to thepresen
e of higher harmoni
s, but there is no sign of period doubling. In the log s
ale,the power appears to de
rease more or less linearly with frequen
y. This implies thatthe 
oeÆ
ients in the power spe
trum de
rease exponentially with frequen
y. NearF = 12, the system be
omes 
haoti
. Around F = 14:7 there is a periodi
 windowbefore be
oming 
haoti
 again. The orbit shown in the lower panels has a period of11.365 time units.Some of the system behaviour is expressed in the upper two panels of Figure 2.5,whi
h show the density and max/min bifur
ations of x1 (again, it doesn't matter22
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whi
h xi is 
hosen). It 
an be 
ompared with Figure 1.2. The line whi
h appearsat F = 1 represents the nearly linear growth in frequen
y of the solution as F isin
reased. The new lines whi
h appear around F = 3 and F = 8 re
e
t the higherharmoni
s whi
h appear for higher F . Unlike in Figure 1.2, however, these lines donot indi
ate period doubling. The system be
omes 
haoti
 around F = 12, and theperiodi
 window at F = 14:7, as well as a se
ond window just before F = 16, 
an be
learly seen.While the bifur
ation diagrams give useful information, new lines representing thegrowth of higher harmoni
s appear out of nowhere, and don't indi
ate any bifur
a-tion. Be
ause the system pi
ks up progressively higher harmoni
s as F in
reases, themore natural approa
h is the spe
tral bifur
ation diagram in the lower panel. Thismethod also has the advantage of showing whi
h spe
tra are present in the long-term`
limatology' of the system.Comparing the spe
tral bifur
ation diagram with Figures 2.4 and the upper twopanels, we see that the lines beginning at and after F = 1 and 
ontinuing to F = 12represent the periodi
 orbits. These lines are equally spa
ed in frequen
y, whi
hmeans that the orbit for F in this region only 
ontains harmoni
s whi
h are multiplesof its lowest frequen
y (this ensures periodi
ity). Around F = 12 the 
haoti
 regimebegins. The periodi
 windows, su
h as the one near F = 16, appear as bands ofhorizontal lines. The period of the orbit at F = 14:7 may be estimated from itslowest frequen
y of about 0.88, whi
h agrees with the observed period 11.365.
2.3 One level systems with dimension 8 and 40Higher dimension versions of the system display broadly similar behaviour, with someadditional 
ompli
ations. One feature of the n = 8 system is that it has at least twoattra
tors: a symmetri
 attra
tor (x5 = x1; x6 = x2; x7 = x3; x8 = x4) whi
h isa 
opy of the n = 4 attra
tor, and a se
ond attra
tor 
ontaining no su
h points.This symmetri
 attra
tor will attra
t any initial 
ondition whi
h has the requiredsymmetry, while other points are drawn to the other attra
tor [27℄. Therefore periodi
orbits 
orresponding to those in Figure 2.4, even the one at F = 14:7 where mostorbits are strongly 
haoti
, all exist in the n = 8 system. The analysis below is
on
erned with the se
ond (asymmetri
) attra
tor.Figure 2.6 shows bifur
ation diagrams for the n = 8 
ase. They are similar tothe attra
tor for the n = 4 system, but be
ome 
haoti
 mu
h earlier. Prior to aboutF = 2:8, the attra
tors for n = 4 and n = 8 
orrespond, in the sense that traje
tories
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in the n = 8 system are drawn to the symmetri
 periodi
 orbits. However aroundF = 2:8 a period-doubling bifur
ation o

urs, as shown in Figure 2.7, and we will nolonger have x1 = x5 and so on. By F = 3:8, the system appears to be 
haoti
. Atthis resolution, it is diÆ
ult to pi
k out periodi
 windows of any width in the 
haoti
regime past F = 4:5.The spe
tral bifur
ation diagram in the lower panel of Figure 2.6 reveals 
om-pletely new features that are not evident from the density and max/min diagrams.The symmetri
 periodi
 orbit is indi
ated by the line beginning at F = 1 and fre-quen
y 0.16. At F = 2:8 a line appears at half the frequen
y, whi
h 
orresponds tothe period doubling mentioned above. By F = 4 we see a broad range of harmoni
s
orresponding to 
haos. However from about F = 4:8 to F = 5:6 there are largewindows where the system appears to be non-
haoti
 (or at least not broad band).Inspe
tion of the spe
tral bifur
ation diagram reveals that more than one fre-quen
y, or its harmoni
s, are present in these windows. The slopes of the diagonallines in the range F = 4:8 to F = 5:6 are di�erent, so the relative balan
e of thefrequen
ies 
hanges with F . When the frequen
ies are in
ommensurate, the resultwill be a quasi-periodi
 orbit. In bifur
ation diagrams produ
ed either by the max-ima method or a Poin
ar�e se
tion method [1℄, these quasi-periodi
 orbits appear as a
ontinuous band indistinguishable from 
haos.It is possible to �nd orbits in the region F = 4:8 to F = 5:6 whi
h appear to
lose, as shown in Figure 2.8 for F = 5:235298. However the number of de
imalpla
es in F attests that this is not an easy task! The period of this orbit is 36.7,whi
h 
orresponds to a frequen
y of 0.027. Figure 2.9 is a 
lose-up of the spe
tralbifur
ation diagram. The periodi
 orbit is lo
ated in a region where the spe
tra areseparated by a frequen
y spa
ing of 0.027, as expe
ted.Still another way to view, or experien
e, the bifur
ations is to listen to them. Atape is available whi
h 
ontains a translation of the 8 dimension system into sound.The x1 and x5 variables are interpreted as sound waves using MatLab, and played tothe left and right speakers respe
tively. Starting from a periodi
 orbit at F = 3:5,the system is ramped upwards. The periodi
 orbit in
reases in speed and sound level,like a motor being a

elerated. A distin
t 
hange is heard as the system goes 
haoti
around F = 3:8; the sound level drops and be
omes irregular, as if the motor isabout to stall. Entering the quasi-periodi
 region around F = 4:7, the system on
eagain settles down, though it doesn't quite repeat. Only when held at a value ofF = 5:235298 is a true rhythm established. It seems that the Lorenz systems are abetter model of a 
ar in need of a tune than the atmosphere!
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orresponding to a frequen
y of 36.7
The dimension of the system 
an be in
reased inde�nitely, but 
omputationsrapidly be
ome expensive. The highest we looked at was n = 40. Figure 2.10 showsbifur
ations for the 40D one level system. It is again quite similar to the other sys-tems, with the ex
eption that the spe
tral bifur
ation diagram (lower panel) has asomewhat ri
her appearan
e in the transition to 
haos.The systems 
onsidered so far have all had a 
onstant for
ing term F . Othervariants are possible; one studied is the 
ase where F depends on the index i. Thisis analogous to the weather problem where for
ing is di�erent over land and over sea[27℄. Another possibility is to make the for
ing a fun
tion of the lo
al value of xi, orall values of xi at the 
urrent time, or values of xi at 
urrent and previous times, andso on. The two level system may be 
onsidered as one su
h variant, where the for
ingdepends on small s
ale ~y variables whi
h are 
oupled with the large s
ale ~x variables.

2.4 Behaviour of the two level systemThe equations for the ~x variables in the two level system are similar to those of theone level system, with the di�eren
e that the 
onstant for
ing is repla
ed by a termwhi
h depends on the fast s
ale ~y variables. We might therefore expe
t the ~x variables
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to behave like the x's in the one level system, but with an added degree of fuzziness.The density and max/min bifur
ation diagrams for the n = 8;m = 4 
ase (dimension40) in Figure 2.11 bear this out. They are qualitatively quite similar to Figure 2.6.The lines in the region F = 4 to F = 5 have an added thi
kness, and 
orrespondto apparently 
haoti
 orbits that are like jostled versions of the periodi
 orbits seenin the one level system for slightly lower values of F . There is an additional perioddoubling bifur
ation at F = 1:5, as the fast s
ale variables be
ome non-zero. Anothernoti
eable feature is that the ~y variables tend to de
rease the for
ing F on average,so the whole diagram is shifted to the right 
ompared to Figure 2.6.The spe
tral bifur
ation diagram for the two level system in Figure 2.11 
an be
ompared also with that in Figure 2.6. Again it is quite similar to the one level
ase, with the di�eren
e that a full range of spe
tra, indi
ating a 
ompletely 
haoti
regime, doesn't o

ur until around F = 5:5 as opposed to F = 4. The diagramonly shows to F = 6, however the system appears to remain 
haoti
 and there aren'tany periodi
 or quasi-periodi
 windows visible past that point. Figure 2.12 showsbifur
ation diagrams for the ~y variables.Figure 2.14(a) shows a periodi
 orbit at F = 4:6. Of 
ourse, for the system to beperiodi
 the ~y variables must be periodi
 as well as the ~x's, and the path tra
ed outby the ~y's in 2.14(b) does in fa
t 
lose. Figures 2.14(
) and (d) is what happens fora slightly smaller value of F . The ~y variables are 
haoti
, but the ~x orbit is nearlyperiodi
.So far we have only 
onsidered bifur
ations obtained by varying the parameter F .There are of 
ourse other possibilities, su
h as varying the 
oeÆ
ient h, whi
h 
ontrolsthe 
oupling between the small s
ale ~y variables and the large s
ale ~x variables. Figure2.13 shows bifur
ations in the ~y variables as the 
oeÆ
ient h is varied, while thefor
ing is held 
onstant at F = 2. The spe
tral bifur
ation diagram shows intri
ate
ross-hat
hing, and a degree of stru
ture that is absent from the other diagrams.When the 
oupling 
oeÆ
ient is in
reased, the two level system is 
apable ofshowing quite 
ompli
ated behaviour even at F = 2, where the one level systemis periodi
. Figure 2.15 shows the ~x and ~y orbits. The ~x variables nearly follow aperiodi
 orbit, while the ~y variables are 
learly quasi-periodi
.
2.5 SummaryThis 
on
ludes the introdu
tion to the Lorenz '96 systems, whi
h have turned out tobe interesting in their own right, showing a ri
h variety of behaviour. As prototype
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models for dis
ussions of atmospheri
 dynami
s, they have the advantage of beinghigher dimensional and bearing at least a passing resemblan
e to real atmospheri
systems, both in the equations and the resulting dynami
s. Spe
tral bifur
ationdiagrams are a new and useful tool for analysing su
h systems, and reveal featuressu
h as quasi-periodi
 orbits whi
h aren't evident in the usual type of bifur
ationdiagram.We 
an now use the systems and the tools developed so far to study the e�e
ts ofmodel error. We begin by looking at empiri
al properties of the error, before makinga more formal analysis in Chapter 4. An advantage of the statisti
al approa
h isthat it allows us to buid up an understanding of model error from observations, whileseeing how its behavior is simpli�ed by 
ertain ma
ro-properties of the Lorenz '96systems.
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Chapter 3
An exploration of model error
using the Lorenz '96 systems
A

urate measurement of error is a basi
 plank of dynami
al modelling; but as hasalready been dis
ussed, the measurement of model error in the 
ontext of nonlin-ear dynami
al systems is 
ompli
ated by sensitivity to initial 
onditions. Even with
haoti
 systems and models, though, the importan
e, and ease of measurement, ofmodel error depends on the situation. If the model is enormously wrong, and sensitiv-ity to initial 
onditions relatively small, then we should have no problem in measuringthe model error. On the other hand, if the model is a

urate, but highly sensitive toinitial 
ondition, it is more diÆ
ult to dete
t what error is due to the model.The most interesting behaviour o

urs when initial 
ondition error and modelerror vie with ea
h other for importan
e, as is the 
ase with the Lorenz '96 modelswhi
h we will study in this 
hapter. Rather than be deterred by the presen
e of
haos, we will treat initial 
ondition error and model error as independent entities,to see what 
an be learnt about their di�erent properties. The approa
h is primarilyexperimental, taking the 40D two level system as the `true system', and attemptingto model it with variants of the one level system. The results will motivate theshadow approximation te
hniques presented in Chapter 4, whi
h in
orporate bothinitial 
ondition and model error in a more 
omplete des
ription.
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3.1 Model error vs initial 
ondition error (
ontin-ued)Suppose we are 
omparing a model with a true system, and we wish to assess thee�e
ts of model error. In general, the model and true system will have di�erent statespa
es [61℄. Therefore we require the existen
e of a proje
tion operator P going fromthe true state spa
e to the model-state spa
e. For the time being, in the interest ofsimpli
ity, we will assume that the model and system exist in the same state spa
e,and that we know the equations for the true system to bed~xdt = ~G(~x(t)) true system (3.1)while the model equations aredxdt = G(x(t)) model: (3.2)The diÆ
ulty in measuring model error for su
h systems is that it is 
oupled withdispla
ement error. Suppose that traje
tories in the model and true systems begin atexa
tly the same point, so x(0) = ~x(0). At time zero there is no displa
ement errorsin
e the points agree, so the only error is model error. However as soon as a �nitetime has elapsed and the orbits have diverged, the model traje
tory will di�er fromthe true traje
tory, and displa
ement error will 
ome into play.
3.1.1 What is initial 
ondition error?In 
haoti
 systems, error due to displa
ement of initial 
ondition is blamed for manywoes be
ause it tends to magnify exponentially-on-average [65℄. Suppose that themodel initial 
ondition is perturbed by a ve
tor ed(0). We 
an then estimate thedispla
ement ed(t) at some future time by 
onsidering the linearised dynami
s aroundx(0) [66, 49℄.Theorem. Let x(t) be a solution of the model equationdxdt = G(x) (3.3)where G is C1, and let xd(t) = x(t) + ed(t) be a solution with a perturbed initial
ondition xd(0) = x(0) + ed(0). De�ne the linear propagator [66℄ asM(t) = eR t0 J(x(t))dt (3.4)
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where J is the Ja
obian of G. Then given a referen
e time � > 0, and � > 0, thereexists a radius r su
h that, if ked(t)k < r for all t 2 [0; � ℄, thenked(t)�M(t)ed(0)k < � 8t 2 [0; � ℄: (3.5)Proof. The derivation is routine, but will be useful for results developed later.From the system equations,ded(t)dt = d(x(t) + ed(t))dt � dx(t)dt= G(x(t) + ed(t))�G(x(t)): (3.6)Performing a Taylor expansion ofG around x(t), and retaining only the �rst orderterm, we obtain ded(t)dt = J(x(t))ed(t) +Rd(t) (3.7)where the remainder term Rd(t) is O(ked(t)k2). Therefore, 9rt > 0 3 ked(t)k <rt =) kRd(t)k < �=� . Pi
k r to be the minimum su
h rt (possible sin
e [0; � ℄ isa 
ompa
t set). Integrating from 0 to t for 0 < t � � then givesed(t) =M(t)ed(0) + Z t0 Rd(t)dt; (3.8)and ked(t)�M(t)ed(0)k = k Z t0 Rd(t)dtk < �� t � � (3.9)whi
h proves the result.The above result implies that the evolution of the error ed(t) 
an be approximatedby the linearised dynami
s ed(t) �M(t)ed(0): (3.10)Under the linearised dynami
s, a ball of initial 
onditions therefore evolves into anellipsoid of �nal states. The major axes of the ellipsoid and their preimages 
an bedetermined by performing a singular value de
omposition [25℄ of M(t) (whi
h is howECMWF determines its perturbations aimed for maximum growth [49℄). Note theapproximation only holds for displa
ed orbits xd(t) whi
h remain within a toleran
er of the referen
e traje
tory x(t).In the spe
ial 
ase of a linear system, where the Ja
obian J is a 
onstant matrix,then ed(t) = eJted(0): (3.11)So long as J has positive eigenvalues, traje
tories will experien
e exponential growth.In general, and for the systems 
onsidered here, the Ja
obian is not 
onstant and therate of growth 
an be des
ribed as exponential-on-average [65℄.40



3.1.2 What is model error?Model error 
an be analysed in mu
h the same way as initial 
ondition error. Asbefore, we initially assume that the system and the model share the same state spa
e(if not, then we require the use of a proje
tion operator from the system state spa
eto that of the model). Let ~x(t) be a solution of the system equationd~xdt = ~G(~x) (3.12)
where ~G is C1, and let xm(t) = ~x(t) + em(t) be the solution of the model equationdxmdt = G(xm) (3.13)where G is C1 and em(0) = 0, so the model orbit begins with zero error relative tothe true orbit. De�ne the initial velo
ity error to be

V = dem(t)dt jt=0 (3.14)= dx(t)dt jt=0 �d~x(t)dt jt=0 : (3.15)Then we have the following simple result.Theorem. Given � > 0, there exists a time � > 0 su
h thatkem(t)�Vtk < � 8t 2 [0; � ℄: (3.16)Proof. Performing a Taylor expansion of em(t) around time zero, we haveem(t) = em(0) +Vt+Rm = 0 +Vt+Rm (3.17)where the remainder term Rm is O(ktk2). Therefore, there exists a time � > 0 su
hthat kRmk < � for all t 2 [0; � ℄ whi
h proves the result.The linearised dynami
s of the model error 
an then be written asem(t) � Vt: (3.18)Sin
e the initial velo
ity error V is generally non-zero, it follows that, in general,the model error will experien
e an initial linear growth. This 
ontrasts with theexponential-on-average growth of initial 
ondition error, and implies that, for smalltimes and displa
ements, model error will dominate initial 
ondition error, as shownin the following 
orollary.
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Corollary. Let the model and system be as above, and assume that the modelerror em(�) at some time � > 0 is non-zero. Then there exists a radius r > 0 su
hthat, if ked(0)k < r, then ked(�)k < kem(�)k.This follows simply from the fa
t that displa
ement error 
an be redu
ed arbritrar-ily 
lose to zero by 
hoosing a suÆ
iently small initial displa
ement. An illustrationof how model error 
an dominate error due to displa
ement of the initial 
ondition isprovided by Figure 3.1. Model error grows roughly linearly for small times, and soonoverwhelms the error due to initial displa
ement. (Results are for the 
onstant modelwhi
h we de�ne next - see also Figure 3.4.)Our de�nition of velo
ity error is essentially the same as the de�nition of tenden
yerror used in [33℄ in the 
ontext of weather models, where the velo
ity errors werestudied in an attempt to isolate their sour
es in the model, or in [60℄, whi
h proposeda statisti
al te
hnique for assessing errors. A similiar term also appears as a residualin the data-�tting te
hnique known as four-dimensional variational assimilation (4D-VAR) [13℄. The observation that model error dominates initial 
ondition error forsmall times is quite trivial, but often overlooked (for example, the 
omparison ofboth types of error in [12℄ for the Lorenz '63 system 
onsidered time s
ales of 50units, and the initial e�e
ts are invisible). It points to an important property ofmodel error whi
h we will exploit in the remainder of the thesis, namely that modelerror is best measured over small deviations from the true orbit.
3.2 Modelling the two level system - the 
onstantmodelThe above ideas about model error and displa
ement error 
an be demonstrated usingthe Lorenz '96 systems, with the two level system as truth. Suppose that, in the twolevel system, only the ~x variables are known, and the values of the ~y variables are notknown. More formally, we proje
t from the full system state spa
e to the model statespa
e using an operator T whi
h trun
ates the ve
tor (~x; ~y) to T(~x; ~y) = (~x). Thesituation is analogous to real atmospheri
 systems, where the true system dependson an in�nite number of variables that we 
an only parameterise.In this 
ase we 
an write the true system equations asd~xidt = ~xi�1(~xi+1 � ~xi�2)� ~xi + ~Fi(t) true system (3.19)
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Figure 3.1: Plot showing how model error (dashed line) dominates error due to dis-pla
ement of initial 
ondition (solid line) for small times, providing the initial erroris suÆ
iently small. Results are RMS errors for an a
tual model and system (see alsoFigure 3.4).
for i=1, n, where ~Fi(t) = F � h
b mXj=1 ~yi;j(t) (3.20)is treated as a for
ing whi
h varies in a 
ompli
ated manner with time. Our goal isto approximate this system using models of the formdxidt = xi�1(xi+1 � xi�2)� xi + Pi(t) (3.21)where the n-dimensional ve
tor P(t) with 
omponents Pi(t) is some parameterisationof ~F(t).The simplest parameterisation s
heme is to set Pi(t) equal to a 
onstant for all i(this is the same as the one level Lorenz system). A sensible 
hoi
e of 
onstant wouldappear to be the mean for
ing (we will see in 
hapter 4 that it is optimal in at leastone sense). We therefore de�ne the 
onstant parameterisation asP 
 = h ~F i (3.22)where the mean is 
al
ulated over a long orbit on the two level system attra
tor.In general P 
 is smaller than F by a small amount, so for example if F = 10 the
orresponding value of P 
 is found to be 9.62. The model is then:dxidt = xi�1(xi+1 � xi�2)� xi + P 
 
onstant model (3.23)

43



-4

-3

-2

-1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

true system
scaled error
scaled mag

Figure 3.2: Fore
ast errors for Lorenz model/system, x1 
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aled by a fa
tor 20. The total error magnitude over all xiis also shown, again s
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tor 20. Be
ause it 
ontains all 
omponents, it islarger than the x1 error.
Figure 3.2 demonstrates the kind of errors that result when we approximate thetrue system with the 
onstant model. The solid line is the ~x1 variable for a traje
toryof the true system. At regular times (with spa
ing of 0.04 on the bottom s
ale)model traje
tories were initiated, starting on the true traje
tory. The resulting x1traje
tories, shown protruding like ribs from the solid line, soon diverge from truth- the errors here have been s
aled by a fa
tor 20 to aid visibility. The total errormagnitude over all xi's is shown as the series of diagonal lines, again s
aled. Be
auseit 
ontains all 
omponents, it is larger (and more 
onstant) than the x1 
omponentalone. Our aim in this 
hapter will be to quantify the growth of the model error whenaveraged over a large number of points.

3.2.1 Measuring initial 
ondition errorOne way to quantify an average sensitivity to initial 
onditions is to measure theroot mean square (RMS) error growth over a number of perturbations and a numberof starting points on the attra
tor. Suppose that ~xk(t) is a family of K solutionsof the true system starting from di�erent initial 
onditions on the attra
tor. Forea
h k=1 to K, we perturb the starting point ~xk(0) by a randomly oriented ve
tor
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whose magnitude has mean 0 and standard deviation �. As an example, Figure 3.3shows an ensemble of perturbations for the true system (3.20) with F = 10 about asingle starting point. The standard deviation perturbation size on the ~x variables is� = 0:01.The displa
ed solution ~xkd(t) will diverge from the true orbit by a ve
torekd(t) = ~xkd(t)� ~xk(t);with magnitude ekd(t). Now, de�need(t) = qhekd(t)2i (3.24)where the mean is taken over the K initial 
onditions. Then ed(t) is the RMS errorgrowth due to displa
ement after a time t.For the parti
ular starting point in Figure 3.3, the traje
tories disperse aroundt = 3, then appear to regroup at t = 5:5 before diverging again. When averaged overdi�erent starting points, however, the behaviour is more uniform. The lower 
urvein Figure 3.4 shows the RMS error ed(t) for the true system, while the middle 
urveis ed(t) for the 
onstant model. The error growth is 
hara
terised by an initial expo-nential growth, as we would expe
t from the linearised dynami
s, whi
h eventuallysaturates due to the �nite diameter of the attra
tor.
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Figure 3.4: Bottom line (solid) shows initial 
ondition displa
ement error ed(t) forthe true system with F = 10. Middle line (long dash) shows ed(t) for the 
onstantmodel with P 
 = 9:62. Top line (short dash) shows model error em(t) for the 
onstantmodel. Note that displa
ement error grows exponentially at small times, while modelerror grows linearly.
3.2.2 Measuring model divergen
eDivergen
e of model traje
tories 
an be measured in an analogous manner. Let ~xk(t)be a family of K true system solutions on the attra
tor as before, and let xk(t)be the model solutions with 
orresponding initial 
onditions, so for ea
h k we havexk(0) = ~xk(0). The model solution will diverge from the true orbit by a ve
torekm(t) = xk(t)� ~xk(t), with magnitude ekm(t). De�neem(t) = qh(ekm(t))2i (3.25)where the mean is taken over the K initial 
onditions. Then em(t) is the RMS modeldivergen
e after a time t.The divergen
e of the model from truth follows a somewhat di�erent pattern thandispla
ement error, as shown by the upper 
urve in Figure 3.4. The error starts atzero, by de�nition, and in
reases linearly in the early stages. This is shown more
learly in Figure 3.5, whi
h is a 
lose-up of the initial growth. Between 0.5 and1.5 time units, the error then enters a phase of exponential growth. Finally, theerror saturates as the true solution and the model solution settle on their respe
tiveattra
tors. Therefore, the model error manifests itself at low times as an initial linear

46



0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
t

model error

Figure 3.5: Initial linear growth of model error for 
onstant model, P 
 = 9:62, withrespe
t to true system with F = 10.
error, and at longer times as a di�eren
e between the attra
tors of the model and thetrue system. The latter is a subje
t we will return to in Chapter 5.Figure 3.6 shows how the model error varies with di�erent values of F . At ea
hF , the parameterised model for
ing P 
 is the mean for
ing h ~F i. For all values of F ,initial growth is fairly linear. The extent of the linear growth phase de
reases forin
reasing F .
3.3 Model error for the 
onstant model
3.3.1 Velo
ity errorIn the same way that displa
ement error is quanti�ed by the initial exponential rateof growth, it seems natural to quantify model error by the slope of the initial linearphase of the model error 
urve, whi
h gives the velo
ity error, or rate of model errorgrowth, near time zero. Figure 3.7 shows the initial slope as a fun
tion of F . Itin
reases fairly smoothly, and appears to vary, for F above 2, with the square root ofF . Note that the 
onstant model is near-perfe
t for F � 1:3. 1At time zero, the slope of the RMS model error 
urve 
an also be determineddire
tly from the model equations, as in the linearised dynami
s of the previous1At these values of F the ~y variables of the true system are periodi
, as shown in the bifur
ationdiagram 2.12.
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se
tion. To make this expli
it, suppose ~xk(t) for k=1 to K is a family of solutionsfor the true system with initial 
onditions on the attra
tor, and xk(t) are the modelsystem solutions with the same initial 
onditions. The model error ve
tors are thenekm(t) = xk(t)�~xk(t). Sin
e xk(0) = ~xk(0), subtra
tion of the model equations (3.21)from the true system equations (3.20) with t = 0 givedekm(t)dt jt=0= dxk(t)dt jt=0 �d~xk(t)dt jt=0= Fke (3.26)where Fke = Pk(0)� ~Fk(0) (3.27)is an n dimensional ve
tor of the for
ing di�eren
e between the model and the truesystem, as 
al
ulated at the initial 
ondition ~xk(0). For the 
onstant model, ea
h
omponent of the ve
tor Pk is equal to P 
 independent of k. The ve
tor dekm(t)dt jt=0 isthe di�eren
e between the model velo
ity and the true velo
ity on the true attra
tor,whi
h is just the velo
ity error. With the Lorenz system, velo
ity error is 
aused by,and equal to, the for
ing error Fe, sin
e the other terms are identi
al.Now, referring to Figure 3.5 and equation (3.25), the slope of the RMS error 
urveat time zero is limt!0 1tqh(ekm(t))2i = limt!0sh(ekm(t)t )2i (3.28)where ekm(t) = kekm(t)k. By (3.26) this is justqh(F ke )2i (3.29)where F ke = kFkek, and the average is taken over the K initial 
onditions on the trueattra
tor. Sin
e P 
 was 
hosen to be the mean of ~F (0) over the attra
tor, the initialrate of RMS model error growth for the 
onstant model is equal to the standarddeviation of the for
ing error, and initial model error 
an be determined dire
tlythrough the properties of the for
ing error. More generally, the initial slope of theerror 
urve is given by the velo
ity error on the true attra
tor.
3.3.2 For
ing error for the 
onstant modelThe for
ing ~F in the true system shows a mix of periodi
, quasi-periodi
 and 
haoti
behaviour for di�erent values of F , as we might expe
t from Se
tion 2. Figure 3.8 is aspe
tral bifur
ation diagram for the di�eren
e in for
ing Fe (equation 3.27) betweenthe model and the true system. Again, the analysis is for one 
omponent only ofFe; behaviour of the other 
omponents is the same by symmetry. Be
ause the model49
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Figure 3.8: Spe
tral bifur
ation diagram of for
ing error Fe for the 
onstant model.Cal
ulations are for one 
omponent only; other 
omponents are the same by sym-metry. As for model variables x, the for
ing shows a mix of periodi
 and 
haoti
behaviour.
for
ing is the mean for
ing in the true system, the average for
ing error will vanish,and the 
onstant term in the Fourier expansion is zero. Other 
omponents, however,remain un
hanged.The for
ing error again shows a mix of behaviour, and one might 
on
lude thatmodel error will depend in an irregular way on the parameter F . A
tually, this isn'tthe 
ase; for what interests us is not whether the for
ing error is 
haoti
, but merely,from 3.29, its standard deviation. This 
an of 
ourse be 
al
ulated dire
tly, but it isalso illustrative to note that, by de�nition of the power spe
trum [53℄, the sum of thepowers over all frequen
ies is just the varian
e. Therefore the sum of the spe
tra fora parti
ular F gives the for
ing error varian
e at that F . When this 
al
ulation isperformed, the 
omplexity of the bifur
ation diagram disappears, revealing a simplepattern: the almost straight line in Figure 3.9.Comparing Figures 3.9 and 3.7, we see that the standard deviation of the slopeagrees with the standard deviation of the for
ing, as expe
ted. The standard deviation(square root of the varian
e) is also plotted in Figure 3.9. Be
ause the varian
e ofthe for
ing grows approximately linearly with F , for F > 2, we 
an say that, for the
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onstant model, the velo
ity error as expressed by the slope of the error 
urve neartime zero tends to in
rease with the square root of F . This is a result that wouldn'tbe obvious by perusal of the for
ing error spe
tral bifur
ation diagram, Figure 3.8.
3.3.3 ShadowingAn important test of a model is that it be 
apable of shadowing the true system fora spe
i�ed predi
tion period. Various 
losely related de�nitions of shadowing existin the literature. The main one is �-shadowing from the Anosov-Bowen shadowinglemma [2, 5℄. A 
on
ern in modelling 
haoti
 systems is that, due to sensitivityof initial 
onditions, a numeri
al solution may rapidly diverge from the true systemtraje
tory. The shadowing lemma proves that, given 
ertain restri
tions on the systemsu
h as uniform hyperboli
ity and invertibility, there at least exists a true solution,starting from a slightly displa
ed initial 
ondition, whi
h �-shadows the numeri
altraje
tory. To take just the de�nition of �-shadowing from the lemma, it is as follows:given � � 0, a series of dis
rete times ti with a � ti � b, and a numeri
ally generatedmodel orbit p(ti), then a system traje
tory s(ti) �-shadows p(ti) ifks(ti)� p(ti)k � � (3.30)for every a � ti � b.Note that the shadowing lemma itself addresses a di�erent problem to the onethat we wish to solve: it states that a true traje
tory shadows a numeri
al model51



traje
tory, while we wish to do the opposite, namely determine whether model tra-je
tories shadow the true orbit. The lemma also assumes that we know the truesystem traje
tory, whi
h isn't the 
ase when the system is the atmosphere.A distin
t shadowing problem was phrased in [23℄ to address the more pra
ti
alquestion of modelling a system whi
h is only known through a series of observations,ea
h with observational un
ertainty. This led to the de�nition of �-shadowing: amodel is said to �-shadow the observed system for a time � at radius r if it stayswithin a radius r of the observed time series over that time. Further, the model issaid to be 
onsistent with the observations if it �-shadows with the shadow toleran
e� equal to the observational un
ertainty (this 
an also be phrased using a Gaussianobservational un
ertainty).The de�nition we will use in this thesis is the same as �-shadowing, with thesole di�eren
e that we treat the shadow toleran
e as a variable that is set indepen-dently, rather than derived from some error distribution (we dis
uss observation errorseparately). We therefore have the following de�nitions.De�nition: Given a true orbit ~x, and shadow radius rs, we say that a modelorbit x shadows ~x for a time � , if� = sup(ts : kx(t)� ~x(t)k � rs 8 0 � t � ts): (3.31)Su
h a model orbit is 
alled a shadow orbit. There is also a 
orresponding de�nitionfor dis
rete time series ti.De�nition: Given a true traje
tory, starting from a spe
i�ed initial 
ondition,and a shadow radius rs, the shadow time of the model for that initial 
ondition is themaximal time � for whi
h a model traje
tory shadows the true traje
tory within thespe
i�ed radius. More loosely, when shadowing is simulated numeri
ally, the shadowtime is the longest time found by the numeri
al te
hnique. Whi
h of these de�nitionsapply will be 
lear from the 
ontext.Figure 3.10 is a s
hemati
 diagram whi
h illustrates the de�nition of a shadoworbit. The true traje
tory is shown as a solid line starting at x0. The tube of radiusrs is shown as a shaded region. The model shadow orbit, the grey line starting froms0, stays within the tube for a time � . The model traje
tory starting at x0, however,shadows a shorter time.The shadowing pro
ess depends on an interplay between model and displa
ementerror, and for this reason is a ne
essary, rather than suÆ
ient, 
ondition for a goodmodel. For example, if the model is suÆ
iently sensitive to displa
ement, it may bepossible to �nd a perturbed initial 
ondition whi
h o�sets a large model error for a
52



Figure 3.10: S
hemati
 diagram showing true orbit (bla
k line starting from x0) withmodel shadow orbit (grey line starting from s0). The model shadows for a time � . Amodel traje
tory starting at x0, whi
h shadows a shorter time, is also shown.
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Figure 3.11: Plot of x1 for a typi
al 
onstant model shadowing orbit. The shadowingradius is 0.4. The orbit 
eases to shadow at t = 0:5 (note the radius is over all
omponents of x, not just x1).

ertain time; however the majority of initial 
onditions will most likely diverge qui
klyfrom truth (a badly 
ontrolled shot gun may hit its target, but only by spraying pelletsin every dire
tion). Therefore it would be unsafe to 
on
lude that the model is a goodapproximation to the real system - it may be, or it may not.An example of a shadowing orbit for the 
onstant model is shown in Figure 3.11(a longer one, for an improved model, is Figure 3.22). It was 
omputed by an opti-misation routine whi
h sear
hes over the possible perturbed initial 
onditions withina radius rs, here 0.4, for the one with the longest shadowing time. The shadowing
apabilities of a model depend on the parti
ular initial 
ondition. A histogram of theresults over 200 points is shown in 3.12.Figure 3.13 shows average shadowing times for the 
onstant model, evaluated atinteger values of F . The shadowing radius rs has been s
aled with F , in order thatit stays in proportion with the size of the attra
tor. Two sets of results are shown,with the s
aled radius rs = 0:2 for F = 10, and rs = 0:4 for F = 10. From thedi�eren
e between the two radii, there appears to be a roughly linear relationshipbetween shadowing radius and mean shadowing times.One might also expe
t a relationship between initial state spa
e velo
ity error,as 
omputed from the for
ing error, and shadowing times. Figure 3.14 shows thetotal RMS for
ing error a

umulated over the average shadow time, normalised toshadowing radius. It is 
al
ulated by taking the standard deviation of the for
ing
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ing errors for the 
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error, multiplying by the shadow time, and dividing by the shadowing radius rs. Theresult is a dimensionless number. For this model, the numbers are fairly 
onstant atabout 2 over a range of for
ing. It therefore appears that, for the 
onstant model,shadow times vary inversely with initial model error and linearly with shadowingradius. Sin
e initial model error depends on the square root of F for this model, we
an also say that shadowing times vary inversely with the square root of F .Of 
ourse, these simple, empiri
ally dedu
ed relationships between shadow time,shadow radius and initial model error won't ne
essarily generalise to other model/systempairs. In the next se
tion we will go on to look at more sophisti
ated models whi
hwill redu
e for
ing error, and therefore lead to improved shadowing times. We willalso re�ne our te
hnique of 
al
ulating total for
ing error so that it holds for thesemore general 
ases.
3.4 An improved model - the linear modelThere are many di�erent ways that one 
ould go about re�ning the 
onstant model sothat it better approximates the true system, but in this 
hapter we shall look at justtwo further models: a simple model that makes the for
ing a fun
tion of the lo
al xivariables, and a more sophisti
ated approa
h whi
h utilises the fa
t that the systemexists on a low-dimensional attra
tor. In Chapter 5 we will also look at two modelsdesigned to reprodu
e the general `
limatologi
al' behaviour.
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One of the �rst things to be noted about the true system in Se
tion 2 was thatthe magnitude of the ~yi;j variables tends to be greater in regions where the lo
al ~xivariable is also larger (see for example Figure 2.3). It is therefore reasonable to lookfor a 
onne
tion between the lo
al ~xi 
omponent and the for
ing ~Fi experien
ed bythat 
omponent, whi
h depends on the lo
al ~yi;j's. This is shown more 
learly byFigure 3.15, whi
h is a plot of pairs (~xi; ~Fi) where ~xi is the value of a parti
ular ~x
omponent and ~Fi = F � h
b mXj=1 ~yi;j (3.32)

is the lo
al for
ing. There is a de�nite linear tenden
y to the data, whi
h 
an be �tusing linear regression, leading to a formulaPli(~xi) = �0 + �1~xi: (3.33)We 
an then de�ne a new modeldxidt = xi�1(xi+1 � xi�2)� xi + P li (xi) linear model (3.34)and apply our various tests of model error. The 
onstant �0 and slope �1 must be
al
ulated for ea
h value of F . Figure 3.16 shows how they vary as a fun
tion of F .There is a peak around F = 1:3 when the ~y variables be
ome non-zero, but apartfrom that they are fairly 
onstant.
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tionof F . The spike around F = 1:3 o

urs when the ~y variables be
ome non-zero.
3.4.1 For
ing error for the linear modelFigure 3.17 shows model error for the linear model for F = 10, along with initial
ondition displa
ement error. The errors are 
al
ulated in the same RMS manneras was used for the 
onstant model errors in Figure 3.4. Figure 3.18 is a 
lose-upof initial model error near time zero, 
ompared with model error for the 
onstantmodel. The model error slope is lower for the new model, and error doesn't grow atas 
onstant a rate (the growth 
urve has negative 
urvature). The standard deviationof for
ing error, whi
h gives the error slope at time zero, is shown in Figure 3.19 as afun
tion of F . The graph is obtained as follows: at ea
h value of F , the true systemfor
ing is determined, the 
orre
t values of 
onstant �0 and slope �1 are determinedby linear regression, the linear system for
ing is subtra
ted from the true for
ing, andthe standard deviation of the result is then 
al
ulated by sampling over the attra
tor.When 
ompared with the 
onstant model for
ing errors, we see an improvement ofslightly more than 50 per
ent.
3.4.2 Shadowing for the linear modelIf for
ing error is a good measure of model quality, then one might expe
t that a50 per
ent improvement in for
ing error would translate into a similiar improvementin shadowing times. In fa
t, the improvement is 
onsiderably greater. Figure 3.21shows the shadowing results where the shadowing radius is 0.2 and 0.4 at F = 10,
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and s
aled for other values of F as before. At F = 10, for example, the 0.4 radiusshadowing times have been improved by a fa
tor of more than 4. Figure 3.22 is ashadow orbit for F = 10, whi
h 
ompares with Figure 3.11. The parti
ular shadowtime here is 2.49 as opposed to 0.5 for the 
onstant model 
ase. A histogram of theresults over 200 points is shown in Figure 3.20.The reason for this dramati
 in
rease in shadowing ability is that the for
ing errorgives the initial slope of the model error, but for the linear model the slope of theerror 
urve de
reases with time. In order to get a better measure of for
ing error overthe shadow period, we must take into a

ount the fa
t that it in
reases nonlinearlywith time.
3.5 The integrated for
ing error - a spe
tral ap-proa
hThe for
ing error 
ontains power over a range of frequen
ies. However, the 
on-tribution to error em(t) of the model relative to the system over a 
ertain time � isfrequen
y dependent, sin
e higher frequen
ies will tend to 
an
el themselves out. Thede�nition of whi
h frequen
ies are high and low will depend on the referen
e time � .In terms of the linearised model error dynami
s, equation 3.18, we 
ould say that themodel error after a time � depends on the ve
tor integral of the velo
ity error, not
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just its initial value.We therefore need a way to 
ompute the total for
ing error as a fun
tion of time.One way to do this, given a spe
i�
 time � , is to 
al
ulate the integral of the for
ingerror along a number of segments of the true attra
tor, all of whi
h have length � ,and then derive the standard deviation of the resulting integral. This will be thestandard deviation of the total for
ing error experien
ed over that time, and is theapproa
h we will adopt in the next 
hapter.Another method, whi
h is instru
tive and aids interpretation of general 
lassesof error, is to use a power spe
trum approa
h. For the 
onstant model, we summedthe terms of the for
ing error power spe
trum to get the varian
e. Sin
e the for
ingerror in
reased linearly with time, multiplying by a time � gave the varian
e of theintegrated for
ing error over that time (see Figure 3.14). We 
an do something similarin the nonlinear 
ase, by 
orre
tly weighting ea
h term of the spe
trum to re
e
t its
ontribution to the integral. This will allow us to obtain the integrated for
ing errorfrom the for
ing error spe
trum, but, more importantly, will show whi
h terms in thespe
trum 
ontribute most to model error.The 
orre
t weighting for ea
h term in the power spe
trum is determined by
onsidering the 
ontribution of the 
orresponding sine wave to the total for
ing errorintegral. The 
onstant term p0 will integrate over a time � to p0� . However the powerp! at frequen
y ! 
orresponds to a 
osine wave of the form 
os(!t+ �), where � is a
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parti
ular angle at time zero. The integral of the wave over the shadowing time isZ �0 
os(!t+ �)dt = 1! (sin(!� + �)� sin(�)) (3.35)The 
orre
t weighting for this term of the power expansion, whi
h is the square ofthe Fourier 
oeÆ
ient, is therefore1� 1!2 h(sin(!� + �)� sin(�))2i (3.36)where the expe
tation is over all initial angles �. The resulting weight is

W (!; �) = 4(!�)2 sin2(!�2 ): (3.37)
Figure 3.23 shows a plot of the weighting fun
tion W for � = 2�. It is 1.0 for frequen
yzero, and e�e
tively 
uts o� powers with 
orresponding periods smaller than 2�=� .The impli
ation is that only for
ing error frequen
ies with periods greater than 2�=�will 
ontribute signi�
antly to total for
ing error, and therefore to expe
ted shadowingtimes (subje
t to the 
aveat that the magnitudes of high frequen
y spe
tra are small
ompared to the shadowing radius rs: even high frequen
ies will prevent the systemfrom shadowing if the resulting os
illations are larger than the shadow radius).In Figure 3.24 the total for
ing error experien
ed by a typi
al shadow orbit forthe linear model is shown. Shadow radius rs is 0.2 and 0.4 at F = 10, and s
aled atother values. The results have again been normalised by dividing by the shadowing63
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radius rs, and the numbers are again near 2, ex
ept at higher values of for
ing. Therelationship is less exa
t than it was for the 
onstant model, but it seems fair to saythat the main reason the linear model shadows so mu
h better than the 
onstantmodel is be
ause it redu
es the low frequen
y for
ing error.This is indi
ated more 
learly in Figure 3.25, whi
h is a plot of the for
ing errorfor the two systems. For
ing error for the 
onstant model is equal to the true systemfor
ing, minus the 
onstant term at zero frequen
y (the 
onstant model for
ing doesn'tvary with time). The linear model, however, redu
es the low frequen
y spe
tra upto a frequen
y of about 3.0, while leaving the higher frequen
ies un
hanged. We
on
lude that, at least in this example, the key to improving shadowing is to redu
ethe low frequen
y for
ing error. The improvement in shadowing 
an be large, even ifthe redu
tion in total for
ing error is modest.If the for
ing error has a white noise spe
trum, so there is equal power at ea
hfrequen
y, then the integral of the for
ing error will in
rease with the square root oftime, as for a random walk [11℄. Another way to interpret the su

ess of the linearmodel over the 
onstant model is therefore to say that its power spe
trum is less `red'.This will be of interest in Chapter 6 when we 
ome to look at weather models, whereerrors have in the past been modelled as white or red noise.
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3.6 A lo
al linear predi
tor modelA more sophisti
ated approa
h to modelling the true system is to take advantage ofthe fa
t that the true system for
ing may exist on a low dimensional attra
tor. Two
ases were examined, the normal system with F = 10, and a modi�ed system wherethe 
oeÆ
ient 
 whi
h determines the 
oupling between the ~x and ~y variables is setto a higher value of 1.2 and F is redu
ed to 2, as was done in Figure 2.15.
3.6.1 Predi
tor model at low for
ing and high 
ouplingReferring to the bifur
ation diagram Figure 2.13 and the system traje
tories in Figure2.15 for 
oupling 
oeÆ
ient 1.2 and for
ing 2, we see that the two-level system withthese parameter values is in a quasi-periodi
 state. If we attempt to model thissystem with the 
onstant or linear models, we run into the problem that at the lowlevel of for
ing these systems are periodi
 and have either the wrong amplitude or thewrong frequen
y (or both). Figure 3.26 shows the best mat
hes that we 
ould �ndby varying the parameters. The 
onstant model has P 
 = 1:5, while the linear modelhas 
onstant term �0 = 1:8 and slope �1 = �0:2. Neither of them shadow for theinitial 
ondition shown as long as 3 time units.Figure 3.27 is a plot of lo
al for
ing ~Fi vs ~xi for the true system, and 
an be
ompared with Figure 3.15. The linear model uses the information in the �gure bydrawing a straight line through the data and deriving a relationship between ~xi andthe lo
al for
ing ~Fi. However for this system it is possible to do mu
h better, be
ause
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the for
ing exists on a low-dimensional attra
tor: in this 
ase, a quasi-periodi
 orbit.If we spe
ify all the ~xi's then we 
an determine the for
ing to arbitrary a

ura
y.The te
hnique used to do this is lo
al linear predi
tion [61℄. The �rst step is to
onstru
t a learning set, 
onsisting of points ~x on the attra
tor of the true system(proje
ted into model spa
e) and 
orresponding lo
al for
ing values. The learning setis built in
rementally. For ea
h new ~x, the existing learning set is used to predi
tthe for
ing. If the predi
tion fails to land within a pres
ribed toleran
e of the truefor
ing, the point is added to the learning set. Predi
tions are made using the lo
allinear method: nearest neighbours to the point in question are sele
ted and a linearinterpolation performed to estimate the 
orresponding for
ing. The number of nearestneighbours used is variable, but here was set to 16. Should the for
ing exist on a lowdimensional attra
tor, the pro
ess will almost 
ertainly 
onverge so that the learningset e�e
tively spans the attra
tor in an eÆ
ient way.Figure 3.28 is a plot of the learning set as ~x2 versus ~x1, whi
h 
an be 
omparedwith the orbit in Figure 2.15(a). Figure 3.29 is (~xi; ~Fi) pairs, whi
h 
ompares withFigure 3.27. We see that the learning set just 
onsists of points distributed fairlyregularly over the quasi-periodi
 attra
tor.On
e a learning set has been 
onstru
ted, we 
an de�ne a predi
tor fun
tion P pi (x)as follows: given a ve
tor x, look up the nearest neighbours in the learning set. Ea
hof those points has an asso
iated for
ing. Perform a linear interpolation to give the
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predi
ted for
ing for the new point. We thus arrive at the modeldxidt = xi�1(xi+1 � xi�2)� xi + P pi (x) predi
tor model: (3.38)Shadowing results for this system are ex
ellent, as we would expe
t. The shadow-ing orbit in Figure 3.26 for the predi
tor model is nearly indistinguishable from thetrue system, and appears to follow the true quasi-periodi
 orbit inde�nitely.
3.6.2 Predi
tor model at high for
ing and regular 
ouplingThe lo
al linear predi
tor method was applied to model the true system with thenormal 
oupling 
oeÆ
ient of 1.0, and F = 10. The predi
tion ability of the lo
allinear method doesn't 
onverge as well as for the previous 
ase, so with a learning setof 4096 points the varian
e of the for
ing error is about 0.6, whi
h is the same a
hievedby the 
onstant model. Mu
h of the varian
e, however, is in higher frequen
ies, whi
hhave redu
ed e�e
t on shadowing times. Figure 3.30 shows the model error 
urve
ompared with the other systems. The slope at time zero is the same as for the
onstant model, due to the high frequen
y varian
e, but the 
urve soon 
attens outand the slope be
omes 
loser to that of the linear model. We would therefore expe
tshadow results to be somewhere between the results for the other two models, i.e. ina range [0.23,0.8℄ at a shadowing radius of 0.2, and [0.5,1.9℄ for shadowing radius 0.4.It is possible to improve this estimate by plotting the integrated for
ing error as afun
tion of time, whi
h is done in Figure 3.31 for all three systems. As expe
ted, the
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tor model in early stages, 
ompared with 
onstantand linear models.
predi
tor model a

umulates for
ing error over a shadowing orbit at a rate somewherebetween the two other models. Also shown are lines joining the points where the
onstant and linear models fail to shadow at shadowing radius 0.2 and 0.4. From thisgraph we would expe
t the predi
tor model to shadow for about 0.55 time units atshadow radius 0.2 and 1.2 time units at shadow radius 0.4.A
tual shadowing 
al
ulations give shadow times of 0.65 time units at radius 0.2and 1.3 time units at radius 0.4. These are in the right range, and show that thefor
ing error 
urves give a good indi
ation of shadowing times, even though the modelsbeing 
ompared are quite di�erent. For
ing error has the advantage of being mu
hfaster to 
al
ulate than expli
it shadow orbits, whi
h 
an be a fa
tor for 
omplexmodels su
h as real atmospheri
 models.
3.7 SummaryIn this 
hapter we have investigated model error from a mostly empiri
al point ofview, using the Lorenz system and its various models to explore issues su
h as ve-lo
ity error, displa
ement error, and shadowing. The prin
ipal �nding has been thatshort to medium range predi
tability, as measured by shadowing times, depends to alarge extent on integrated for
ing error, whi
h in turn depends on the for
ing errorfrequen
y spe
trum. For the 
onstant model, the integrated for
ing error in
reasesroughly linearly with time, at a rate determined by the square root of the for
ing. The
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fa
t that this holds despite the 
omplexity of the for
ing error's spe
tral bifur
ationdiagram is an unanti
ipated emergent property of the model.One way to view the for
ing error is like the tiller of a boat. If the tiller is held�rst too far to one side, then too far to the other, but with frequent 
orre
tions - asin high frequen
y for
ing error - then the boat will tend to stay on the right path.If, however, the tiller is held too long to one side before 
orre
ting - as is the 
asewith low frequen
y for
ing error - then the boat will drift far o� 
ourse. This is the
ase even if the average error over all time is zero. The 
onstant Lorenz model haszero average for
ing error, but still gives signi�
ant short to medium range predi
tionerrors. It therefore seems possible that a weather model whi
h also has zero averagefor
ing error, and produ
es long term fore
asts in balan
e with the 
limatology, maystill fail in the short term.Be
ause of the important role of low frequen
y velo
ity error, any 
hange to themodel whi
h addresses this will improve performan
e. It was shown with the lin-ear model that relatively minor improvements in parameterisation, whi
h su

eedin redu
ing low frequen
y velo
ity error, 
an have an ampli�ed e�e
t on shadowingtimes.While shadowing times for the 
onstant model varied almost linearly with shadowradius and velo
ity error, the relationship was less 
lear 
ut for the linear model. Itappears that velo
ity error in itself is not suÆ
ient to predi
t shadow times. Sin
e
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shadowing is the result of an interplay between initial 
ondition error and model error,this isn't surprising.In the next 
hapter, we will 
hange our approa
h from an experimental one -looking from the outside in - to a more detailed one, where we analyse the 
ombineddynami
s of model and initial 
ondition error. In doing so, we develop a more sophis-ti
ated way to estimate shadowing times, whi
h will be appli
able to any dynami
almodel of any system.
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Chapter 4
Linearised dynami
s and the
shadow law
For the Lorenz '96 systems, it was found that shadowing times depended largelyon the velo
ity error of the model relative to the true system. In general, though,shadowing performan
e will also depend on other 
hara
teristi
s of the model. Ine�e
t, there is a trade o� between displa
ement error and model error, and a shadoworbit 
an loosely be viewed as one whi
h su

eeds in o�setting the e�e
t of modelerror by a good 
hoi
e of initial displa
ement.In this 
hapter we will further investigate these two types of error, and study howthey intera
t. Our �rst aim is to develop a robust measure of model error, motivatedby the results of the previous 
hapter. By 
onsidering the linearised dynami
s, wedevelop a hierar
hy of te
hniques for estimating shadow times, without the need toprodu
e expli
it shadow orbits. A shadow law, whi
h gives a lower bound on shadowradius in terms of the model error, is derived. The methods are tested on a variety ofsystems, as preparation for the appli
ation to weather models in Chapter 6. Finally,we use the insights gained to propose fast methods of produ
ing shadow orbits.One of the main goals of this thesis is to quantify the e�e
t of model error onshadow times. When we 
onsider the 
omplexity of a typi
al shadowing orbit, it mightseem unlikely that shadow times 
an easily be predi
ted just from some measure ofmodel error, without a
tually sear
hing for shadow orbits as was done in Chapter3. For example, Figure 4.1 is another view of the shadow orbit for the linear modelshown previously in Figure 3.22. It is an attempt to pi
ture what is going on in8 dimensional spa
e. The displa
ement ve
tors have �rst been proje
ted onto thehyper-plane normal to the true orbit. The radius of ea
h point is then 
al
ulated as
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Figure 4.1: Shadowing orbit for linear model, in polar 
oordinates with radius thedispla
ement from true orbit, and angle with respe
t to initial o�set. The 
ir
le ofradius 0.4 represents the shadowing radius. The shadow orbit starts near the extremeradius 0.4 on the right hand side, then exits on the upper left hand side after 2.49time units.
the displa
ement of the shadow orbit from truth, while the angle is the angle of thedispla
ement at that time with the original displa
ement. The shadow orbit startsnear the extreme radius 0.4 on the right hand side, then exits on the left hand sideafter 2.49 time units. (As an aside, if we 
ould sear
h for the longest shadowing orbitover all possible starting points, it would always start near the outer radius. Thisis be
ause, if the longest orbit started at some other radius, then we 
ould run timeba
kwards until the orbit exited. Using the exit point as an initial 
ondition wouldthen produ
e a longer orbit, 
ontradi
ting our assumption that the original orbit waslongest.)It is 
lear from Figure 4.1 that the ability of a model to shadow will dependnot only on model error, but on a 
omplex intera
tion between model error anddispla
ement error. A model with large sensitivity to initial 
ondition, for example,may stand a better 
han
e of produ
ing an orbit that shadows, simply be
ause nearbyorbits tend to diverge out in all dire
tions (the ma
hine gun analogy). A model's
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sensitivity to initial 
onditions need not be a bad thing if it is shared by the realsystem, but the point is that an estimate of shadow times based on model error alone
ouldn't take this e�e
t into a

ount.A theme of this thesis (and other studies of 
omplex systems), though, is that thesystems are sometimes more 
ompli
ated in the details than in their overall behaviour.For that reason, as well as the results of Chapter 3, there are grounds for optimismthat even 
ompli
ated shadow traje
tories 
an, at least in an average sense, show
ertain predi
table properties. We begin the sear
h for su
h properties, though, by
onsidering, not ma
ros
opi
 behaviour, but what one might 
onsider the opposite:the linearised dynami
s of error evolution.
4.1 The linearised dynami
sIt was found in the previous 
hapter that a useful indi
ator of shadowing ability wasthe integrated velo
ity error, whi
h was 
al
ulated by linearising the model errorand integrating. Motivated by that result, we now apply the same te
hnique to theintera
tion between displa
ement error and model error, by linearising both types oferror around the true orbit. The following theorem states that, even in the presen
e ofmodel error, the evolution of errors 
an be approximated by the linearised dynami
s.Theorem. Let ~x(t) be a solution of the system equationd~xdt = ~G(~x); (4.1)and let x(t) be a solution of the model equationdxdt = G(x); (4.2)
where ~G and G are C1. If the true system and the model system exist in separatespa
es, then as before we impli
itly assume the existen
e of a proje
tion operatortaking the true system into the model system spa
e, but omit it from the equationsbelow for 
larity. De�ne e(t) = x(t)�~x(t), Ge(~x(t)) = G(~x(t))� ~G(~x(t)). The linearpropagator of the model around the true orbit isM(t) = eR t0 J(~x(t))dt; (4.3)where J is the Ja
obian of G. We also de�ne the propagator from time s to time t asMs(t) = eR ts J(~x(t))dt: (4.4)
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Then given a referen
e time � > 0, and � > 0, there exists a radius r > 0 su
h that,if ke(t)k < r for all t 2 [0; � ℄, then
ke(t)�M(t)e(0)� Z t0 Ms(t)Ge(~x(t))dtk < � 8t 2 [0; � ℄: (4.5)Proof. From the system equations, we 
an writededt = dxdt � d~xdt= G(x(t))� ~G(~x(t))= G(x(t))�G(~x(t)) +Ge(~x(t))= G(~x(t) + e(t))�G(~x(t)) +Ge(~x(t)): (4.6)Performing a Taylor expansion of G around ~x(t), and retaining only the zero and�rst order term, we obtaindedt = J(~x(t)) � e(t) +Ge(~x(t)) +R(t) (4.7)where the remainder term R(t) is O(ke(t)k2). Therefore, 9rt > 0 3 ke(t)k < rt=) kRd(t)k < �� . Pi
k r to be the minimum su
h rt (possible sin
e [0; � ℄ is a
ompa
t set). Integrating from 0 to t for 0 < t � � then gives [48℄
e(t) =M(t)e(0) + Z t0 Ms(t)Ge(~x(t))dt+ Z t0 R(t)dt; (4.8)and ke(t)�M(t)e(0)� Z t0 Ms(t)Ge(~x(t))dtk = k Z t0 R(t)dtk < �� t � � (4.9)whi
h proves the result.NowZ t0 Ms(t)Ge(~x(t))dt = Z t0 Ge(~x(t))dt+ Z t0 (I�Ms(t))Ge(~x(t))dt: (4.10)Let d(t) = Z t0 Ge(~x(t))dt: (4.11)Sin
e the linear propagator approa
hes the identity matrix as time (or shadow radius)goes to zero, it is easily seen that the termZ t0 (I�Ms(t))Ge(~x(t))dt (4.12)is O(r2), and a
ts as a relatively small perturbation on d(t). We will therefore negle
tthis higher order term, but return to estimate it for weather models in Chapter 6.75



Therefore the evolution of the error e(t) 
an be approximated by the lineariseddynami
s e(t) � y(t) + d(t): (4.13)where y(t) =M(t)e(0): (4.14)Note the approximation only holds for model orbits x(t) whi
h remain within thetoleran
e r of the referen
e traje
tory ~x(t). In other words, it only holds for orbitswhi
h shadow at that radius. The size of the radius will depend on the system, themodel, and the allowed error �.Note also that the linear propagatorM(t) is now 
al
ulated along the true traje
-tory ~x(t), rather than the model traje
tory. It 
an determined by dire
tly integratingthe model Ja
obian along the true orbit, but this is a lengthy pro
edure. A 
ommonlyused alternative is to estimate the linear propagator by 
omputing the traje
tories of(n+1) (or more) slightly displa
ed orbits. In this 
ase, though, the te
hnique 
annotbe applied dire
tly sin
e the orbits will be in
orre
t. A way round this problem is to
onsider the modi�ed system dxdt = G(x(t))�Ge(~x(t)) (4.15)where ~x(t) is the true orbit whi
h we are trying to shadow. The fun
tion Ge(~x(t)) isa fun
tion only of t, and the Ja
obian of G�Ge is exa
tly the same as the Ja
obianJ of G. However the modi�ed system 4.15 also has the property that ~x is a solution.Therefore the linear propagator for this system, evaluated on the ~x orbit, is theintegral of the Ja
obian over that orbit, as required.Sin
e G and ~G spe
ify the state spa
e velo
ities of the model and true systemrespe
tively, the fun
tion Ge is just the velo
ity error. The ve
tor d(t) in 4.11 istherefore the integral of the velo
ity error along the true orbit, and has the dimensionof distan
e. Setting e(0) equal to the zero ve
tor in (4.13), we havee(t) � d(t) (4.16)so d(t) is the approximate displa
ement of a model solution, whi
h is started on thetrue initial 
ondition, from the true solution after a time t. De�ne the lo
al modeldrift after a time t to be d(t) = kd(t)k (4.17)(the drift is of 
ourse also dependent on the true orbit ~x whi
h is taken as set). Themodel drift is then a good indi
ator of the model's predi
tive 
apa
ity: the smaller76
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Figure 4.2: Fore
ast errors for Lorenz model/system, x1 
omponent. As in Figure3.2, a number of short term model fore
asts were initiated at regular intervals alonga true traje
tory. The errors have here been s
aled by a fa
tor 10. The total errormagnitude over all xi is also shown, again s
aled by a fa
tor 10. Be
ause it 
ontainsall 
omponents, it is larger than the x1 error. The drift, also shown s
aled by afa
tor 10, is the ve
tor sum of the total velo
ity errors. The almost linear in
reaseup to t = 0:6 indi
ates that the error ve
tors are a

umulating, and are therefore ina similar dire
tion. Above t = 0:6, however, the drift begins to redu
e be
ause thevelo
ity error has rotated away from its original orientation, and proje
ts negativelyonto the drift.
the drift d(t), the better the predi
tion of the true system's position after the elapsedtime t. In the Lorenz '96 systems, velo
ity error on the true orbit is due entirely tofor
ing error, so for those systems the drift is the same as integrated for
ing error.Figure 3.2 in Chapter 3 showed the velo
ity errors for the Lorenz system. Figure4.2 is similar, but the s
aling of the errors has been redu
ed from 20 to 10, and thedrift, whi
h is the ve
tor integral of the velo
ity errors, is also shown. Be
ause thedrift is state dependent, it is not ne
essarily systemati
 over long periods, but it maytend to a

umulate in the short to medium term. In the �gure, the drift in
reasessteadily at �rst, whi
h one would expe
t if the velo
ity errors were in roughly thesame dire
tion. Above t = 0:6, however, the drift begins to redu
e, implying that thevelo
ity error has now rotated so that its dot produ
t with the drift is negative.
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4.2 Model error vs initial 
ondition error (
ontin-ued)The linearised dynami
s provide a 
on
eptual framework whi
h helps to separate outthe respe
tive roles in the shadow pro
ess of model error and initial 
ondition error,and in the next se
tion this framework is used to develop a te
hnique for estimatingshadow times. First, though, it is worth 
larifying the fa
t that these two formsof error, due to the model and displa
ement, need bear no spe
ial relation to ea
hother: the latter is a property of the model alone, while the former depends also onthe true system. For example, suppose that, after a given time � , we 
al
ulate theleading singular ve
tors of the model's linear propagator, whi
h de�ne the dire
tionof displa
ement whi
h gives largest growth at time � . These dire
tions will dependpurely on the model, regardless of the true system. The drift ve
tor d(t), however, is ameasure of the di�eren
e between the model and the true system. There is no reasonfor it to be aligned, or not, with the leading singular ve
tors. As a 
onsequen
e, anensemble of initial 
onditions, formed by perturbing in the dire
tions of the leadingsingular ve
tors (as is done at ECMWF), need not o�set model error.For example, Figure 4.3 shows errors of the 
onstant model relative to the two levelLorenz system (
ompare also Figure 3.4). In the upper panel, perturbations of size0.2 are added to the model initial 
ondition in the positive and negative dire
tions ofthe leading singular ve
tor, to form a two-member ensemble. Relative to the model,these perturbations have grown at time 0.34 by about a fa
tor 5.0. Also shown in theba
kground is the density of errors found by randomly perturbing the initial 
onditionby an amount 0.2 and taking a histogram of the resulting errors over 1000 runs. Thesingular ve
tor perturbations give maximum displa
ement for t = 0:34, as expe
tedby 
onstru
tion, but not for higher times.In the lower panels, where errors are shown relative to truth, the situation is verydi�erent. The errors are larger than for the previous 
ase, so if ensemble spread ismeasured relative to truth it will be larger than if measured relative to the model
ontrol. Also, neither singular ve
tor perturbation e�e
tively o�sets model error,
ompared to the random displa
ements. The negative perturbation nearly 
apturesthe maximum error, but other random displa
ements do slightly better: the `worst-
ase' displa
ement now depends on the drift ve
tor.This �gure is a graphi
 illustration of two fa
ts whi
h must be taken into a

ountwhen model error is signi�
ant. Firstly, spread will appear smaller if measured with
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respe
t to the model than to truth. Se
ondly, no member of the ensemble needsu

eed in 
ountera
ting the e�e
t of model error.Figure 4.4 is a s
hemati
 diagram showing how model error 
an distort an ensembleand a�e
t the spread. The initial perturbations v+ and v�, aligned with the leadingsingular ve
tor, evolve to u+m and u�m under the model dynami
s, but to u+t and u�tunder the true dynami
s. The angle �t therefore shrinks, and the ve
tors u+t andu�t are no longer approximately anti-parallel. Sin
e the evolved perturbations withrespe
t to truth are larger than those with respe
t to the model, the model spread isexpe
ted to be smaller than the true spread.A similar e�e
t 
an be seen in 4.5, whi
h shows the 
osine of the angle en
losedby the positive and negative perturbations for the 
onstant model. At initial timethe 
osine angle is -1, indi
ating that the perturbations are anti-parallel. For timesup to about t = 0:6 the perturbations taken with respe
t to the model remain nearlyanti-parallel, but with respe
t to truth the 
osine angle a
tually be
ome positive.This implies that both perturbations have e�e
tively 
rossed over to the same sideof the true orbit, not a desirable property if the ensemble is supposed to en
ompasstruth [23℄.A good `sanity test' for any ensemble, therefore, is to take dot produ
ts of pertur-bations in this manner, and follow their evolution with time. This was done in detailfor the ECMWF models by Gilmour [23℄, [24℄, with the di�eren
e that perturba-tions were measured relative to the model 
ontrol itself, as oppposed to the observedweather, so model error wasn't a fa
tor. It was found that the test fails anyway dueto nonlinearity of the model - a separate problem.
4.3 The shadow estimation te
hnique (SET)Be
ause the linearised dynami
s model the evolution of small errors around a truetraje
tory, they 
an be used to model the shadowing pro
ess. In this se
tion, wedevelop a hierar
hy of tests whi
h allow the determination of approximate shadowtimes for a given model/system pair.Referring to equation 4.14 of the linearised dynami
s, we 
an write the linearpropagator matrix in its singular value de
omposition (SVD) form [25℄ asM(t) = U(t)�(t)VT (t): (4.18)If M is an n by n matrix, then U and V are matri
es of the same dimension withorthonormal 
olumns, while� is a diagonal matrix with positive diagonal entries. The79
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Figure 4.3: Error growth of perturbed initial 
onditions for the one level model. In theupper panel, errors are relative to the unperturbed model 
ontrol. The ba
kground
ontours show error growth for 1000 random perturbations of magnitude 0.2, whilethe dashed and dotted lines show the perturbations in the positive and negativedire
tions of the leading singular ve
tor. The optimisation time for the singularve
tor 
al
ulation is 0.34; perturbations in these dire
tions give maximum growthat that time. The middle panel shows errors relative to a traje
tory of the two levelsystem, and therefore in
lude the e�e
t of model error. The error of the model 
ontrolis also shown. The lower panel is a zoom of the middle panel near initial time. Notethe e�e
t of model error on the ensemble, and the fa
t that no ensemble membero�sets model error over the optimisation time.
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Figure 4.4: S
hemati
 diagram showing how the angle between the positive andnegative perturbations in an ensemble 
an shrink when taken with respe
t to truth(�t) as opposed to the model (�m). See also [23℄, [24℄.
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osine angle) of the positive and negativesingular ve
tor perturbations for the Lorenz model/system, with respe
t to the truesystem (dashed line) and the model (solid line).
linear propagator maps the i'th 
olumn vi of V to the i'th 
olumn ui of U multipliedby the i'th diagonal entry �i of �. Hyperspheres in the spa
e of V 
olumns aretherefore mapped to ellipsoids in the spa
e ofU 
olumns, where ea
h axis is multipliedby a fa
tor �i.Referring to equation (4.14), it therefore follows that if the initial 
ondition lieswithin a ball of radius rs about ~x(0), then after an elapsed time t the point y(t) willsatisfy the ellipsoid equation nXi=1 (y(t) � ui(t))2�i(t)2 < r2s (4.19)
where y(t) � ui(t) is the proje
tion of y(t) onto the i'th basis ve
tor given by the
olumns of U(t). From equation (4.11), this is the same asnXi=1 ((e(t)� d(t)) � ui(t))2�i(t)2 < r2s : (4.20)
Now, an initial 
ondition displa
ed by the ve
tor e(0) will shadow until a time t ifke(t)k < rs where rs is the shadow radius. Be
ause e(t) is in the ellipsoid given by(4.20), this is the same as saying that the distan
e between the origin and the o�setellipsoid should be smaller than the shadow radius rs.82



The dire
t way to solve this problem is to �nd the initial displa
ement whi
h hasthe smallest �nal displa
ement under the linearised dynami
s. Before doing so, we�rst note that, to a good approximation, the desired result will be true if the zerove
tor lies within an enlarged ellipsoid, where all the axes have been in
reased by anamount rs (the agreement is exa
t at the poles, and very 
lose elsewhere). This isshown s
hemati
ally in Figure 4.6. The enlarged ellipse is all imagesU(t)(�(t) + I)VT (t) � e(0) + d(t); (4.21)where the identity I has been added to �(t) to stret
h ea
h axis an amount rs.We therefore obtain a simple shadowing 
ondition. The model will shadow the truesystem for a time � if � is the smallest positive time su
h thatnXi=1 (d(�) � ui(�))2(1 + �i(�))2 = r2s : (4.22)
Sin
e the geometri
 argument of expanding ea
h axis of the ellipse was only ap-proximate, the above 
ondition will give shadow times whi
h are slightly in
orre
t.In fa
t, it is easy to see that it will tend to slightly underestimate shadow times of thelinearised dynami
s. Suppose that 
ondition (4.22) is satis�ed. Then the ellipse ofimages 
ontains the zero ve
tor, and there is an initial displa
ement e whi
h satis�esU(t)(�(t) + I)VT (t) � e+ d(t) = 0: (4.23)Rearrangement givesU(t)�(t)VT (t) � e+ d(t) = �U(t)VT (t)e: (4.24)Now kU(t)VT (t)ek = kek sin
e the matri
es U(t) and VT (t) are orthonormal. Also,by assumption, kek � rs, so it follows thatkU(t)�(t)VT (t) � e+ d(t)k � rs (4.25)and the point e shadows under the linearized dynami
s. The approximation thereforewill tend to underestimate shadow times.A more a

urate estimate of shadow times using the linearised dynami
s 
an beattained by dire
tly solving the following problem:minimiseC(e) = kU(t)�(t)VT (t) � e(t) + d(t)ksubje
t to ke(0)k � rs: (4.26)
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In other words, �nd the initial displa
ement e(0) whi
h has the smallest �nal dis-pla
ement (we negle
t for now the 
he
king of displa
ements at intermediate times).This optimisation problem 
an be solved using the Lagrange method. Dropping thedependen
e on time for 
larity, we seek stationary points of(U�VTe+ d)T (U�VTe+ d) + �eTe (4.27)where � is a s
alar Lagrange multiplier. Setting the variation equal to zero givesV�UT (U�VTe+ d) + �e = 0: (4.28)Solving for e, and using the fa
t that UTU = VTV = I, we �nde = �(V�2VT + �I)�1V�UTd: (4.29)Now it is easily seen by dire
t substitution that(V�2VT + �I)�1 = VA(�)VT (4.30)where A(�) is the diagonal matrix with i'th diagonal entryai(�) = (�2i + �)�1: (4.31)Substituting into the expression for e givese = �VA(�)�p (4.32)where p = UTd.The next step is to solve for �. We �rst note that the linearised dynami
s mappoints e on the outside of the shadow radius ball to image points on the outside of theellipse. The maximum shadow time under the linearised dynami
s (not ne
essarilythe real dynami
s) will o

ur when there is just one point that shadows, so we 
anassume that the image is on the perimeter of the ellipse, and therefore that e satis�eskek = rs. Referring to equation (4.32), this implieseTe = pT (�A(�))2p = r2s ; (4.33)whi
h is equivalent to nXi=1(pi�iai(�))2 � r2s = 0: (4.34)The multiplier � 
an therefore be found by using Newton's method to �nd zerosof the above expression. On
e � has been determined, we solve for e using (4.32).85



The image point U�VTe+d is then seen to be �UA(�)p, with magnitude equal tothe square root of �2Pni=1(piai(�))2.We thus arrive at a new shadowing 
ondition, whi
h is in two stages. Given aspe
i�ed time t, �rst 
al
ulate the initial displa
ement whi
h yields the minimumdispla
ement at that time. Then 
he
k to see whether the magnitude of the imagepoint is smaller than the shadow radius. If it is, then the model shadows until time tunder the linearised dynami
s (again negle
ting what happens at intermediate times,whi
h need also to be 
he
ked).The shadowing 
ondition involves more 
omputation than (4.22), but is easy toimplement. Also, sin
e (4.22) will tend to underestimate the shadow time, the detailedtest need only be 
arried out when the simpler test fails. For the models studied here,it usually adds about a per
ent or less, as measured in terms of the allowable driftover a shadow orbit, and the di�eren
e goes to zero as the shadow radius de
reases.Finally, sin
e the multipliers �i are all positive, we 
an writenXi=1 (d(�) � ui(�))2(1 + �i(�))2 � nXi=1(d(t) � ui(t))2 = nXi=1 di(t)2 = d(t)2 (4.35)
where we have also used the fa
t that the ve
tors u form an orthonormal basis. Itfollows from equation (4.22) that if the drift d(�) at time � is smaller than rs, themodel should shadow at least until that time.We therefore 
an apply a hierar
hy of shadow tests, ea
h of in
reasing 
omplexity.For in
reasing times t we �rst test equation (4.35), to see if the drift is smaller thanthe shadow radius. If this fails, we test equation (4.22), to 
he
k if the enlarged ellipse
ontains the zero ve
tor. When that fails, we 
an do a full solution of the eigenvalueproblem (if desired, though its e�e
t is small). We shall refer to this pro
edure asthe shadow estimation te
hnique, or SET. The SET depends only on the model drift,the modi�ed linear propagator, and the shadowing radius, and is appli
able wheneverthe modi�ed linear propagator is a good approximation to the system dynami
s atdistan
es smaller than the shadow radius from the true attra
tor.We 
an now quantify our observation that a model whi
h tends to s
atter orbits inall dire
tions given small displa
ements may shadow quite well (a shot gun may hit itstarget better than a well-aimed ri
e). Su
h a model will have large multipliers �i, sothat a ball of initial 
onditions blows up into a large ellipse. This will redu
e the lefthand side of equation (4.22). If we 
ompare between models where these multipliersare similar, then the dominant fa
tors are model drift and shadowing radius. In thenext se
tion, we derive a law that applies to any model whi
h is lo
ally dissipative,i.e. more like a ri
e than a shot gun. 86



4.4 A shadowing lawUnder 
ertain 
ir
umstan
es, shadow times 
an be estimated by 
onsidering modeldrift only, without re
ourse to the linear propagator. Suppose �rst that shadow timesare relatively short, so that the singular value multipliers (whi
h tend to unity as tgoes to zero) are 
lose to 1.0. Then from equation 4.22 we have
r2s = nXi=1 (d(�) � ui(�))2(1 + �i(�))2 (4.36)

� nXi=1 (d(t) � ui(t))24 (4.37)
= Pni=1 di(t)24 (4.38)= d(�)24 : (4.39)The shadowing time � then satis�esd(�) = kd(�)k � 2rs (4.40)and so is the time at whi
h the model drift ex
eeds the shadow diameter.In su
h 
ases, the ratio of drift (or equivalently, for the Lorenz systems, integratedfor
ing error) to shadow radius for a typi
al shadow orbit should be approximately 2.This is exa
tly what was found in Figure 3.14 for the 
onstant model. The number 2a
tually appears to be an upper bound, for all but low values of F .The property 
learly holds when displa
ement error is e�e
tively zero, sin
e, fora referen
e time � and drift ve
tor d(�), the model traje
tory 
an simply begin at adispla
ement of �0:5d(�) and end at a displa
ement of �0:5d(�). It will also tendto hold in a statisti
al sense, though, whenever

h nXi=1 (d(�) � ui(�))2(1 + �i(�))2 i � d(�)24 (4.41)
whi
h is a mu
h weaker 
ondition.Suppose that the model exists in a high dimension state spa
e, and the 
omponentsof the drift ve
tor are un
orrelated either with ea
h other or with the dire
tion of thesingular ve
tors. In this 
ase,

h(d(�) � ui(�))2i = hd2i (�)i = 1nhd2(�)i: (4.42)
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Suppose now that we �x the magnitude of the drift ve
tor, and the multipliers �i,and take expe
ted values of both sides of equation 4.22 over all possible orientationsof the singular ve
tors. Then, from equations 4.22 and 4.42,
hr2si = h nXi=1 (d(�) � ui(�))2(1 + �i(�))2 i (4.43)

= d(�)2n h nXi=1 1(1 + �i(�))2 i (4.44)
where the shadow radius rs is now a fun
tion of the orientation of the singular ve
tors.If the model is lo
ally dissipative in the sense that it 
ontra
ts volumes in statespa
e [47℄ over the �nite time � , then we 
laim that the sum on the right hand sidehas a minimum value of n4 when all �i = 1. To see this, 
onsider �rst the 
ase wherethe model exa
tly preserves volume, whi
h will o

ur ifnYi=1�i = 1 (4.45)
where we have dropped the dependen
e on � . Writing the minimisation problem asa Lagrangian, we seek minima ofnXi=1 1(1 + �i)2 + �( nYi=1�i � 1) (4.46)
where � is a 
onstant multiplier. Taking partial derivatives with respe
t to �j, andsetting to zero, gives

0 = �2(1 + �j)3 + �Yi 6=j �i = �2(1 + �j)3 + ��j (4.47)
where we have used the fa
t that Qni=1 �i = 1. Therefore

�j = 2�(�j + 1)3: (4.48)This equation represents the interse
tion between a straight line and a 
ubi
 in �j,and has two solutions for � > 16, and a single solution when � = 16 and all �j = 1.Sin
e � is the same for all j, the multipliers �j 
an only take on one of a maximumtwo values.We 
laim that the solution �j = 1 for all j represents a global minimum. The fullproof is 
ompli
ated, and is given in the Appendix. For the 2-D 
ase, a geometri
alargument is also possible. We wish to show that1(1 + �1)2 + 1(1 + �2)2 � 12 (4.49)
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whi
h is the same as saying that the point x1 = 1, x2 = 1 is inside the ellipsex1(1 + �1)2 + x1(1 + �2)2 � 12 : (4.50)
When �1 = 1 and �2 = 1, the point (1; 1) is at the boundary of the ellipse. Any othervolume retaining ellipse, whi
h is 
ontra
ted along one axis and expanded along theother, will not 
ontain this point. It therefore follows that1(1 + �1)2 + 1(1 + �2)2 > 12 (4.51)
if �1 (and by impli
ation �2) doesn't equal 1.Sin
e the 
riti
al point with �i = 1 for all i represents a global minimum, it follows,from equation 4.44, that hr2si = d(�)2n h nXi=1 1(1 + �i(�))2 i (4.52)

� d(�)2n n4 (4.53)= d(�)24 ; (4.54)or qhr2si � d(�)2 : (4.55)Therefore the allowable shadow radius, in an RMS sense, for a given magnitude ofdrift, is greater than or equal to half the drift. If the model is lo
ally stri
tly dissipa-tive, rather than volume preserving, the inequality is repla
ed by a stri
t inequality.This is a powerful result, sin
e it applies to an extremely broad 
lass of 
haoti
 models,in
luding, typi
ally, those whi
h have an attra
tor [47℄.Note that we are treating the shadow radius rs as a fun
tion of the shadow time� , while in the shadow 
al
ulations of the Lorenz '96 and other systems we solved forthe shadow time as a fun
tion of the shadow radius. Sin
e �(rs) is a monotoni
allyin
reasing fun
tion, it is possible to invert the problem in this way. We will see inChapter 6 that for weather model it is usually more 
onvenient to solve for the shadowradius as a fun
tion of shadow time.De�ne the dissipation 
oeÆ
ient q(�) asq(�) = s n4hPni=1 1(1+�i(�))2 i : (4.56)
Then equation 4.44 
an be writtend(�) = 2q(�)qhr2s(�)i: (4.57)89



The dissipation 
oeÆ
ient q(�) is a measure of lo
al model dissipation in statespa
e. A model where all the singular value multipliers equal 1 has a dissipation
oeÆ
ient of exa
tly 1. If model error is high, or the shadow radius is small, thenshadow times will be short and the dissipation 
oeÆ
ient will be near 1, so RMS driftwill approximately equal the shadow diameter. The dissipation 
oeÆ
ient 
an eitherbe 
al
ulated dire
tly, or estimated from some idea of the likely distribution.As an illustration of a volume preserving model, suppose that the magnitudes ofthe n singular ve
tor multipliers �i(�), when arranged in des
ending order, follow apower law distribution, so that �i(�) = �1� 2in1 : (4.58)The largest singular ve
tor multiplier is therefore �1, and the smallest is �n = ��11 .An equal number of dire
tions 
ontra
t as expand in phase spa
e, and be
ause theprodu
t of the multipliers is 1, su
h a model would preserve state spa
e volume.Given the ideal power law distribution, and assuming the dimension n is large, we
an approximate the sum by an integral, sonXi=1 1(1 + �i(�))2 = Z n=2�n=2 1(1 + �1� 2sn1 )2ds (4.59)
= n2 � n2log(�1) �1 � 1�1 + 1 : (4.60)

The dissipation 
oeÆ
ient is therefore
q(�) = 12q1� 1log(�1) �1�1�1+1 : (4.61)

Values of q are plotted as a fun
tion of �1 in Figure 4.7. The maximum value of 1.0o

urs for �1 = 1:0, as expe
ted.Real models often show a similiar, roughly power law distribution. Figure 4.8plots the distribution of singular value multipliers, and dissipation 
oeÆ
ient q (wherethe expe
tation operator in equation 4.57 is supressed), for the 
onstant and linearmodels. Results are averaged over 200 shadow runs at shadow radius 0.4. The +marks the 
entre point: for either model, more singular value multipliers 
ontra
t thanexpand. The models are therefore more dissipative than the power law distributiondes
ribed above. The 
onstant model has a lower q than the linear model, and so ismore dissipative. This is largely be
ause q is evaluated over maximal shadow orbits,and the 
onstant model shadows for shorter times than the linear model.
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We summarise these results with the following formal statement of the shadowlaw.The Shadow Law. Suppose that the model of a true system is lo
ally dissipativein the sense that the singular value multipliers �i of the linear propagator, evaluatedalong the true orbit over a time � , are volume 
ontra
ting, i.e. Qni=1 �i � 1. Assumealso that the drift ve
tors are un
orrelated with the singular ve
tors. Then, as afun
tion of drift d(�), an approximate lower bound on shadow radius is given byqhr2s(�)i = 12d(�): (4.62)When model error is high, or shadow times are short, then the shadow radius willapproa
h this bound, so rs(�) � 12d(�): (4.63)The shadow law therefore provides a lower bound on shadow radius, in terms ofdrift, whenever the model is dissipative over the time tested. The shadow rule willprove indispensable for the weather models en
ountered in Chapter 6, for whi
h it isimpossible to 
al
ulate all the singular ve
tors, and the full SET 
annot be invoked.
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4.5 The model error indexWhile the measurement of model error may be 
ompli
ated by sensitivity to initial
onditions, the degree to whi
h this holds true depends on the strength of model errorrelative to displa
ement error. For example, if a model is only moderately sensitiveto initial 
onditions, but generates huge model error, then it should be relatively easyto measure model error. If, on the other hand, the model is ex
ellent, but both it andthe system are highly sensitive to initial 
ondition, then measuring model error willbe more diÆ
ult.The relative strength of model and displa
ement error also determines whi
h pla
eslimits on shadow times. When model error dominates, shadow times will be deter-mined primarily by the drift, while if model error is small the model dissipation mustbe taken into a

ount.We propose two di�erent measures for the 
omparison of model error with dis-pla
ement error. The �rst 
ompares the for
es of drift with those of dissipation. Usingthe de�nition of the dissipation 
oeÆ
ient q(�), the linearised dynami
s in RMS formwere written in equation 4.57 asd(�) = 2q(�)qhr2s(�)i: (4.64)We de�ne the �rst model error index M1(�) to beM1(�) = h d(�)2rsq(�)i: (4.65)
M1(�) provides a measure of the relative strength of model error, as measured bythe drift d(�), 
ompared to the dissipation, as measured by q(�). If it is the 
asethat M1(�) > 1, then model error dominates dissipation, and the model won't beexpe
ted to shadow for the time � at radius rs.For large models, it may be impossible to evaluate the dissipation 
oeÆ
ient q(�).For dissipative models, and any of the models studied in this thesis, it holds thatq(�) < 1. Therefore we have M1(�) < d(�)2rs : (4.66)Another measure of model error relative to displa
ement error is to use, insteadof the dissipation, the growth of the leading singular ve
tor. Su
h a measure wouldbe useful when judging the likely impa
t of model error on ensembles 
reated byperturbing in the dire
tion of the leading singular ve
tors. We therefore de�neM2(�) = d(�)2rs�max(�) (4.67)
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where �max(�) is the maximum singular value multiplier at the shadow time, d(�) isthe drift at the shadow time, and rs is the shadow radius. If model error is high, thendrift is about equal to the shadow diameter, so the expression simpli�es to
M2(�) � 1�max(�) : (4.68)

For the 
onstant model typi
al values of M2(�) are about 0.10, and for the linearmodel about 0.017. Its pre
ise value will vary around the attra
tor, espe
ially forsystems like Saltzman where shadow times vary enormously.Either one of these measures 
an be used to 
ompare di�erent model/system pairs.In Chapter 6, we useM2 to 
ompare the likely e�e
t of error on ensembles in weathermodels, with the 
orresponding e�e
t on ensembles of the Lorenz '96 
onstant model.
4.6 Appli
ations of the shadow test
4.6.1 The Lorenz '96 systemsThe SET is a general method for estimating shadow times, using only the drift andsingular ve
tor multipliers, that 
an be applied to any model/system pair. In thisse
tion we test the method for a number of 
ases, by 
omparing the estimated timeswith a
tual shadow times.The �rst 
omparison is with the Lorenz '96 models already studied in some detail.Figures 4.9 and 4.10 show the results when applied to the 
onstant and linear models,where the truth is the two level system. Shadow times have been averaged over twentyruns. The shadow radius has again been s
aled, and takes the values 0.2 and 0.4 atF = 10. Agreement is quite good. A more detailed view of the results for the linearmodel at F = 10 is given by Figure 4.11, whi
h 
ompares a histogram of shadowtimes over 200 starting points.The shadow law states that the maximum drift tolerated over a shadow orbitis bounded by the shadow diameter. For the 
onstant model the bound is 
lose toa
tual shadow times, as was found in Figure 3.14 where the ratio of drift to shadowradius for the 
onstant model was about 2 (it a
tually ex
eeds 2 by a small amountfor lower values of for
ings where the model is only weakly dissipative). For longershadow times, however, the shadow law 
an over-estimate substantially. For example,with the linear model at F = 10 and shadow radius 0.4, an estimate of an upperbound using the shadow law would give 4.05. The SET gives an answer of 2.36,while the a
tual shadow time is 2.28. Using the shadow law as a guide to shadow94



0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12

tim
e

F

shadow r=0.2
estimate r=0.2
shadow r=0.4

estimate r=0.4

Figure 4.9: Plot of estimated and mean shadow times for 
onstant model, averagedover 20 runs. Shadow radius is 0.2 and 0.4 at F = 10, s
aled proportionately forother values.

0

0.5

1

1.5

2

2.5

3

2 4 6 8 10 12

tim
e

F

shadow r=0.2
estimate r=0.2
shadow r=0.4

estimate r=0.4

Figure 4.10: Plot of estimated and a
tual shadow times for linear model, averagedover 20 runs. Shadow radius is 0.2 and 0.4 at F = 10, s
aled for other values.
95



-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 1 2 3 4 5 6Figure 4.11: Histogram of 200 shadow times for linear model with F = 10, shadowradius 0.4. Upper is real shadow times, lower is estimated times.
times, rather than an upper bound, works best in situations where model error islarge relative to displa
ement error, simply be
ause under those 
ir
umstan
es thedissipation 
oeÆ
ient q(t) will be near 1.It might seem strange that the SET 
an work so well at relatively long times,when one would expe
t that the linear propagator will no longer be a

urate. Thisfear would appear to be validated by Figure 4.12(a), whi
h shows the images of a0.4 radius ball of initial displa
ements under both the full and the linearised propa-gator dynami
s. The linearised dynami
s produ
e an ellipse, as expe
ted, while thefull dynami
s produ
es a somewhat 
ontorted distribution. For most points the two
ompletely disagree, but for points near the origin, whi
h 
orrespond to shadow tra-je
tories, the mat
h is in fa
t quite good. Figure 4.12(b) shows the images of a ballof points of radius 0.02 around the shadow point. Both the full dynami
s and thelinearised dynami
s produ
e an ellipse 
lose to the origin. The essen
e of the SET isthat it only tries to model traje
tories whi
h a
tually shadow, and for these orbits,so long as the shadow radius is suÆ
iently small, the linearised dynami
s are valid.Of 
ourse, the validity of the linear approximation depends on time as well asshadow radius, and if a model shadows for extremely long times then the SET willno longer be reliable. An example of a very long shadow orbit is shown in Figure4.13. It was obtained by 
hanging the 
oupling of the two level system from 1.0 to0.5, whi
h redu
es the e�e
t of the �ne-s
ale ~y variables on the large-s
ale ~x variables.The resulting system was then modelled with the linear model. When the SET was
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Figure 4.12: Plot of displa
ements from truth, in �rst two 
oordinates, for imagesunder the linear model (full dynami
s) and the propagator (linearised dynami
s).The a

ura
y of the linearised dynami
s depends on proximity to the true orbit. Forthe ball of initial 
onditions at radius 0.4, top panel, the linearised dynami
s do notrepresent the full dynami
s, but they are mu
h more su

essful in the lower panel,where the ball of initial 
onditions has been shrunk to 0.02.
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Figure 4.13: Shadowing orbit for linear model of two level system with 
oupling
oeÆ
ient redu
ed to 0.5. The redu
ed e�e
t of the �ne-s
ale y variables on thelarge-s
ale x variables allows for long shadow times, in this 
ase about 10.1 timeunits. Shadow radius is 0.4.
tested with this model, it failed to 
onverge. The reason is that, over time periodssu
h as this, higher order terms, whi
h are not taken into a

ount by the lineariseddynami
s, will eventually dominate. Figure 4.14 shows the drift a

umulated over theshadow orbit. The shadow law gives an upper bound on total drift over the shadoworbit of about twi
e the shadow radius, or 0.8, whi
h is well above the a
tual valueof 0.12.
4.6.2 The R�ossler systemThe Lorenz '96 systems have a 
ertain symmetry in that the equation for ea
h variablex is the same, and it is possible that for some reason this symmetry might makeshadow behaviour easier to predi
t. As a 
he
k against this, the method was used topredi
t shadowing times where the system is a modi�ed version of the R�ossler system,dxdt = �y � z + �xy=
dydt = x+ 0:1ydzdt = 0:1 + (x� 
)z; (4.69)
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ulated over the orbit shadowed in Figure 4.13. The SET failsto predi
t shadow times in this instan
e, be
ause the drift remains small and higherorder terms, not modelled by the linearised dynami
s, eventually dominate.
and the model is the regular system of equation (1.2). The di�eren
e between thetwo is therefore the term �xy=
 in the �rst equation, whi
h was 
hosen as just oneexample of a nonlinear, asymmetri
 error term. Figure 4.15 shows the real andestimated shadow times for � = 0:3. The SET is equally e�e
tive for this system.
4.6.3 The Saltzman systemWith any su
h 
on
o
ted example, though, we 
an be a

used of 
hoosing the systemto prove the point (just about anything 
an be demonstrated using simple systems,sin
e there are so many of them). A more 
onvin
ing example might be one takenfrom the literature. It was mentioned in the introdu
tion that we are familiar withthe e�e
t of Lorenz trun
ating the initial 
onditions of his 
onve
tion model, but lessfamiliar with the e�e
ts of trun
ating the equations of the model to three dimensionsin the �rst pla
e. Be
ause of the histori
al importan
e of this 3-D model, we presenta detailed investigation of its shadowing relative to the 7-D Saltzman system fromwhi
h it was derived.The equations for Saltzman's 7-D system [37℄ are:dAdt = 23:521BC � 1:500D � 148:046AdBdt = �22:030AC � 1:589E � 186:429B
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Figure 4.15: Real and estimated shadow times for the modi�ed R�ossler system.Shadow radius is 0.5 at F = 10, and s
aled for other values.dCdt = 1:561AB � 0:185F � 400:276CdDdt = �16:284CE � 16:284BF � 13:958AG� 1460:631�A� 14:805DdEdt = 16:284CD � 16:284AF � 18:610BG� 1947:508�B � 18:643EdFdt = 16:284AE + 16:284BD � 486:877�C � 40:028FdGdt = 27:916AD + 37:220BE � 39:479G (4.70)where � is the Reynold's number. Lorenz noted that in 
ertain 
ir
umstan
es thevariables apart from A;D and G tended to zero. Therefore he built his system usingonly those three variables. He also res
aled so that ea
h had a similar magnitude.In order to 
he
k how his approximation 
ompares to the full Saltzman system,we 
onsidered the redu
ed modeldAdt = �1:500D � 148:046AdDdt = �13:958AG� 1460:631�A� 14:805DdGdt = 27:916AD � 39:479G: (4.71)We then set X = A; Y = D=100 and Z = G=100 in both model and system (theres
aling is similar to that whi
h Lorenz used).100



If � is su
h that the other parameters do indeed tend to zero, then the 3-D modeland the 7-D system will obviously agree, and shadowing times will be in�nite. Wetherefore seek regimes where this is not the 
ase. It was found that a 
riti
al pointexists between � = 25 and � = 25:1, so for � > 25:1 the other parameters do not goto zero. We then 
ompared the model and sytem for � = 28, the typi
al value usedin the Lorenz system, and � = 25:1.Figure 4.16 shows orbits on the attra
tor for the system and model at ea
h valueof �. The attra
tors are inverted from those of the Lorenz '63 system be
ause of asign 
hange. For � = 28, the familiar butter
y wings of the model have, in the 
aseof the full system, grown a body as well. The attra
tors at � = 25:1 appear in 
loseragreement. Of 
ourse, these are observations of the 
limatologies, rather than modelerror on a true orbit, but the shape of the attra
tors might lead one to expe
t bettershadowing performan
e for the lower setting of � than for the higher.This suspi
ion is borne out by Figure 4.17, whi
h shows a detailed analysis ofthe shadowing performan
e. The upper panels are s
atter diagrams of estimated anda
tual shadow times from 40 initial 
onditions, for shadow radius 0.1. The middlepanels are histograms of shadow times. Note the di�erent s
ale of the � = 28 (leftside) and � = 25:1 (right side) results. For � = 28, the longest shadow orbit is about2 time units (the units di�er from those of the Lorenz system). For � = 25:1, manypoints shadow for longer than that. In either 
ase the majority of the estimatedshadow times are in good agreement with a
tual times, though for longer times theSET tends to overestimate the time.The lower panels show the lo
ation on the attra
tor of the longest shadow orbit.The orbit at � = 28 is shorter than the � = 25:1 orbit on the right, even though itmanages the transition from one lobe of the attra
tor to the other.The Saltzman system is interesting be
ause shadow times vary enormously de-pending on the position on the true attra
tor. Despite this variation, the SET doesa good job of predi
ting shadow times for the majority of points (the top-left s
atterdiagram shows two points whi
h fail for times under 0.5, but this only represents 5per
ent of the total number tested). The 3-D model appears to be a better approx-imation to the full system at the lower setting of � = 25:1, whi
h is just above thethreshold where other variables go to zero.Figure 4.18 is another way to view shadow orbits. The model displa
ements fromtruth have been proje
ted into a 2-D 
oordinate system (xp; yp) following the trueorbit, and plotted with time t as the third axis. The graph, viewed from left to right,represents the perturbations that one would experien
e up and down (yp) and from
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side to side (xp) while attempting, �guratively speaking, to follow the true path in amodel 
ar. For either value of �, the displa
ements follow a regular pattern that slowlygrows in magnitude. It appears that the reason the � = 25:1 model shadows longeris be
ause the system spends longer in ea
h lobe of the attra
tor, thus presenting aneasier path to follow.
4.6.4 Shadowing and step sizeOne 
ause of model error is an insuÆ
iently small step size used during integrationof the model's di�erential equations. Sele
tion of an appropriate step size and inte-gration s
heme is of 
ourse a �eld in itself; our aim is merely to rephrase the problemin terms of model error, and illustrate the te
hniques developed so far. Figure 4.19is a s
hemati
 diagram showing how a large step integration will 
reate a drift error,as 
ompared with an integration performed using two smaller steps. The drift afterone step of � is just the di�eren
e between the traje
tories at time 2�, whi
h 
an bewritten d(�) = (dx(�)dt � dx(0)dt )�: (4.72)The term in bra
kets equals the 
hange in velo
ity, so the drift 
an be written interms of the a

eleration: d(�) � d2x(0)dt2 �2: (4.73)This quantity 
an easily be 
al
ulated for ea
h point.As an example, suppose that we wish to determine whether a step size of 0.02 issuÆ
iently small for integration of the Lorenz '63 system. As a test, we 
ould 
he
khow well the model at that time step shadows the system with a redu
ed step size of0.01.Figure 4.21 is a histogram of shadow times for shadow radius 0.01, where the truesystem has a step size of 0.01, and the model has a step size of 0.02. A small numberof points, about 2.4 per
ent, fail to shadow for longer than a single time step. Thesepoints are marked by 
ir
les in Figure 4.20.From the shadow law that maximum drift is twi
e the shadow radius (shadowtimes approa
h the upper bound when model error is high), we would expe
t thepoints whi
h fail to shadow with the points where drift ex
eeds a value of 0.2. Thesepoints have also been marked in Figure 4.20. The 
orresponden
e is almost exa
t.They are simply the points whi
h experien
e high a

eleration. (They also 
oin
idewith areas of state spa
e 
ontra
tion [65℄.)
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Figure 4.18: Shadow orbits for the 3-D model of the 7-D Saltzman system, at � = 28and 25.1. Model displa
ements from truth are proje
ted into a 2-D 
oordinate systemfollowing the true orbit. The results are plotted with time as the third axis. For� = 28, the shadow traje
tory begins at the left hand side (t = 0), os
illates within
reasing magnitude around the true orbit, and suddenly fails a short time afterswit
hing from one lobe of the attra
tor to the other. The � = 25:1 model shadows alonger time (note the di�erent time s
ale), apparently be
ause the true system spendsmore time in one lobe of the attra
tor. 105



Figure 4.19: Diagram showing how too large a step size 
reates drift. The model,whi
h has twi
e the step size of the true system, overshoots it. The resulting drift isproportional to the a

eleration of the true system.
This 
ontrasts with Figure 4.22 from Gilmour [23℄, whi
h shows points whereshadow orbits fail for a larger observational toleran
e. She demonstrated a 
onne
tionbetween the points where shadowing fails, and points with fastest error doubling times[62℄, whi
h both tend to o

ur in the transition region between zones of the attra
tor.The �gures serve again to highlight the distin
tion between initial 
ondition error andmodel error.

4.6.5 The Rulkov 
ir
uitThe systems 
onsidered so far have only existed inside a 
omputer. However, thete
hniques of studying model error apply equally well to observations of real systems,for whi
h the true equations are unknown (or don't exist). In the next se
tion, weformalise the treatment of observed systems. As a prelude, we here 
onsider a modelof an a
tual ele
tri
al 
ir
uit, whi
h will further 
larify the distin
tion between modeland initial 
ondition error.
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The Rulkov 
ir
uit [59℄ was presented in Chapter 2 as an example of a nonlineardynami
al system. The equations model the behaviour of a real ele
tri
al 
ir
uit, butthere will never be an exa
t 
orresponden
e between the two: even simple 
ir
uitsdon't follow neat mathemati
al laws, when examined in detail. We therefore takethe physi
al 
ir
uit, proje
ted into model spa
e, to be truth, and the mathemati
alapproximation as the model.Figure 4.23 shows predi
ted and observed points for a number of traje
toriesstarting from neighbouring points. Ea
h of the initial 
onditions used was a pointon an orbit of the true system, proje
ted into model spa
e. It was possible to �nda number of initial 
onditions in 
lose proximity be
ause the 
ir
uit is re
urrent: i.e.if the system is run for suÆ
iently long times it experien
es a near return, withina spe
i�ed toleran
e, to the initial 
ondition. As a result, the ensemble of modeltraje
tories 
an be veri�ed against an ensemble of true traje
tories, whi
h makesmodel error mu
h easier to dete
t [63℄.Referring to the �gure, around time 7830 both the observed and predi
ted traje
-tories suddenly diverge, so at this point both the model and the system itself havehigh sensitivity to initial 
ondition. Therefore to say that a model has high sensitivityto initial 
ondition is not to say that it is wrong, or that this is an undesirable feature,
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Figure 4.23: Cir
uit errors. From [63℄.
sin
e the system itself may have the same behaviour. Rather, it means that the initial
ondition must be 
hosen very exa
tly to get an a

urate predi
tion. In this 
ase, themodel seems to tra
k the observations quite well for the majority of points.In the zoomed view, Figure 4.24, however, it is seen that, near the lo
al maximumat time 7825, the fore
asts are systemati
ally lower than the observations. This is aresult of lo
al model error.Re
urren
e makes model error at a parti
ular point easier to dete
t, be
ause anensemble of fore
asts 
an be 
ompared with an ensemble of true traje
tories. Sin
ethe atmosphere is unlikely to repeat itself even on
e before it eventually boils awayinto spa
e, re
urren
e isn't a feature that we 
an exploit to generate initial 
onditionsfor weather models. However, this needn't be a limitation; model error and shadowtimes are determined prin
ipally by the linearised dynami
s, whi
h don't distinguishwhether the initial 
onditions lie on an attra
tor or not.
4.7 Observed systemsThe development of the linearised dynami
s assumed that we know the underlyingequations of the true system. For most systems of pra
ti
al interest, su
h as the
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Figure 4.24: Zoom of 
ir
uit errors. From [63℄.
weather, this won't be the 
ase. The best that we 
an do is interpolate through aseries of observations, ea
h of whi
h will be 
orrupted to some extent by observationerror (in weather fore
asting the arrived at interpolation is known as the analysis [17℄).Fortunately, be
ause the linearised dynami
s refer only to the spe
i�
 traje
tory of thetrue system whi
h we are trying to shadow, it isn't ne
essary to know the equationsthat underlie it. Suppose that the true system is expressed, as with the weather, froman analysis, so that ~x = xa + ha (4.74)where xa is the analysed solution and ha is an error term due to imperfe
t observationsand analysis. We further assume that xa is 
ontinuous and pie
ewise di�erentiable. Ifthe analysis is only known at dis
rete points, then we 
an use some smooth interpola-tion for intermediate points, or alternatively the equations below 
ould be written indis
rete form (we prefer the 
ontinuous form for 
larity and 
onsisten
y with previousresults).Linearising the equations as before, we 
an writededt = dxdt � d~xdt= J(~x(t)) � e(t)) +G(~x(t))� d~xdt +Re(t)
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= J(xa(t) + ha(t)) � e(t)) +G(xa(t) + ha(t))� (dxadt + dhadt ) +Re(t)= J(xa(t)) � e(t)) +G(xa(t)) + J(xa(t)) � ha(t) +Re(t) +Rh(t)� (dxadt + dhadt )where the remainder term Re(t) is O(ke(t)k2), and Rh(t) is O(kha(t)k2).If we negle
t the se
ond order remainder terms, and integrate, we then obtaine(�) �Ma(�) � e(0) + Z �0 G(xa(t))dt� xa(�) + xa(0) +E(�) (4.75)where the error termE(�) = Z �0 J(xa(t)) � ha(t)dt� ha(�) + ha(0) (4.76)depends only on the analysis error and the model. If the likely analysis error dis-tribution is known, then the error term E 
an be estimated without needing furtherinformation about the true system. Note that in the above formulation it is not ne
-essary to 
al
ulate the velo
ity of the true system, sin
e this term has been integratedout. Only the start and �nish analysis points xa(0) and xa(�) need be known.The linearised equations 
an be used to obtain model drift and estimate shadowingtimes as for the 
ase without error. The only di�eren
e is that there will now be anadditional error term. Consider for example the 
al
ulation of the analysed modeldriftda(�) = kda(�)k, whereda(�) = Z �0 G(xa(t))dt� xa(�) + xa(0) +E(�): (4.77)If we assume that observation errors are un
orrelated, then averaging the results overmany integrations should give a good measure of average model drift, and hen
emodel quality.As an example, suppose that the ve
tors ha(t), sampled every � time units,follow a white noise distribution with varian
e K = hh2a(t)i, and suppose the ve
torsJ(xa(t)) �ha(t) follow a similiar distribution but with varian
e �K. Then the integralin the expression for E(�) is just a random walk, and we 
an writeh(Z �0 J(xa(t)) � ha(t)dt)2i = �K�: (4.78)Therefore hE2(�)i = �K� + 2K (4.79)and the expe
ted value of the error in the drift 
al
ulation due to observation error
an be expli
itly 
al
ulated. 111



The 
on
lusion is that model drift is a robust measure of model error, whi
hdoesn't ne
essitate a dire
t 
al
ulation of the true system velo
ity. Of 
ourse, if ob-servation error is greater than model error it will be diÆ
ult to separate the two.When we look at weather models in Chapter 6, we will 
on
ern ourselves with shad-owing the analysis, whi
h is the best approximation to the weather, rather than theobservations themselves (if the model 
an't shadow the analysis within the analysisun
ertainty, then it 
an't shadow the real weather either).
4.8 Error due to the proje
tionUntil now, we have ignored the role of the proje
tion operator P whi
h maps the truesystem state spa
e into that of the model. However, the proje
tion 
an introdu
esigni�
ant errors. In the 
ase of the weather, for example, the proje
tion operatormaps the real weather onto the model grid, using an assimilation pro
ess whi
h isdependent on observations but also to a large extent on the interpolation s
heme,whi
h itself is a fun
ton of the model [17℄. In data-poor regions, the assimilationpro
ess will be parti
ularly prone to error.To see how su
h errors a�e
t the drift 
al
ulation, suppose that there exists aparti
ular proje
tion PT and a 
orresponding modeldxdt = GT(x(t)) (4.80)su
h that x(t) = PT(~x(t)) (4.81)provided x(0) = PT(~x0), where ~x0 = ~x(0). In other words, the model is perfe
t giventhe parti
ular proje
tion PT. Taking derivatives with respe
t to time at initial time,we have GT(PT(~x0)) = ddtPT(~x0) = �PT(~x0)�~x ~G(~x0): (4.82)Now, suppose that the a
tual proje
tion is given by the fun
tion P = PT + PE,where PE is an error term, and the a
tual model is given by G = GT +GE. Thenthe error will be e(t) = x(t)�P(~x(t)) (4.83)with initial velo
ityde(0)dt = G(P(~x0))� �P�~x ~G(~x0) (4.84)
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= G(P(~x0))� �PT�~x ~G(~x0)� �PE�~x ~G(~x0) (4.85)= G(P(~x0))�GT(P(~x0))� �PE�~x ~G(~x0) (4.86)= G(PT(~x0))�GT(PT(~x0)) +G(P(~x0))�G(PT(~x0))� �PE�~x ~G(~x0) (4.87)where the �rst two terms re
e
t error in the model relative to the perfe
t model, andthe last three terms re
e
t error in the proje
tion operator. In the perfe
t model 
asewhere G = GT, we have de(0)dt = ��PE�~x ~G(~x0); (4.88)so even with a perfe
t model, there will be a velo
ity error term 
aused by theproje
tion operator.As a simple example, 
onsider the 2-D 
ase whereP(x1; x2) = (x1; x2 + f(x1; x2)) (4.89)PT(x1; x2) = (x1; x2) (4.90)PE(x1; x2) = (0; f(x1; x2)) (4.91)where f is some C1 fun
tion. The x1 variable 
ould 
orrespond to a well-observedarea, while the x2 variable 
orresponds to a poorly observed area. Then we �ndde(0)dt = �( �f�x1 dx2dt ; �f�x2 dx2dt ): (4.92)
Therefore the error due to ina

urate observation of x2 also 
reates errors in x1.From our 
al
ulation of the drift, therefore, we 
annot tell if the error is dueto the model parameters being in
orre
t, or the proje
tion operator being wrong.This is be
ause the de�nition of the model impli
itly assumed a 
ertain proje
tionoperator when the initial 
ondition was pi
ked. This does not mean, however, thaterrors whi
h appear to be due to the model are in fa
t due to sensitivity to initial
ondition. All we have done in the above treatment is de
ompose the model errorinto two parts: that due to model equations, and that due to the proje
tion. Theshadow law still states that if model error is large, no orbit 
an be found by takingsmall perturbations around the initial 
ondition that will shadow for a long time.For weather models, proje
tion is likely to o

ur over data-poor regions where theinterpolation s
heme, whi
h involves the fore
ast model, fails to give an a

urateestimate of the real weather.
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4.9 Potential problems with the shadow estima-tion te
hniqueWhile the SET has worked quite well with a number of models, and should hold ingeneral providing the shadow radius is suÆ
iently small, there will be situations whereit fails to work 
orre
tly. This will be the 
ase, for example, if the shadow radius is solarge that the model error inside the shadow tube varies signi�
antly from its valueon the true orbit. The drift, whi
h is 
al
ulated on the true orbit, may then give amisleading indi
ation of the real model error experien
ed by a shadow orbit.Situations where the model error either dramati
ally in
reases or de
reases awayfrom the true orbit are easy to produ
e, and may o

ur with real weather models;it is sometimes said of a weather model, for example, that it experien
es an initialspin-up error be
ause it is in some way out of balan
e (similiar to the way that a lowdimension model experien
es a transient orbit before settling on its attra
tor). Aninterpretation of model error might then be that the model is out of balan
e at startbut soon moves ba
k towards balan
e. The model error may then de
rease as themodel traje
tory moves away from the true traje
tory, even while remaining withinthe spe
i�ed shadow radius. In this 
ase the 
al
ulation of the drift 
ould give anarti�
ially high value.The linearised dynami
s 
an still be applied, but in su
h situations it is preferableto linearise around a model traje
tory that starts from truth, rather than the truetraje
tory itself. The reason for this is that model error near the true traje
torydoesn't re
e
t model error at points o� that traje
tory, but still within the shadowradius. (The main reason we linearised around the true orbit was to allow 
al
ula-tion of model error over a range of predi
tion times, parti
ularly in 
ases where themodel 
an shadow for long periods.) Equation (4.13) will remain the same, with thedi�eren
e that the linear propagator M is 
al
ulated around the model orbit ratherthan around the true orbit, and the drift ve
tor d be
omes the fore
ast error. Thelinearisation will only be valid, as before, until the time at whi
h the model orbitleaves the shadow radius. The SET 
an also be used, with the same limitation, andthe shadow law remains valid.An example of a model whi
h is `out of balan
e' with truth is shown in Figure4.25. The equations of the true system aredxdt = x� y � x(x2 + y2)=a2
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Figure 4.25: True system has a stable periodi
 orbit with radius 1.0, model hasperiodi
 orbit with same angular velo
ity at radius 0.8.
dydt = x+ y � y(x2 + y2)=a2 (4.93)with a = 1:0, whi
h has a stable periodi
 orbit at radius 1.0, while the model hasthe same equations but with a = 0:8, so the periodi
 orbit is at 0.8. When startedfrom the point (0; 1), as in the �gure, the model qui
kly moves away from truth tothe smaller radius.Figure 4.26 shows how drift a

umulates along the true orbit. The velo
ity error,shown in the x dire
tion, 
ontinually pulls the orbit towards the smaller radius, andthe drift a

umulates steadily. For a predi
tion period of 0.5, the drift is about 0.1.If model error is high, we 
ould therefore expe
t a shadow radius of half the drift, or0.05. The multipliers of the linear propagator over that predi
tion period are 0.249and 0.816, whi
h are both smaller than one so the state spa
e is 
ontra
ting (i.e.the model is lo
ally dissipative). For a displa
ement of 0.05 the maximum error dueto initial 
ondition is 0.816 times 0.05, whi
h is 0.041, mu
h smaller than the drift.Be
ause the model is highly dissipative, it is reasonable to estimate shadow timesfrom the drift alone, so that shadow diameter should approximately equal the driftover the predi
tion time.A feature of this model, though, is that the drift will depend 
riti
ally on thetime step used for the integration. Figure 4.27 shows the drift 
al
ulated with timestep 0.01 (equal to the integration step for the system) and 0.5. The drift for the
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Figure 4.26: Fore
ast errors for x 
omponent. As in Figure 3.2, a number of shortterm model fore
asts were initiated at regular intervals along a true traje
tory (shownuns
aled). The total error magnitude over both x and y is also shown, as well as thedrift, whi
h a

umulates steadily.
longer time step is 
onsiderably lower. This isn't due, however, to the e�e
t of dis-pla
ement error dampening out model error; rather, it is be
ause the model errorredu
es as the model traje
tory approa
hes its attra
tor. Model error therefore de-pends on the shadow radius. If the shadow radius were spe
i�ed as 0.2, then themodel 
ould shadow inde�nitely, sin
e the periodi
 orbit at radius 0.8 is within theshadow toleran
e of the true orbit at 1.0.This e�e
t 
an be seen in Figure 4.28, whi
h shows the shadow diameter as afun
tion of predi
tion time, along with the drift and the fore
ast error starting fromthe point (0,1). Shadow times approa
h in�nity for a shadow diameter of 0.4. Theshadow law, whi
h states, in the 
ase of high model error, that drift approximatelyequals shadow diameter, doesn't hold beyond a shadow diameter of about 0.2. Forlarger shadow diameters, linearising the dynami
s about the true orbit is no longervalid, so it is better to linearise about the model traje
tory. The shadow law thenstates that shadow diameter is about equal to the fore
ast error. From the �gure, wesee that this relationship holds up to times of about 0.6.To summarise, the SET should work for any model/system pair, suÆ
ing theshadow radius is 
hosen suÆ
iently small. If the shadow radius is 
hosen too large,then model error may vary with distan
e from the true orbit, and the drift 
al
ulationmay be sensitive to integration step. In su
h 
ases, it may be preferable to use fore
ast
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error as a guide to shadow times rather than the drift.Of 
ourse, the best way to determine shadow times is to test for a
tual shadoworbits. We dis
uss below ways in whi
h this 
an be a
hieved, even for extremelylarge problems su
h as weather models. First, though, we examine another kind ofdiÆ
ulty that arises in the 
al
ulation of model error, when errors are measured, notover all variables, but only an unrepresentative subset.
4.10 Errors over a subset of variablesThe treatment so far, and the development of the linearised dynami
s, has assumedthat errors are measured using a norm whi
h takes into a

ount all variables of modelspa
e. In this se
tion, we 
onsider the likely problems that 
an o

ur if this require-ment is not satis�ed, and the norm measures only a subset of variables. For example,weather models are often veri�ed against analysis, mostly for histori
al reasons, usingthe 500 hPa geopotential height. Sin
e the variables in the model typi
ally in
ludesurfa
e pressure, two horizontal wind 
omponents, temperature, moisture and geopo-tential height [43℄, knowing the last of these alone, and at only one level, won't be avery 
omplete indi
ation of the atmospheri
 state. For the Lorenz system, it is theequivalent of measuring only x1, and trying to determine the quality of the modelbased on this alone.The linearised dynami
s assume that the model equations and initial 
onditionare 
ompletely known, so restri
ting error measurements to a subset of variables willa�e
t their a

ura
y. For example, equation 4.13 states that the error at any time isapproximately given by the sum of the drift, and the initial displa
ement multipliedby the linear propagator. For small times and zero initial displa
ement, the linearterm vanishes and the error is about equal to the drift. This is shown in Figure 4.29for the Lorenz 
onstant model. The drift 
losely approximates the error up to aboutt = 0:2.It isn't the 
ase, however, that errors over individual 
omponents ei are equallywell approximated by 
omponents di of the drift. Figure 4.30 
ompares the error andthe drift for ea
h 
omponent. The �rst 
omponent e1, for example, has departed fromits drift equivalent by about t = 0:1. It seems that drift is better at approximatingthe magnitude of the error than its dire
tion. This is evident also from the top panelof Figure 4.29, where the magnitude of the di�eren
e between the drift and the erroris shown to grow in an exponential manner, and the lower panel of the same �gure,whi
h plots the 
osine angle between the drift and the error ve
tor.
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The reason for this behaviour is that the linear propagator a
ts on displa
ementsin two ways: by rotating, and by stret
hing (for example, it rotates the �rst singularve
tor v1 into u1, and stret
hes by a fa
tor �1). Rotations don't a�e
t the magni-tude of the displa
ement, but they will transfer error in one 
omponent into error inanother. It follows that individual 
omponents will be more sensitive to the e�e
tsof the linear propagator than the total error. It is also mu
h harder to separate outthe e�e
ts of model and initial 
ondition error, sin
e displa
ements may be large inthose 
omponents not measured, and 
reate exaggerated errors.Shadowing times will also be in
uen
ed if errors are measured over only a subsetof variables. For example, it is easy to imagine that the Lorenz 
onstant model mightshadow the two level system for longer times if only x1 was taken into a

ount, sin
eenormous distortions 
ould be a

ommodated in the other variables. For weathermodels, this would be like having a model whi
h shadows inde�nitely at 500 hPa, butis 
ompletely wrong at ground level. Model error is best understood by 
onsideringall variables, and for this reason the work with weather models is performed using anenergy metri
 whi
h represents the energy in the atmosphere over all levels.
4.11 Fast te
hniques to �nd shadow orbitsThe SET allows one to assess the shadowing 
apability of a model without a
tuallyhaving to produ
e the shadowing orbit, and therefore takes mu
h less time. Howeverthe linearised dynami
s 
an also be exploited to produ
e a
tual shadow orbits.Shadow orbits to this point have been found by a multi-dimensional optimisationte
hnique known as the simplex method [53℄. The simplex method is a somewhatbrute for
e approa
h sin
e it doesn't use any derivative information and requiresmany points to be tested. It is therefore impra
ti
al for larger systems su
h as weathermodels, for whi
h derivative information 
an be extra
ted by using the adjoint, as wesee in Chapter 6.In this se
tion we brie
y outline two te
hniques to produ
e a
tual shadow orbits,using derivative information, in a more eÆ
ient way. The �rst method will require
omputation of singular ve
tors, while the se
ond method has been designed to workas 
losely as possible with existing weather model 
ode at ECMWF. The methods areillustrated using the Lorenz '96 system. Sin
e we limit ourselves to a single startingpoint, the shadow times will generally be shorter than those found by the simplexmethod; in some situations there will be more than one lo
al maximum, so the brute
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for
e approa
h is ne
essary to �nd them all. However 
omputation times are ordersof magnitude smaller.
4.11.1 The linear approximation methodTo �nd a shadow orbit is to seek a point in the ball of initial 
onditions, with radiusequal to the shadow radius, whi
h will remain within the shadow radius of the truesystem for the longest amount of time. It is therefore possible to pose the shadowingproblem as a general optimisation problem. Beginning with an initial predi
tion timet, we solve minimiseC(e) = ke(t)eT (t)ksubje
t to ke(0)k � rs (4.94)where e is the error term. The optimal solution will minimise the o�set from truthat time t over all initial 
onditions within the shadow radius. If the �nal error alsosatis�es ke(t)k � rs (4.95)then the predi
tion time t 
an be in
reased, and the pro
ess repeated.Stri
tly speaking, we should demand that the error e(t) remain within the shadowradius for all intermediate times between 0 and t; however we shall relax that 
onditionfor the time being, be
ause for the systems 
onsidered here it will usually hold so longas the traje
tory is within the shadow tube at the initial and �nal points.Were the system perfe
tly linear, the minimisation problem 
ould be solved in asingle step just by solving the Lagrangian problem of equation 4.27. With nonlinearsystems, a one-step approa
h isn't feasible, sin
e the system is sensitive to smalldispla
ements, and if the step is too large it is likely to miss the optimum 
ompletely.The standard optimisation approa
h in su
h 
ases is to begin with a starting point,and iterate slowly from it, using a rule to determine the step dire
tion, until furthersteps no longer produ
e an improvement [22℄.The problem then be
omes how to 
hoose the step dire
tion. One method whi
hhas been proposed is to sear
h in the spa
e of the leading singular ve
tors, the rationalebeing that these are the perturbations whi
h give the maximum �nal displa
ementand are therefore most likely to o�set model error. A topi
 we have often returnedto, however, is that model error and displa
ement error are not the same thing, andare generally in di�erent dire
tions.
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In fa
t, it is easy to imagine situations where the largest step must be taken inthe dire
tion of the trailing, rather than leading, singular ve
tor. Referring to thes
hemati
 diagram of the linearised dynami
s, Figure 4.6, suppose that the modelerror is aligned with the evolved trailing singular ve
tor u2. Then the initial pertur-bation to o�set it must be in the dire
tion of u1, and, if the multiplier �2 is mu
hsmaller than unity, then the initial displa
ement must be mu
h larger than would bethe 
ase if the model error were aligned with the leading singular ve
tor u1.In the 
ase of weather models, sear
hing for an optimal displa
ement in the sub-spa
e of leading singular ve
tors, whi
h typi
ally has a dimension of about 25 in anoverall spa
e of millions, would be limiting one's self to a rather impoverished set ofstep dire
tions. (One advantage of singular ve
tors, though, is that they give the max-imum �nal displa
ement for a given initial displa
ement, so if no other informationis available they may be a good pla
e to start.)The approa
h adopted here is again based on the linearised dynami
s, whi
h hasbeen shown to hold to a good approximation for those traje
tories whi
h shadow(the ones we are interested in). We �rst transform the minimisation problem to anapproximate linear one:minimiseC(e) = kU(t)�(t)VT (t) � e(t) + d(t)ksubje
t to ke(0)k � rs: (4.96)This is a 
onstrained optimisation problem, whi
h is more 
ompli
ated than an un-
onstrained one, sin
e the optimal dire
tion will depend on whether the boundary onthe initial 
ondition e(0) is a
tive or not, i.e. if ke(0)k = rs. The 
onstraint is impor-tant, be
ause solving the un
onstrained problem won't give the same solution, evenif the pro
ess is stopped when the initial 
ondition ex
eeds the boundary 
ondition[22℄.Various te
hniques exist to solve this problem, but the s
hemati
 diagram of thelinearised dynami
s, Figure 4.6, suggests a simple and novel approa
h. It was alreadyseen in the development of the shadow test that the ball of initial 
onditions will
ontain one point that shadows if the enlarged ellipse, where ea
h axis is in
reased byunity, 
ontains the zero ve
tor. Therefore the 
onstrained problem 
an approximatelybe solved by �nding an initial 
ondition e(0) whi
h satis�esU(t)(�(t) + I)VT (t) � e(0) + d(t) = 0: (4.97)The ve
tor e(0) 
an be solved for dire
tly:e(0) = �VT (t)(�(t) + I)�1UT (t)d(t): (4.98)123



Note that �(t) + I is positive diagonal, hen
e invertible. The a
tual step would betaken in this dire
tion, but with a redu
ed magnitude determined by the optimisationroutine.A s
heme was implemented whi
h pro
eeded as follows. The initial 
onditionwas 
hosen to 
oin
ide with the true orbit. The initial predi
tion time was 
hosen(typi
ally 0.05 units), and the �rst step taken in the dire
tion suggested by the zeroof the enlarged ellipse. The step size was 
hosen to be a fa
tor (typi
ally 0.5) of thedi�eren
e between the initial 
ondition's magnitude and the shadow radius. Thus thesteps would never ex
eed the shadow radius. The new initial 
ondition was then runforward under the full dynami
s until it 
eased to shadow. This time be
ame the newpredi
tion time. The pro
ess was then repeated until it 
eased to improve shadowtimes.The method was tested by 
al
ulating shadow times of the Lorenz '96 linearmodel relative to the two level system. With shadow radius 0.2, the te
hnique gave amedian shadow time of 0.95, as opposed to 0.97 for the brute-for
e simplex method.Considering that the new method only begins from a single starting point, and isorders of magnitude faster, this is an ex
ellent result. For shadow radius 0.4, themedian shadow time is 1.80, as opposed to 2.35 for the simplex method. For thein
reased shadow radius, there is a greater possibility of multiple lo
al minima, whi
h
an only be found by using a number of starting points. Figure 4.31 shows a histogramof shadow times for the linear model using the new optimisation method. It 
an be
ompared with Figure 4.11.
4.11.2 The `pin
h' methodWhile the linear approximation method is mu
h faster than the simplex method, itrequires the 
omputation of singular ve
tors. For weather models it is possible to
al
ulate the linear propagator matrix M, using the adjoint (see Chapter 6), butthe dimension of the matrix prohibits 
omputation of all the singular ve
tors. Wetherefore need an optimisation s
heme whi
h 
an work with the linear propagator inits raw form. Also, optimisation methods are 
urrently used with ECMWF modelsfor purposes su
h as 4D-Var data assimilation, so the method should be 
apable ofexploiting existing 
ode for those models.The linearised optimisation problem, written now without the singular value de-
omposition, is minimiseC(e) = kM(t) � e(t) + d(t)k
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subje
t to ke(0)k � rs (4.99)whi
h again is a 
onstrained problem. One approa
h to su
h a problem is the penaltymethod, whi
h transforms the 
onstrained problem into an un
onstrained one byadding a penalty term:minimiseC(e) = kM(t) � e(t) + d(t)k+ �(ke(0)k � r2s) (4.100)where � is some suitably large 
onstant. The above formulation will for
e the initial
ondition e(0) to have radius rs; alternatively, the penalty fun
tion 
ould swit
h ononly if the radius ex
eeds the shadow radius.There is a symmetry to the shadow problem, however, whi
h doesn't distinguishbetween the initial and �nal displa
ements; we 
ould equally well minimise the initialdispla
ement subje
t to the �nal displa
ement being within the shadow radius, i.e.minimiseC(e) = ke(0)ksubje
t to kM(t) � e(t) + d(t)k � rs: (4.101)This would mean that the �nal displa
ement be
ame the penalty term, instead of theinitial displa
ement.A balan
ed approa
h, then, is to minimise the sum of the initial and �nal dis-pla
ements minimiseC(e) = kM(t) � e+ d(t)k2 + ke(0)k2 (4.102)without spe
ifying what the shadow radius rs should be. For a parti
ular predi
tiontime t, this method should produ
e the orbit whi
h minimises the initial and �naldispla
ements. The shadow radius rs 
an then be taken as the maximum of these twovalues. We assume that intermediate values will remain within bounds; this is easily
he
ked for.One method to determine the step dire
tion would be to �nd the gradient of the
ost fun
tion C(e), whi
h is given by2MT (t)(M(t) � e+ d(t)) + 2e(0) (4.103)and step along the negative of the gradient (the so-
alled steepest des
ent method).This approa
h was used in early versions of the ECMWF sensitivity 
ode [55℄. Adisadvantage of the method is that it tends not to 
onverge well if the gradientmatrix is ill-
onditioned [22℄.
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A more robust te
hnique, 
ommonly used in 4D-Var [16℄, is to take a step in thedire
tion determined by Newton's method. Be
ause of the quadrati
 form of the 
ostfun
tion, the Hessian of the 
ost fun
tion 
an be 
al
ulated as2MT (t)M(t) + 2I: (4.104)By using the Hessian information, Newton's method 
an a
hieve quadrati
 
onver-gen
e. (Implementing it with low dimension models is more straightforward thanwith 4D-Var, whi
h is a subje
t in its own right [36, 15℄.)The optimisation s
heme is then as follows: for an initial predi
tion time, deter-mine an initial 
ondition e(0) whi
h minimises the sum of displa
ements, by takinga sequen
e of steps in the Newton dire
tion. The shadow radius is taken to be thelargest of the initial and �nal displa
ements. Then in
rease the predi
tion time byan in
rement, and repeat the pro
ess, using the previous shadow point as the newstarting point. The pro
ess is repeated until the spe
i�ed shadow time is ex
eeded(or a 
urve of shadow radius versus shadow time stored, and the time for the spe
i�edradius read o� by interpolation).This `pin
h' method, whi
h �nds the shadow orbit by simultaneously minimisingthe initial and �nal displa
ements, gives results whi
h are less a

urate than theprevious method: at a radius of 0.2, the average shadow time is 0.94 (the brute-for
emethod gives 0.97), while for shadow radius 0.4 the average shadow time is 1.62, asubstantial redu
tion from the 2.28 of the brute-for
e method. For good models withlong shadow times and 
ompli
ated shadow orbits as seen in 4.1, the `pin
h' methodmay not be adequate.A useful feature of this te
hnique, however, is that it 
an be implemented inthe ECMWF 
ode with a fairly minimal degree of work; and it is this whi
h hasmotivated its development here. Its eÆ
ien
y will depend on how long the ECMWFmodels 
an shadow (if shadowing times are su
h that the model 
eases to shadowbefore it be
omes nonlinear, then just about any optimisation routine will suÆ
e).In the next 
hapter, we will dis
uss the longer term 
hara
teristi
s of the Lorenzsystem and its models. In other words, we will turn our attention from the shortto medium range `weather' to the longer term `
limate'. Before doing so, we brie
ysummarise the progress made so far in the understanding of model error.
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4.12 SummaryIn this 
hapter, results from experiments on variants of Lorenz '96 and other model/systempairs have been translated into a number of insights into model error and shadow-ing. Equation 4.22, whi
h des
ribes the linearised dynami
s near a true orbit for anymodel/system pair, summarises the relationship between the two. Shadow times 
anbe estimated using the SET, whi
h is based on the linearised dynami
s, and in
ludesthe drift and a linear propagator term. For any lo
ally dissipative model, the shadowlaw gives an approximate upper bound on shadow times in terms of the drift alone;and when model error is high, the allowable drift over a shadow orbit is about equalto twi
e the shadow radius.The methods have been tested over a range of model/system pairs. The SETwas found to work well for both the 
onstant and linear Lorenz models, though thete
hnique fails when 
oupling in the true system is redu
ed to half its normal value,be
ause shadow times be
ome ex
essively long (the shadow law still holds) A modi�edversion of the R�ossler system showed that the equations need not be symmetri
, while
omparisons of the full 7-D Saltzman system with its 3-D model showed that the SET
an work even when shadow times vary greatly over the attra
tor.As a method to measure model error, it is worth distinguishing between lo
almodel drift, and other measures su
h as fore
ast error after a 
ertain period, or thetenden
y error at a parti
ular time. Fore
ast errors 
onvolute initial 
ondition andmodel error, while tenden
y error doesn't allow for the fa
t that model error 
an benon-additive over the predi
tion period.In the introdu
tion, three questions were raised, asking how do we measure modelerror, how do we estimate shadow times, and how do we optimise a model's param-eters. From the above dis
ussion, we are now in a position to address these points.The resear
h into model error indi
ates:� Model drift, as de�ned in terms of integrated velo
ity error, is a useful measureof model error, and the primary determinant of predi
tability� Shadow times 
an be estimated for any model/system pair using the modeldrift and (for longer shadow times) a modi�ed version of the model's linearpropagator matrix, without the need to produ
e an a
tual shadowing orbit� For lo
ally dissipative models, shadow times are bounded above by the shadowlaw, whi
h states that RMS drift over shadow orbits must be smaller than twi
ethe shadow radius
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� Predi
tability is best optimised by minimising the model drift (whi
h is deter-mined by the model's low frequen
y velo
ity error)As an example of the last point, the 
onstant model was 
hosen to have its for
ingequal to the average true for
ing, whi
h minimises the RMS velo
ity error. This isequivalent to minimising the drift in the limit as the integration time goes to zero. Ingeneral, a model 
an be optimised by minimising its drift over a spe
i�ed predi
tiontime. For example, if the goal is to predi
t over a �ve day period, the 5 day drift
an be 
al
ulated at various points on the true attra
tor, and the model parameters
hosen to minimise it. Alternatively, if the velo
ity error power spe
trum is 
al
ulatedon the attra
tor, the drift 
an be minimised over a range of predi
tion times simplyby adjusting the weighting of the power spe
tra to 
al
ulate the expe
ted drift atea
h time.The key result from this 
hapter is the shadow law, whi
h provides an easily
omputable upper bound on shadow times. It is a mathemati
ally demonstrable andeasily veri�ed statement whi
h applies a
ross a broad range of dispersive, 
haoti
models. Figure 4.33 is a graphi
 illustration of the shadowing law: for the more than60 experiments 
ondu
ted with a number of model/system pairs, the ratio of drift toshadow diameter over a shadow orbit is near or below 1. We will later use this simpleresult to address the question of model error in weather fore
asting.
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Chapter 5
Climatology
5.1 Introdu
tionPredi
tion problems have been des
ribed by Lorenz [39℄ as falling into two 
ategories.Problems whi
h depend on the initial 
ondition, su
h as short to medium rangeweather fore
asting, or El Nino, are des
ribed as `predi
tions of the �rst kind'. Longerterm problems, su
h as e�e
ts on the Earth's 
limate of vol
ani
 emissions or 
arbondioxide levels, are referred to as predi
tions of the se
ond kind.In general, modelling the 
limatology seems to be a somewhat easier problemthan modelling short term behaviour. For example, numerous models have been
onstru
ted whi
h do a reasonably good job of modelling 
ertain aspe
ts of �nan
ialtime series, yet predi
ting the next sto
kmarket 
rash is still an elusive goal. The
onverse also holds: it is easy to 
onstru
t a model of the Lorenz '96 system whi
hpredi
ts short term, but, due to a small damping term, eventually trends to zero.It should also be noted that, while model 
limatology is a�e
ted by model error, itdoes not seem possible to measure model error in a meaningful manner by analysingthe 
limatology alone. In general the true system is only known through observationsof a true orbit. Therefore model error is stri
tly speaking only de�ned on proje
tionsof true orbits into model spa
e (for how 
an we measure model error in a region ofstate spa
e that the true system never enters?).Despite these 
aveats, there appear to be some links between short and long rangepredi
tability. For example, referring to Figure 4.16, it was noti
ed that the attra
torof the Saltzman 7-D system was 
loser to that of the redu
ed 3-D model at a parametervalue of � = 25:1 than at the higher value of 28. It also turned out that shadowingwas mu
h improved at the lower parameter setting. Intuitively, it seems reasonable
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that there be a 
onne
tion between the two kinds of predi
tability. Also, shadowingwas seen in Chapter 3 to depend primarily on low frequen
y errors - pre
isely thetype that one might expe
t to in
uen
e long-term 
limatology.In this 
hapter, we turn our attention to issues related to 
limatology and pre-di
tions of the se
ond kind, 
on
entrating on the Lorenz '96 system and its models.We will examine how 
limatology of the model or system depends on for
ing; whatproperties hold over a range of for
ings; and how the system 
limatology might bemodelled at a parti
ular for
ing.One question, of spe
ial relevan
e in high dimension systems, is how to judge whenone attra
tor is similar to another. A possible measure of a system's 
limatology isthe amount of power 
ontained at di�erent frequen
ies. Spe
tral bifur
ation diagramsexpress this information over a range of for
ings, and therefore provide a snapshot of
limatologi
al variation.Figure 5.1 shows su
h diagrams for the true system and 
onstant model. Alsoshown is the di�eren
e between the two, i.e. the mismat
h between the attra
torsas expressed in terms of power spe
tra. For the 
onstant model there is 
learly adi�eren
e around F = 6 where the true system is 
haoti
 but the 
onstant model isperiodi
 or quasi-periodi
. Also around F = 2:5 there is a mismat
h in the frequen
iesof the periodi
 orbits, whi
h appears as a split in the lines. The linear model showsa general improvement of �t over the 
onstant model.These �gures en
apsulate a great deal of detailed information, but it is hard todraw any general 
on
lusions from them - espe
ially if we are more interested ingeneral behaviour rather than whether the model is 
haoti
 or periodi
. Another,somewhat simpler, measure of 
limatology is to 
onsider the �rst and se
ond ordermoments, i.e. hxii and hx2i i. We might then ask whether optimising the model forthese ma
ros
opi
 quantities is the same as optimising for short term predi
tability.In the next se
tion we prove that this depends on the model; in one 
ase the two aimsare at odds, while in another they appear to agree.
5.2 Chaoti
 in the small, predi
table in the largeThe Lorenz '96 systems undergo 
omplex 
hanges in behaviour as for
ing is in
reased.Nevertheless, it was seen in Chapter 3 that quantities su
h as for
ing error varyin a simple manner as a fun
tion of for
ing. Similar relationships 
an be dedu
edfor hxii and hx2i i by averaging the model equations over long time periods. These
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Figure 5.1: Spe
tral bifur
ation diagrams for 
onstant model, linear model, and truesystem, and model mis-mat
h with true system.
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relationships 
an then be exploited to determine how best to model the system'sma
ros
opi
 behaviour with the 
onstant or linear model.The one level system equation 2.1 is:dxidt = xi�1(xi+1 � xi�2)� xi + F: (5.1)Multiplying ea
h side of this equation by xi, we obtain
xidxidt = 12 dx2idt = x1xi�1(xi+1 � xi�2)� x2i + Fxi: (5.2)Summing over all i, the adve
tion terms 
an
el out, leaving12 nXi=1 dx2idt = � nXi=1 x2i + F nXi=1 xi: (5.3)

Let L be a real number. Then1L Z L0 12 nXi=1 dx2idt dt = � 1L Z L0 nXi=1 x2idt + 1LF Z L0 nXi=1 xidt: (5.4)
Now, taking the limit as L goes to in�nity, the left hand side is just

limL!1 1L 12 nXi=1 x2i : (5.5)
It is easily seen, for example by the Trapping Region Lemma [1℄, that xi is bounded,and so the above term goes to zero in the limit. The �rst term on the right handside, meanwhile, 
onverges to nhx2i i, where the average is over the attra
tor, and these
ond term is nhxii. Therefore we obtain the result that the mean of x2i is equal tothe for
ing times the mean of xi: hx2i i = F hxii: (5.6)A similar te
hnique 
an be applied to the two level system. Equation 2.2 for thelarge s
ale variables isd~xidt = ~xi�1(~xi+1 � ~xi�2)� ~xi + F � h
b mXj=1 ~yi;j: (5.7)
The same pro
edure as that followed above gives a similar result, but now there is anadditional term due to the ~yi;j variables:

h~x2i i = F h~xii � mh
b h~xi~yi;ji: (5.8)
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The system equation for the ~yi;j variables isd~yi;jdt = 
b~yi;j+1(~yi;j�1 � ~yi;j+2)� 
~yi;j + h
b ~xi: (5.9)Multiplying now by ~yi;j and pro
eeding as above gives
h~y2i;ji = mhb h~xi~yi;ji: (5.10)Combining these equations yields

h~y2i;ji = 1m
(F h~xii � h~x2i i): (5.11)This result means that information about the �ne-s
ale ~yi;j variables 
an be dedu
edby observing only the large-s
ale ~x variables.Suppose now that we wish to model the ma
ros
opi
 behaviour of the two levelsystem using the 
onstant model with for
ing P 
. For the model, we havehx2i ihxii = P 
 (5.12)
while for the system we have h~x2i ih~xii = F � m
h~y2i;jih~xii : (5.13)
If we demand that the ratio of the �rst and se
ond moments agree, sohx2i ihxii = h~x2i ih~xii ; (5.14)
then it follows that P 
 = h~x2i ih~xii : (5.15)The value of P 
 arrived at is not the same as the value used in Chapter 3 forshadowing purposes. At F = 10, for example, the optimal for
ing is 8.87 as opposedto 9.63 for shadowing. Also, the 
hosen value of P 
 gives the 
orre
t ratio of hx2i i tohxii, but never the 
orre
t value of either term. This is seen in Figures 5.2 and 5.3,whi
h show h~xii and h~x2i i respe
tively, along with the 
orresponding values of hxiiand hx2i i for the 
onstant model with for
ing P 
. In either graph, the 
urve for themodel is below the 
urve for the system, so it is impossible to arrive at a 
onstantmodel whi
h has both hx2i i and hxii 
orre
t simultaneously.An interesting feature of the graphs is that the quantities vary in a regular mannerwith for
ing. The mean h~xii goes approximately with the square root, and h~x2i i with135
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the square of for
ing. It seems reasonable that model error should also vary in asimple way with for
ing.One might expe
t to do a better job of modelling the two level system with thelinear model, whi
h has two parameters to adjust. The relationship between hx2i i andhxii 
an be 
omputed for the linear model just as for the 
onstant model. Re
all thatthe linear model has a for
ing term Pl with 
omponents given byPli(~xi) = �0 + �1~xi: (5.16)Following the pro
edure above, we 
al
ulate thathx2i ihxii = �01� �1 (5.17)
with the additional linear term in the parameterisation introdu
ing a fa
tor 1��1 inthe denominator. Thus, to preserve the ratio hx2i ihxii of the true system, we require�01� �1 = h~x2i ih~xii (5.18)
whi
h solved for �1 gives �1 = 1� �1 h~x2i ih~xii : (5.19)Therefore, given a value of �0, the 
orresponding value of �1 
an be found.Figure 5.4 shows how the ratio of hxii to h~xii 
hanges with the for
ing o�set �0�F .A graph of the ratio of hx2i i to h~x2i i is indistinguishable. The ratios is approximately1.0 when the o�set is zero, or �0 = F . The 
orresponding value of �1 is then

�1 = 1� F h~xiih~x2i i : (5.20)
For F = 10, the resulting slope is �1 = �0:127079. To the margin of error, these
oeÆ
ients are indistinguishable from the values �0 = 10 � 0:046 and �1 = �0:122used in the linear model for shadowing purposes.In fa
t, the linear model, as derived for shadowing, turns out do a �ne job ofreprodu
ing the true system's ma
ros
opi
 behaviour over a range of for
ings. Figure5.5 shows hxii for the linear model 
ompared to h~xii for the system as a fun
tion ofsystem for
ings, while Figure 5.5 shows hx2i i 
ompared to h~x2i i. Agreement is ex
ellentex
ept in the regions near F = 1:3 and F = 7. The area around F = 1:3 was found inChapter 3 to be a problem for both the 
onstant and linear models, sin
e this is thepoint where the �ne-s
ale variables be
ome non-zero in the true system. Referring to
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the spe
tral bifur
ation graphs in Figure 5.1, the problem around F = 7 appears tobe that the system is already 
haoti
, while the model is in a quasi-periodi
 region.Apart from these areas, 
orresponden
e is almost exa
t. The linear model is 
ertainlythe simplest model whi
h su

essfully reprodu
es the ma
ros
opi
 behaviour of thetrue system.Beyond hxii and hx2i i, one might ask what other aspe
ts of the 
limatology 
anbe modelled. In the next se
tion we look at the F = 10 two level system 
limatologyin greater detail, and 
onsider other ways of approximating it.
5.3 Modelling the 
limatology of the two level sys-temThe linear model may be the simplest model to 
apture the mean and varian
e of thetwo level system, but, as seen by the spe
tral bifur
ation diagram Figure 5.1, it is stillnot perfe
t at modelling the power spe
trum. In this se
tion we try other approa
hesto �nd models whi
h produ
e a similar 
limatology to that of the true system, forthe spe
i�
 for
ing F = 10, where the de�nition of `similar' is broadened to in
ludephase spa
e plots and the power spe
trum.Along with the 
onstant and linear models, we 
onsider also two other models
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onstru
ted using sto
hasti
 methods. The motivation here for sto
hasti
 models isto see if the 
limatology 
an be improved by adding random terms whi
h make themodel statisti
ally similar to the true system.
5.3.1 Sto
hasti
 modelsThe �rst sto
hasti
 model we will 
onsider draws the for
ing at ea
h point from adistribution of observed for
ings. Suppose we observe the true system for
ing ~F(t) atK points on the attra
tor, where the points are 
hosen so their distribution re
e
tsthe natural measure. We then de�ne the modeldxidt = xi�1(xi+1 � xi�2)� xi + P ri randommodel (5.21)where P ri is 
hosen at random from the distribution at ea
h time step. In pra
ti
e,the size of the distribution was 10,000 points, taken from an orbit at intervals of 0.185time units, whi
h is the de
orrelation time for ~F(t).The se
ond sto
hasti
 model attempts to better model the data by using an AR(1)�t [11℄ to generate a time series of the formPAR(n) = h ~F i+ a1PAR(n� 1) + a0: (5.22)The 
ovarian
e term a1 is given by e�1=nd, where nd is the (non-integer) number oftime steps 
orresponding to the de
orrelation time for ~F(t). For this model, theresulting 
ovarian
e was a1 = 0:97. The term a0 is a random term, with zero meanand varian
e 0.165 
hosen to make the AR(1) series varian
e mat
h the true varian
e.The model is thendxidt = xi�1(xi+1 � xi�2)� xi + PARi AR(1) model: (5.23)Adding sto
hasti
 terms to a model seems unlikely to improve shadowing perfor-man
e, sin
e random perturbations will only add to the for
ing error varian
e, whi
hwas seen in Chapter 3 to limit shadowing times. In fa
t, we have to be 
areful abouthow we de�ne shadowing times for these systems. In the 
ase of the random model,for example, there will be one series of random 
hoi
es of the for
ing whi
h will beexa
tly the same as for the true system, and therefore shadow inde�nitely. What we
an ask instead is whether adding the random terms on average in
reases or de
reasesthe time that the model will tra
k the true system. As expe
ted, the answer is that itde
reases tra
king times. The 
onstant model shadows at F = 10 and shadow radius
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0.4 for about 0.6 time units, while the random model tra
ks on average 0.46 timeunits, and the AR(1) model an average 0.32 time units.Note also that, if redu
ing the drift is the goal, then, be
ause the drift measuresthe integral of the velo
ity error over a �xed time, it follows that a parameter variedsto
hasti
ally with time will give the same drift as one where the same parameteris held 
onstant at some intermediate value over the predi
tion period. Thereforesto
hasti
 models o�er no real advantage over non-sto
hasti
 models in improvingshort term predi
tability. The question is then whether they a�e
t the long termbehaviour.
5.3.2 Proje
tion on EOF'sOne te
hnique used by meteorologists to analyse the 
limatology is to look at theproje
tions of the system onto the empiri
al orthogonal fun
tions, or EOF's. TheEOF's are de�ned as the eigenve
tors of the matrixOTO, whereO is aK by n matrix
ontaining K points distributed on the attra
tor, and n is the dimension of the model(in this 
ase 8). The eigenvalues indi
ate the degree of varian
e attributable to ea
hEOF. Therefore the EOF with highest eigenvalue will have the highest varian
e.The �rst four EOF's for the true system are shown in Figure 5.7. Model EOF'sare similar. The �rst two pairs of EOF's 
an be viewed as pairs of standing wavesaround the 
ir
le, whi
h are out of phase by a quarter period. Be
ause the indi
esare 
y
li
, the starting point is arbitrary, and only the phase and the relative phasedi�eren
e is important.There is a small but signi�
ant di�eren
e between models in the degree of vari-an
e for whi
h ea
h EOF is responsible. The results are summarised below, and area

urate to about 0.1 per
ent. The linear model is in good agreement, while thesto
hasti
 models and the 
onstant model are all out by the same amount, whi
h isabout 1 per
ent for the �rst two EOF's and 0.5 per
ent for the next two.
Table of per
entage of varian
e in EOF's.model 1 and 2 3 and 4truth 22.6 14.3
onstant 21.5 13.8linear 22.7 14.1random 21.5 13.8AR(1) 21.5 13.9
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Figure 5.7: EOF's for true system. The horizontal axis is the index i of the variablesxi around the 
ir
le.

In Chapter 2, we studied the system by looking at orbits of x1 versus x2. We nowre�ne this approa
h by �rst proje
ting the orbit onto the higher varian
e EOF's. Thiswill 
apture the high varian
e aspe
ts of the system behaviour in an eÆ
ient way. Forexample, the �rst two EOF's are responsible for about 45 per
ent of the varian
e,while the next two are responsible for another 27 per
ent. A further improvement isto do a 
ontour plot of the probability density in the EOF's, rather than a simpletra
e of the orbit.Be
ause of the rotational symmetry in the systems, the �rst two EOF's are phaseshifted versions of one another, as are the next two. One approa
h is to proje
t ontoEOF's 1 and 3. Another method, whi
h gives slightly 
learer �gures, is to 
al
ulatethe proje
tion onto the �rst two EOF's, get the modulus, proje
t onto the next twoEOF's, get the modulus, and plot a histogram of these two numbers. This has beendone in Figure 5.8. The di�eren
e between the true system and the models is shownin Figure 5.9. Again, results for the sto
hasti
 models are similar to the 
onstantmodel, while the linear model gives the best results. The histograms were generatedby 
al
ulating 250,000 points, sampled on
e every 0.2 time units from a long orbit.A test was also performed with only 50,000 points. Results are similar to the longorbit, suggesting that the di�eren
e between the true system and the models is a realone, and not a numeri
al artefa
t.The �nal method 
onsidered for viewing the 
limatologies was to look at the powerspe
trum of an orbit's proje
tion onto the �rst EOF. Figure 5.10 shows the spe
trafor ea
h model 
ompared with the full system. The linear model again has the best
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Figure 5.8: Histogram of modulus of orbit proje
ted onto EOF's 1 and 2 (verti
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Figure 5.9: Climatology error, expressed by 
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�t.
5.4 SummaryIn this 
hapter we looked �rst at analyti
ally derived properties of the Lorenz system
limatologies. Properties relating the mean to the varian
e were found, whi
h donot depend on whether the system is in a 
haoti
 or periodi
 state. It was shownthat optimising the mean and varian
e of the 
onstant model result in a 
onstantfor
ing whi
h is di�erent from that used for short term predi
tion, while for thelinear model the parameters 
losely mat
hed those used for shadowing. Therefore theoptimisation of short term predi
tability may, or may not, be the same as optimisingfor 
limatology, depending on the parti
ular model/system pair.Attempts were then made to model the two level 
limatology, using variants ofthe one level system. The 
on
lusion appears to be that the linear model, whi
h isbest for shadowing, is also best at reprodu
ing the 
limatology of the full system.This may be related to the fa
t, seen in Chapter 3, that the linear model redu
es low145



frequen
y (and therefore long term) model error. Adding sto
hasti
 terms does littleto improve the 
onstant model, even if the term is an AR(1) �t to the real errors.This result seems unsurprising, sin
e, in general, we would expe
t the 
limatologyto be in
uen
ed by the average for
ing, and less by short term random 
u
tuations.The random models are a
tually worse at shadowing than the 
onstant model, whi
his 
onsistent with the hypothesis that model error is dominated by the for
ing errorvarian
e.
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Chapter 6
Operational weather fore
asting
models
Up until this point the theory related to model error has been applied to low andmedium dimension systems. Sin
e the key results have been determined from thelinearised dynami
s, whi
h are valid for any model/system pair provided the shadowradius is suÆ
iently small, the methods are equally appli
able to models with veryhigh dimension, su
h as weather models.Referring to the linearised dynami
s equation (4.13), a fair amount is known aboutthe linear propagator M for su
h models, be
ause of the investigations into singularve
tors and dire
tions of fastest growth for perturbations in initial 
onditions. Thenegle
ted part of the equation is the drift d, about whi
h very little is known [30℄.In this 
hapter we begin to re
tify that imbalan
e by studying the dynami
s of anumber of di�erent resolution models in use at ECMWF. In the same way as for theone-layer Lorenz model versus the two-layer system, we will 
al
ulate model drift andshadow times, �rst between the di�erent models, and then between the operationalmodel and the analysis (the 
losest thing available to the real weather). Finally wedis
uss methods to improve the fore
asts by using information about the likely error.Before going on to examine the models in detail, though, we �rst des
ribe some ofthe 
hief 
hara
teristi
s of weather models to understand how they work and whereerror 
an arise. A summary of results from previous investigations into model errorwill also hopefully 
ast some light on how we arrived at the odd situation of knowingmore about the error's �rst order term - the linear propagator - than its zero orderterm - the drift.
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6.1 Causes of model errorGlobal weather predi
tion models of the type used at ECMWF and other nationalor international meteorologi
al 
entres are extremely 
omplex models, with the orderof 107 variables. The models are formulated using Galerkin trun
ations of the 
uiddynami
 partial di�erential equations, whi
h des
ribe the evolution of mass, energy,momentum and 
omposition, in
luding terms representing sour
es and sinks [49, 69℄.The models are integrated on some of the fastest 
omputers in the world, with typi
alspeeds of 1011 
oating point operations per se
ond.One problem with su
h huge models is that they are too 
omplex: there are manythings that 
an go wrong, and the size of the models makes it diÆ
ult to analyse theerrors and determine the 
ause. Another problem is that they are not 
omplex enough.A typi
al spatial resolution is about 50 km horizontally and 1 km verti
ally. The limitto the resolution is determined, not by some s
ienti�
 
hoi
e, but by the 
apa
ity ofthe 
omputer. Therefore any �ne-s
ale pro
esses must be parameterised, in the sameway that the for
ing in the Lorenz one-level model was used to parameterise thetwo-level system.Apart from the �nite resolution, there are many other possible 
auses of model er-ror. The Earth's atmosphere must be one of the hardest modelling tasks that mankindhas ever attempted. Anyone who has built a �nite element model of a me
hani
alstru
ture is aware of the potential for unforeseen error (the author's own experien
ein this regard is with super
ondu
ting magnets, where a

ura
ies of parts in 104 orbetter are attainable in theory, but less often in pra
ti
e [46℄). For example, the mostimportant 
onstituent in the atmosphere for the 
uid dynami
s is water (in its variousphases). Unfortunately it is also one of the most diÆ
ult to model, and pro
essesto do with the formation and dissipation of 
louds need to be modelled parametri-
ally. Other potential sour
es of error are the intera
tion between the weather andthe earth, su
h as surfa
e heat 
uxes or momentum transfer through tomography;in
orre
t assessment of radiation due to poor 
loud fore
asts; and ina

urate modelinterpolation over data-poor regions, whi
h leads to proje
tion errors. The models
urrently in use are therefore de�nitely wrong; the question is, how wrong are they?
6.2 The perfe
t model assumptionWhile model error 
ertainly has a role to play in weather fore
asting, most inves-tigations into error, at least over the last de
ade, have 
on
entrated on the initial
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ondition, and led to the development of ensemble methods. The reason for thisemphasis on initial 
ondition isn't 
lear, though it may have been due in part tothe interest in 
haoti
 systems engendered by Lorenz's dis
overy in 1963 [37℄ thatthe atmosphere is 
haoti
. They say that a s
ienti�
 revolution takes thirty yearsto be absorbed: a key paper exa
tly thirty years on was that by Toth and Kalnaywhi
h introdu
ed the breeding ve
tor method for produ
ing ensemble perturbations(a method similar to the singular ve
tor method, but 
hoosing dire
tions whi
h havegrown most qui
kly in the re
ent past). Here is a quote from that 1993 paper [67℄:
The repla
ement of single operational fore
asts by an ensemble of initialfore
asts re
e
t expli
itly the re
ognition that the atmosphere is a 
haoti
system. As pointed out by Lorenz (1963), even an in�nitesimally smallperturbation (as would be produ
ed, for example, by the `wings of a but-ter
y') introdu
ed into the state of an atmosphere at a given time willresult in an in
reasingly large 
hange of the evolution of the atmospherewith time, so that after about two or three weeks the traje
tories of theperturbed and the original atmosphere would be 
ompletely di�erent.Lorenz's dis
overy led to ... the realization that many apparently deter-ministi
 systems, like the atmosphere and its numeri
al models, are also
haoti
: arbritrarily small perturbations evolve into large di�eren
es withtime.If we are willing to run an ensemble of fore
asts from slightly perturbedinitial 
onditions, then averaging the ensemble 
an �lter out some of theunpredi
table 
omponents of the fore
ast, and the spread among the fore-
asts should provide some guidan
e on the reliability of the fore
asts.

The stated aims of ensemble fore
asting, therefore, are to provide a more a

uratefore
ast, from the mean, and a 
on�den
e level, from the spread. The te
hniquewill obviously work best when model error is small, and it was felt that models hadimproved enough over those of the 1960's and 70's that model error had be
omealmost irrelevant. From Toth et al [68℄:In the early years of NWP, fore
ast errors due to simpli�ed model for-mulations dominated the total error growth. The traditional per
eptionthat fore
ast errors are primarily due to model errors date ba
k to thoseearly years. By now, however, models have be
ome mu
h more sophisti-
ated and it is the errors that arise due to instabilities in the atmosphere149



(even in 
ase of small initial errors) that dominate fore
ast errors. There
ognition of this situation requires a major shift in the per
eption ofNWP.For the purposes of the 
al
ulations, then, the model was assumed to be perfe
t:In this paper we will assume that our numeri
al model is essentially perfe
t... As Reynolds et al. (1993) have showed, the fore
ast error in the extra-tropi
s is dominated by the error originating from the unstable growth ofinitial errors, and not by model de�
ien
ies.A similar assumption was made for the ECMWF ensemble predi
tion s
heme(EPS) in Buizza et al [7℄:From its in
eption, the EPS has been based on the premise that medium-range fore
ast errors are predominately asso
iated with un
ertainties ininitial 
onditions.These are statements of what is known as the `perfe
t model assumption', and itunderlies most of the development of ensemble te
hniques based on perturbations ofthe initial 
ondition (other te
hniques perturb the model as well, and we will 
ome tothem below). The assumption appears in di�erent forms whenever su
h te
hniquesare dis
ussed. Usually it is posed only as a working assumption, but sometimes it isexpressed almost as a statement of fa
t. From Buizza et al [7℄:... the hypothesis of the dominant role of initial un
ertainties is 
ertainlyvalid in the early fore
ast range ...The same paper goes on to say that the perfe
t model assumption doesn't alwayshold: in fa
t,... model errors 
an be
ome as important as initial 
ondition un
ertaintiesin the medium fore
ast range.The belief that model error is only important for longer fore
ast times 
ould bedubbed the `nearly perfe
t model' assumption. It is e�e
tively saying that model erroris initially small, 
ausing a perturbation whi
h is then ampli�ed by `
ow-dependentinstabilities of the 
haoti
 
limate attra
tor' [49℄. It a
tually refers, not to modelerror itself, but to the displa
ement error whi
h is initiated by a small perturbation.The drift for su
h a nearly perfe
t model would still be small, and the model errorindex low. 150



Papers quoted in support of the nearly perfe
t model assumption in
lude Downtonet al [21℄ and Ri
hardson et al [57℄. The �rst paper noted that di�erent modelsoften gave di�erent results, and set out to dis
over whether this was due to themodels themselves or the fa
t that they were initiated from di�erent analyses. Itexamined in detail six 
ases during the autumn/winter of 1985/86 where the UKMeteorologi
al OÆ
e (UKMO) operational fore
ast disagreed signi�
antly with theECMWF fore
ast. The approa
h used was to run the ECMWF fore
ast from theinterpolated UKMO analysis, and vi
e versa. In most instan
es, it seemed thatthe models produ
ed similar fore
asts providing they were initiated with the sameanalysis. `Similar' here was not so mu
h in terms of RMS �elds, but in variousqualitative properties of the 500 hPa heights, su
h as development of lows, highs,troughs, ridges and so on. The emphasis was on errors after �ve days.The se
ond paper studied the relative e�e
ts of using di�erent analyses and dif-ferent models for 25 
ases in the winter/spring 1996/97 period. In ea
h 
ase, a per-turbation was made to the ECMWF analysis approximating the di�eren
e betweenit and the UKMO analysis. Fore
asts with the ECMWF model from this analysiswere 
ompared with the EPS 
ontrol fore
ast, to determine analysis di�eren
es, andwith the UKMO model to determine model di�eren
es. It was found that the e�e
tof using a di�erent analysis was `substantially greater' than that of using di�erentmodels, as measured by RMS errors in the 500 hPa height. At day 5, model di�er-en
es were found to a

ount for only 25 per
ent in the Northern and 15 per
ent in theSouthern hemispheres, though this was 
onsidered an upper bound sin
e it 
ontainedalso errors in the representation of the UKMO analysis.Another paper taking a similar approa
h was Harrison et al [28℄. It noted thatthe `the weight of eviden
e appears to suggest that analysis di�eren
es are the more
riti
al in 
ontrolling fore
ast divergen
e', but also that `the overall 
ontribution ofmodel and analysis dependen
ies to the divergen
e of fore
asts have not been fullyelu
idated and further evaluation is desirable'. The paper went on to examine two
ase studies 
omparing the ECMWF T63 model with the UKMO Uni�ed Model at
omparable resolution. Four ensembles, ea
h with 33 members, were 
onstru
tedusing all permutations of models and analyses. The initial perturbations for the en-semble were generated from ECMWF singular ve
tors. It was found that `signi�
antdi�eren
es between all four ensemble sets were found in ea
h 
ase-study', where theemphasis was again on the medium range (5 days). The writers 
on
luded that itmight be preferable to in
lude both models, so that the ensemble 
ontained, not onlydi�erent initial 
onditions, but di�erent models: a multi-model ensemble.
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6.3 Multi-model ensemblesThe use of ensembles 
omprised of di�erent models is an extension of the te
hniqueof initial 
ondition ensembles. If di�erent models give di�erent results, then in
orpo-rating all the models in the ensemble should take that e�e
t into a

ount.The 
on
ept of using a 
ombination of models to provide a fore
ast is a
tually notvery new [28℄. Meteorologists have a

ess to produ
ts from all the major weather 
en-tres, and have always used their experien
e of model performan
e and atmospheri
behaviour to 
hoose the model whi
h seems most appli
able. (The �nal fore
ast,though, was usually based on a single model.) This tradition is 
arried on by 
om-panies like Risk Management Solutions, whi
h, when predi
ting hurri
ane tra
ks forinsuran
e 
ompanies, use a 
ombination of available models and histori
al data, orby the Fleet Numeri
al Meteorologi
al Centre whi
h regularly produ
es a 72 hourfore
ast whi
h is the mean of the fore
ast from several 
entres [30℄. It has been foundthat the di�eren
e between fore
asts 
an be a good predi
tor of fore
ast skill [75℄.Multi-model ensembles 
ome in two 
avours. The �rst is to use a 
ombination ofmodels from di�erent 
entres. The se
ond approa
h is to perturb the parameters ofa single model, analogous to the randomly perturbed Lorenz models of Chapter 5.This 
an be viewed as an attempt to add a perturbation to the model whi
h 
apturesthe likely nature and extent of model error.In the past, attempts were made to a

ount for model error by adding randomperturbations to the entire model, rather than parti
ular parameters. Philips [51℄suggested using a white noise des
ription for the model error. Bennet and Budgell [3℄
laimed that the tail of the spe
trum should be 
onstrained, so as to be 
onsistentwith regularity of model solutions. Su
h a model error des
ription was used by Cohnand Parrish [14℄, who adjusted the length s
ale of the model error to the length s
aleused in the National Centers for Environmental Predi
tion regional analysis system.Dee [19℄ investigated the estimation of model error parameters using an analysis ofinnovations.As Houtekamer et al. [30℄ pointed out, it wasn't 
lear whether su
h an idealisedmodel error had the same 
hara
teristi
s as the real error, or whether their additionwould aid an ensemble system. The whole prin
iple behind ensembles, to put thingsrather bluntly, is that we add garbage to the solution in the hope that the ensembleof perturbed solutions will give an improved pi
ture of where truth lies; but we atleast want to add the right kind of garbage.
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A more sophisti
ated s
heme is to a
tually perturb those physi
al parameters inthe model whi
h are felt to have a degree of un
ertainty. When 
ombined with initial
ondition errors, this means that every un
ertain variable is perturbed - a methoddubbed the system simulation experiment, or SSE [73, 74, 31, 50℄. Houtekamer et al.[30℄ in
orporated into their SSE di�erent parametrizations of a number of model areas.Parti
ular attention was fo
used on the areas of orography and deep 
onve
tion, whi
hwere thought to be parti
ularly de�
ient [56℄, and the treatment was also extendedto horizontal di�usion, radiation, and gravity wave drag.A similar approa
h was taken by Buizza et al. [8℄ at ECMWF, fo
ussing on theparametrization of the diabati
 tenden
y. The diabati
 for
ing term for ea
h gridpoint was 
hosen randomly from a pres
ribed range. The for
ing term also variedwith time: it was noted that `even if the parametrized and a
tual diabati
 heating�elds agree on average (i.e. over many time steps) at the 
hosen grid point, theremust inevitably be some standard deviation in the time-step by time-step di�eren
ebetween observed and modelled heating'. The s
heme was therefore similar in prin-
iple to that in Chapter 5 where random perturbations were assigned to the for
ingof the one-level system.The SSE approa
h doesn't make the perfe
t, or nearly perfe
t, model assump-tion; but it does assume that the models 
an be 
orre
ted, or at least substantiallyimproved, by varying the parameters. This is what we might 
all the `stru
turallyperfe
t assumption'.
6.4 Problems with the ensemble approa
hThe use of ensembles has be
ome quite broadly a

epted in the meteorologi
al 
om-munity, and ensemble 
al
ulations have been exe
uted routinely at ECMWF sin
e1992. They seem well adapted to the problem of addressing initial 
ondition error,be
ause the error in that 
ase is in an unknown dire
tion, but is (probably) withina 
ertain magnitude. It is also possible to 
hoose the perturbations whi
h grow thefastest, and therefore estimate the likely spread of fore
asts.Referring to Figure 4.3, though, the usefulness of an ensemble fore
ast, in termsof the mean and, to a lesser degree, the spread, will depend on the model error. Ifmodel error is high, then the ensemble mean may be no more a

urate than a single
ontrol fore
ast. As stated in [68℄:The ensemble strategy will work only if the models are good enough thatmodel-related errors do not dominate the �nal error �elds.153



Therefore we are brought ba
k to the perfe
t, or at least the near-perfe
t, modelassumption. Unfortunately, eviden
e for the near-perfe
t model assumption is mostly
ir
umstantial, and is based on the observation that models from di�erent weather
entres produ
e similar results. In fa
t, this is hardly surprising, be
ause of thepro
ess by whi
h the models are built: the meteorologists all read the same booksand attend the same 
onferen
es, so when an advan
e is made in one area it isadopted fairly qui
kly by the others. It is notable that the one paper whi
h founda distin
t di�eren
e between fore
asts [29℄ atributed it to a problem with one of themodels, whi
h was eventually 
orre
ted. In pra
ti
e, it has been found that ensembles
onsistently underestimate the spread, and that the mean is no better than the 
ontrol[6, 70℄; 
hara
teristi
s whi
h are both 
ompatible with high model error.The use of ensemble te
hniques to understand model error is even more prob-lemati
 than its use for initial 
ondition error, though for di�erent reasons. It hasbeen stressed in this thesis that model error and initial 
ondition error are di�er-ent entitities; therefore they demand di�erent approa
hes. Ensemble methods are atleast theoreti
ally suited to initial 
ondition error, sin
e the true initial 
ondition isassumed to lie within some ball of radius 
orresponding to the analysis error. Modelerror, in 
ontrast, is more diÆ
ult to address. It 
ould be simply impossible to 
on-stru
t a suitable set of equations [63℄. Perturbing model 
oeÆ
ients won't help if themodel is stru
turally de�
ient. With initial 
onditions, we know the type, if not thedire
tion, of the garbage that we want to add; with the model, we 
an make edu
atedguesses about un
ertainty of 
ertain parameters, but have no guarantee that we haveaddressed the real sour
e of error.The most important di�eren
e between ensembles of initial 
onditions and ofmodels, though, is that we 
an 
hoose those initial 
onditions whi
h, out of all possibleperturbations, will 
reate the largest error, but we 
an never do the same for models.An ensemble of models from di�erent 
entres is a very poor sample of model spa
e;and a sto
hasti
ally perturbed model will not represent the real errors if the modelis not stru
turally perfe
t. Indeed, there may be no a

essible set of equations thatperfe
tly mimi
 the dynami
s of the system [63℄.The fo
us here will therefore be, not on 
reating ensembles, but on measuringmodel error and determining its 
hara
teristi
s. (After all, the 
onstant model wasimproved, not by taking an ensemble of models with di�erent 
onstant for
ings, butby looking at how a simple parameterization 
ould redu
e error: the linear model.)This is not to say that the ensemble approa
h isn't adaptable to model error; ratherthat, as for initial 
onditions, if we intend to perturb our model by adding garbage to
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it, we need to have a very good idea whi
h kind of garbage we should add. We beginthat investigation by 
omparing ECMWF models of di�erent resolution.
6.5 Error between models of di�erent resolution
6.5.1 The range of ECMWF modelsThe fore
ast models at ECMWF have undergone a number of 
hanges in resolutionsin
e operational fore
asting began over 20 years ago. Here is a brief summary oftheir histori
al development.In April 1983, a 15-level �nite di�eren
e model, based on a regular longitude/latitudegrid, was repla
ed by a T63 16-level spe
tra model, with the extra level in the plan-etary boundary layer. Spe
tra models exploit the spheri
al geometry of the globeby using a trun
ated series of spheri
al harmoni
s (produ
ts of sinusoidal fun
tionsin the zonal dire
tions and Legendre fun
tions in the meredinial dire
tion). A T63model trun
ates the series above order 63.Further improvements followed. In May 1985, the horizontal resolution in
reasedto T106. A year later, verti
al resolution be
ame 19 levels, with the three extra levelsin the stratosphere. In September 1991, horizontal resolution be
ame 213 and verti
al31, with layer spa
ing redu
ed by a fa
tor of about two. In April 1998, spe
tral reso-lution be
ame T319, but used a `linear-grid' option in whi
h the 
omputational gridremained the same (about 60 km) as for the old T213. In Mar
h 1999, verti
al layersin
reased to 50, with a layer spa
ing of about 1.5 km over most of the stratosphere.The EPS s
heme, meanwhile, was initiated in 1992 with a T63L19 model (the 19refers to the verti
al levels, the `L' refers to the linear grid option). In De
ember 1996the resolution was in
reased to T159L31. The singular ve
tors, whi
h are expensive to
ompute, are based on a lower resolution T42L31 model. There also exists a tangentlinear version of T42L31, whi
h linearises the adiabati
 
omponent of the model sothat an adjoint 
an be 
onstru
ted [10℄.There therefore exists a fairly extensive suite of models from whi
h to 
hoose.The resolution experiments in this thesis were based on the lower resolution T42L31and T63L31 models, using T159L31 as `truth'. These models have the advantage ofkeeping the same number of verti
al levels, so interpolation isn't required over thats
ale. Also an adjoint exists for T42L31, whi
h is required for the 
omputation ofshadow orbits.
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Figure 6.1: Model errors in the 500 hPa height norm. Left 
olumn shows analysisheights for days 1 to 4, middle 
olumn shows predi
ted heights, right 
olumn showserrors. Contour interval is 25 for the heights and 2 for the errors.
6.5.2 The energy metri
In order to 
al
ulate RMS errors, it is �rst ne
essary to 
hoose a metri
. One possible
hoi
e, whi
h is used 
ommonly by meteorologists, is the 500 hPa height. Figure 6.1shows how error grows in this metri
 over a typi
al four day fore
ast. After a 
ouple ofdays the di�eren
e between the analysed heights (left 
olumn) and predi
ted heights(middle 
olumn) has be
ome noti
eable. The error (right 
olumn) appears to have a�ner stru
ture than the height �elds themselves.The 500 hPa height metri
 may be useful for meteorologi
al interpretation of theweather, but it is less suitable for shadow 
al
ulations sin
e it only takes into a

ounta limited set of atmospheri
 variables, namely the geopotential at one level. Thesituation would be the same as doing shadow 
omputations for the 8D Lorenz system
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Figure 6.2: Errors for temperature T integrated over Europe, for a typi
al week.
with a single variable; as mentioned in Chapter 4, it may be possible to shadow forexample x1, but only by introdu
ing huge distortions into the other variables. Inweather terms, the pressure might be �ne in the middle atmosphere, but 
ompletelywrong at ground level.A more 
omplete measure of the atmospheri
 state is given by a simpli�ed versionof the total energy metri
. The ve
tor used to des
ribe the atmospheri
 state x at aparti
ular time is x = (u; v; T ) (6.1)where u and v are the zonal and meridional wind 
omponents, and T is the tempera-ture. Figure 6.2 shows errors for one of these variables, the temperature T , integratedover Europe. We de�ne the energy norm to be

hx;xi = 1=2 Z 10 Z Z�(u2 + v2 + (Cp=Tr)T 2)d�(�pr=��)d�: (6.2)The energy norm equals the sum of the kineti
 energy of the wind error and thepotential energy stored in the temperature error, and is the same as the total energynorm but with the relatively small surfa
e pressure 
omponent omitted. Tr is areferen
e temperature, pr a referen
e pressure, and Cp the spe
i�
 heat at 
onstantpressure for dry air. � is the horizontal domain, taken here to be northwards of 30degrees, and � the verti
al 
oordinate. Details are in [9℄.The energy norm appears more 
ompli
ated than the standard Eu
lidean norm,but it 
an be viewed numeri
ally as a weighted sum of squares of (u; v; T ) errors over a
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�nite element grid. Quantities su
h as singular ve
tors 
an be 
al
ulated in this normjust as they were for the Lorenz models in the Eu
lidean norm, with the di�eren
ethat the matrix transpose of the linear propagator be
omes an adjoint model [20℄,
al
ulated with respe
t to the total energy inner produ
t.
6.5.3 Fore
ast errorsThe upper panel of Figure 6.3 shows RMS errors in the energy metri
 at �ve di�erent�ve-day fore
asts starting at di�erent dates. For 
omparison, the typi
al analysisvarian
e, whi
h is used to determine perturbation size in ensemble fore
asts, is about45 units on this s
ale. The model traje
tories diverge from the true system (TL159)at a fairly 
onstant rate, with T63 
onsistently performing better than T42 as onewould expe
t. The lower panel shows the ratio of T42 errors to T63 errors. What issurprising is the uniformity of the results; there is little eviden
e of �
kle sensitivityto initial 
onditions for these �ve starting dates. Nor does growth appear to beexponential in shape, whi
h is the typi
al 
hara
teristi
 of initial 
ondition error.Rather, the 
urvature is negative, so rate of growth a
tually de
reases with time.Interpretation of the fore
ast results is 
ompli
ated by the ambiguity in the start-ing points. The fore
ast errors are not all zero at time zero be
ause of the trun
ationoperator whi
h translates TL159 �elds to T42 or T63 �elds. For the fore
asts 
onsid-ered here, the mismat
h is about 40 energy units for T42 and 25 for T63. This stillallows the possibility that trun
ation error is responsible for the divergen
e of fore-
asts: a small initial error is magni�ed by the nonlinear dynami
s, and the problemwould not then be of model error, but of sensitivity to initial 
onditions. In that 
aseit would be possible to shadow for extremely long times, sin
e the negligible modelerror 
ould be 
ountera
ted by an appropriate 
hoi
e of initial displa
ement.
6.5.4 Cal
ulation of the driftFrom the fore
ast alone, we 
an't separate out the e�e
ts of model error and initial
ondition error, sin
e as soon as the model diverges from the true orbit initial 
ondi-tion error begins to grow. We therefore 
al
ulate the drift. A number of short, twelvehour fore
asts were made with T42 and T63, starting at twelve hour intervals alongthe TL159 fore
ast, and the results integrated numeri
ally to give the drift. Figure6.4 shows how the drift a

umulates with time for T42 and T63. The ratio of thedrifts is also shown in the lower panel of Figure 6.3; as for the fore
asts, it is nearly
onstant at 1.4 over the fore
ast time.
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Figure 6.4: The upper panel shows a plot of T42 errors with respe
t to TL159 forstarting date 15/10/99. Solid line is the fore
ast, dashed line is the shadow traje
torywhi
h minimised error at 48 hours, dotted line is the drift. The un
orre
ted drift isin pla
es larger than the fore
ast error, due to a spin-up error whi
h is probably
aused by trun
ation error. The two estimates for the lower bound on shadow radius,
omputed using estimates of the drift, are shown by the shaded region. Errors are
omputed in the energy norm, relative to TL159. The lower panel shows the samefor T63.
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Figure 6.5: Comparison of drift for T63 vs TL159, 
omputed with step sizes of 3, 6and 12 hours.
If model error were truly negligible, then we would expe
t the drift to be smallerthan the fore
ast error, sin
e the tenden
y di�eren
e is always 
al
ulated on theTL159 orbit where displa
ement error is minimal. In fa
t, the magnitude of the driftis 
lose to the magnitude of the fore
ast error. At times it is even larger: the reasonappears to be that there is an initial spin-up error asso
iated with ea
h short fore
ast,whi
h may be an artefa
t due to the initial trun
ation error. Tests with di�erent timesteps show that the drift 
al
ulation is dependent on step size. For example, Figure6.5 shows the drift for T63 versus T159 for step lengths of 3, 6 and 12 hours. Theresults show a marked dis
repan
y between the di�erent step sizes, with the 6 hourstep length giving a drift about 50 per
ent higher than the 12 hour number, and the3 hour step drift higher by the same amount again.This spin-up error, whose signature is a la
k of s
ale invarian
e in the drift 
al-
ulation, appears to be an unavoidable feature of the inter-model 
omparisons. Itmeans that a portion of the drift is due to spin-up e�e
ts, and the 
al
ulated drift isarti�
ially high. We will therefore attempt to deal with it using two methods, andnote that the same problem does not o

ur in the next se
tion, where the operationalfore
ast is 
ompared with the analysis, and the drift 
al
ulation is seen to s
ale withtime step.The �rst approa
h is to redu
e the drift by the errors in
urred during ea
h small
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fore
ast. For example, the drift 
al
ulation over 48 hours involves four short fore
asts,so 
ompared to a normal fore
ast there are three additional 20 unit errors. We 
ouldtherefore 
orre
t the 48 hour drifts by 60 units, giving a drift of 156 units for T42and 99 units for T63.The se
ond approa
h is similar to that adopted for the system of Chapter 4 withperiodi
 orbits on a 
ir
le, shown in Figure 4.25. In that example we 
ir
umventedthe problem of spin-up error by linearising the error around the model 
ontrol ratherthan truth. The 
ontrol error therefore serves as a proxy for drift. This method givesa result for 48 hour drift of 168 units for T42, and 114 units for T63.Given an estimate of the drift, we 
an determine its e�e
t on shadow times fromthe shadow law. The law has been shown to work for a range of low and mediumdimension models, but does it apply to full weather models, in all their 
omplexity?The 
onditions for the law to hold are that the model must be lo
ally dissipative,and the shadow times must be suÆ
iently short so that the linearised dynami
s arevalid for shadow orbits. The �rst 
ondition surely holds. For the se
ond 
ondition,it is known that the model be
omes nonlinear within a day or so [23℄. However, ifthe linearisation is done about truth, and only shadow orbits are 
onsidered, thenthe linearisation will hold for longer times be
ause the displa
ement is limited by theshadow radius (the error is O(kr2k)). It therefore seems reasonable to expe
t thatthe shadow law will apply.The shadow law states, in an RMS sense, that the minimum shadow radius for aset drift should be equal to half the drift. As mentioned above, there are two methodsfor estimating the drift given the large trun
ation errors. If we 
orre
t the drift bysubtra
ting the initial errors, we obtain an expe
ted minimum shadow radius of about78 units for T42, and 50 units for T63. If we use instead the 
ontrol error as a proxyfor drift, we �nd a radius of 84 units for T42, and 57 units for T63. The results ofthe two di�erent methods are shown by the shaded region in Figure 6.4.To summarise, it appears that both T42 and T63 have signi�
ant model errorrelative to TL159. Drift varies with step size, but is highest for the shorter step,implying that it is not due to initial 
ondition, and even when spin-up e�e
ts are sub-tra
ted it still a

ounts for most of the total fore
ast error. Estimating the minimuma
hievable shadow radius at a spe
i�ed time of 48 hours from the drift gives for T63a radius of around 50-57 units, 
lose to the analysis varian
e, and for the T42 modelaround 78-84 units.
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6.5.5 ShadowingThe above results are approximate, and hampered somewhat both by the initialtrun
ation error and the (perhaps related) fa
t that drift in
reases with lower stepsize. It might still be possible to 
onstru
t some s
enario where the drift is due,not to the model, but to the trun
ation error being 
onsistently in the same, rapidlygrowing dire
tion (for example, the dire
tion of the leading singular ve
tor). Werethis the 
ase, and model error was in fa
t small, then it should be possible to �ndshadow orbits whi
h shadow for two days with a mu
h smaller shadow radius thangiven above. The only way to test this is to look for a
tual shadow orbits.An ECMWF algorithm, originally designed to �nd optimal perturbations to o�setfore
ast errors [55℄, was employed to sear
h for su
h orbits. The method, based onthat used in 4DVAR data assimilation [36, 15℄, uses a Newton step minimisationpro
edure, and is similar to the 'pin
h' method des
ribed in Chapter 4, with thedi�eren
e that only the �nal energy error at 48 hours is minimised rather than thesum of the initial and �nal. The method is therefore not perfe
t, but sin
e theoptimisation time is quite short and the model reasonably linear over that period[34, 54, 71℄, it should produ
e satisfa
tory results. The gradient of the 
ost fun
tionis determined by use of the T42 adjoint, whi
h will only be an approximation to thetrue adjoint for T63. A total of 50 iterations were performed.Figure 6.4 shows the orbits whi
h the program found for T42 and T63. At timetwo days, the minimised error of the T42 fore
ast is 114 units, while for T63 it is 82units.The optimisation pro
edure gradually in
reases the initial error while it de
reasesthe �nal error, and sin
e for both T42 and T63 the initial 
ondition error is still smallerthan the �nal error it appears that the pro
ess isn't quite 
omplete. Convergen
e waslimited by 
omputer time and the eÆ
ien
y of the algorithm, but it seems reasonablethat traje
tories 
ould be found whi
h had the same initial and �nal displa
ementsequal to the average of the two. For T42, the average of initial and �nal is about 99units, while for T63 it is about 63.5. These are still above the lower bound estimateshown in Figure 6.4.Orbits with longer shadowing times may exist, as the method used isn't optimal;however, this 
on
ern would be more of an issue for longer shadow times where themodel was less linear. The fa
t that shadow behaviour is 
onsistent with results fromthe drift implies that the drift does not overestimate the 
ontribution of model error,and 
on�rms that both T42 and T63 have signi�
ant model error relative to T159. Atypi
al shadow toleran
e for operational purposes would be the same as the analysis
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varian
e, i.e. 45 units. It therefore appears that both models fail to shadow at thatradius while they are still in what would be 
onsidered a linear regime.
6.5.6 Ensemble 
al
ulationIf model error is signi�
ant 
ompared to displa
ement error, then the behaviour ofinitial 
ondition ensembles will be a�e
ted, as dis
ussed in Chapter 4 for the Lorenzsystems. A suitable guide to the possible impa
t is the model error indexM2(�) givenin equation 4.68, whi
h 
ompares the drift with the growth of the leading singularve
tor.Leading singular ve
tors normally grow in the energy norm by a fa
tor of about20 over 48 hours (the energy itself may in
rease by 400, so RMS errors will be thesquare root of that). From equation 4.68, the model error index for T42 will be

M2(�) = 1�1 = 0:05: (6.3)
To 
ompare with the Lorenz systems, this is 
loser to the 
onstant than the linearmodel. Sin
e model error had a signi�
ant e�e
t on ensembles for the Lorenz 
onstantmodel, we 
an expe
t it to do the same here.To test the e�e
t, an ensemble was formed for the T42 model by adding s
aleddispla
ements, equal in magnitude to the analysis varian
e, in the subspa
e of theleading 25 singular ve
tors. A total of 50 initial 
onditions were generated fromthe positive and negative perturbations. Figure 6.6 shows the resulting errors withrepe
t to both the T42 
ontrol (upper panel) and the T159 
ontrol (middle panel).The lower panel was generated by summing the errors in the upper panel with the
ontrol errors, with the assumption that they are orthogonal. If the upper panel errorsare 
aused by initial 
ondition error, while the 
ontrol errors are primarily 
aused bythe model, then, be
ause of the high dimension of the spa
e, it is safe to assume theyare orthogonal. The agreement between the 
entre and lower panels 
on�rms this.Figure 6.7 
ompares the two only leading singular ve
tor perturbations of theweather model with those of the Lorenz system (see also Figure 4.3). It illustratessome of the key similarities and di�eren
es between the weather models and theLorenz systems, and between high and low dimension systems in general. The upperpanels follow quite similar 
urves for either system. In the lower left panel, the T42
ontrol has a negative 
urvature, unlike the Lorenz system. We will see later thatthis 
urvature is 
hara
teristi
 of model error in high dimension systems. The biggestdi�eren
e is that in the lower dimension Lorenz system the model error signi�
antly
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a�e
ts the error for the singular ve
tor perturbations, in
reasing it in one 
ase andde
reasing it in the other, while in the weather model the errors appear largely un-a�e
ted. Also the lower panel for the Lorenz system, whi
h assumed the errors wereorthogonal, is a less good �t to the real errors than for the weather model. Theexplanation lies in the dimension of the spa
e: in a low dimension system the initial
ondition and model errors have a mu
h higher probability of intera
ting than in ahigh dimension spa
e, where we 
an assume they are orthogonal.The 
on
lusion is that, for weather models, we may not only assume that initial
ondition error and model error are un
orrelated, as demanded by the shadow law,but also that they are nearly orthogonal. As a result, no ensemble member managesto redu
e model error. The ensemble mean, also shown in the 
entre panel, 
loselytra
ks the perturbed fore
asts; this is not surprising, sin
e, if the model is in a linearregime, the positive and negative perturbations will tend to 
an
el in the average.The impli
ation, at least for this parti
ular day, is that running an ensemble of T42fore
asts wouldn't be mu
h more informative than a single deterministi
 fore
ast.
6.6 The ECMWF operational modelOf 
ourse, T42 and T63 haven't been used operationally for some time; the 
urrentstandard at ECMWF is TL319. Also, we want to shadow the real weather, notTL159. Our real interest is therefore to 
ompare TL319 with the analysis (our 
losestapproximation to the real weather).Previous 
al
ulations of model error in this thesis have primarily been with re-spe
t to a true system whi
h is des
ribed by di�erential equations. For the Lorenzmodel, the true system was the two-level equations. For the experiments above, thetrue system was TL159. As mentioned in Chapter 4, though, the same model errorte
hniques 
an be applied equally well to 
omparisons between a fore
ast and aninterpolated set of observations or analysed traje
tory.To further illustrate this point, one goal of measuring model error is to estimateshadow times. Shadow orbits 
an be found expli
itly, as in the previous se
tion, bya 
ode whi
h minimises the RMS error at a spe
i�ed future time (here 48 hours).However the program doesn't distinguish whether the target traje
tory (spe
i�
ally,the desired value at 48 hours) 
omes from an analysis or a model; it 
an be usedwith either. In the same way, our estimates of shadow times, derived from the driftve
tor, are appli
able whether the drift is 
al
ulated relative to a model traje
tory oran analysed traje
tory.
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Figure 6.6: Upper panel shows plot of errors wrt T42 
ontrol for a T42 ensemblegenerated from leading singular ve
tors at 1999/10/15, 12 hours GMT. Centre panelshows errors with respe
t to a TL159 
ontrol for the T42 fore
ast (solid line), theensemble (dotted) and the ensemble mean (dashed). The lower panel shows theerrors whi
h would o

ur if the error ve
tors in the upper panel are added to the
ontrol error, assuming orthogonality. It 
an be 
ompared with the 
entre panel.
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Figure 6.7: The left hand panels are as for Figure 6.6, but only the �rst two ensemblemembers are shown. The right hand panel shows the 
orresponding �gures for theLorenz system, from Figure 4.3. Solid line is the 
ontrol, dashed is the mean, dottedare the two ensemble members.
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We will therefore use the analysis, not as a proxy for truth, but as the trueorbit ~x(t) itself (in, of 
ourse, a dis
rete form). An advantage when 
omparing theoperational fore
ast with the analysis is that there is no trun
ation error, sin
e bothare at the same resolution. And be
ause the fore
ast is always initiated at the analysisfor that day, the two have the same initial 
ondition. Therefore we don't have theproblem, en
ountered in Figure 6.4, that trun
ation error 
ontributes to fore
ast error.It also appears that the spin-up error whi
h o

urred with the inter-model 
om-parisons is not an issue when the trun
ation error is removed. Figure 6.8 shows errorgrowth for a single fore
ast, along with the drift. The drift was 
al
ulated by sum-ming short 6 hour fore
asts for the �rst day to 
apture the fast initial growth, followedby 24 hour fore
asts for days 2 and 3. Unlike with the inter-model 
omparisons, the
al
ulation is not sensitive to step size, so summing 6, 12 or 24 hour fore
asts givesimilar results. This 
an be seen, for example, by the fa
t that the drift over one day,
al
ulated by summing four 6 hour fore
asts, agrees 
losely with the fore
ast error at24 hours, whi
h would be the value of the drift if a 24 hour step were used. Spin-uperrors, whose signature is a strong time-step dependen
e in the drift 
al
ulation, arenot present to a noti
eable extent.The drift 
losely tra
ks the fore
ast error out to three days, in a manner 
ompatiblewith high model error, and the initial slope is about three times greater than that forT63 versus TL159. The most striking feature of the 
urve, though, is its pronoun
ednegative 
urvature, whi
h is hard to re
on
ile with the exponential-on-average [65℄growth expe
ted from displa
ement error.The shape of the 
urve makes more sense when we examine the nature of the shortfore
ast errors whi
h make up the drift 
al
ulation. Figure 6.9 shows histograms of the
osine of the en
losed angle of the 24 hour drift ve
tors, for 
onse
utive and randomly
hosen days over a hundred day period. The mean for the 
onse
utive days is 0.081,whi
h is a signi�
ant 
orrelation 
onsidering the dimension of the spa
e. Note thatthe distribution for 
onse
utive days in the upper panel is shifted signi�
antly to theright of the distribution for random pairs of days, implying that drift is persistenton a times
ale of one day. (We return to dis
uss the fa
t that neither are mean zerobelow.)One might expe
t that this 
orrelation would in
rease for shorter times, but thereality is less straightforward. The left two panels of Figure 6.10 show the magnitudesand 
osine angles for drift ve
tors 
al
ulated every 6 hours instead of daily. Themagnitudes fall into two 
amps: those to the left of the dashed line are initiated at0 or 12 hours GMT, while those to the right are initiated at 6 or 18 hours GMT.
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Figure 6.8: Plot of TL319 fore
ast error (solid line) with respe
t to analysis. Alsoshown is the drift (dotted). The drift is 
al
ulated using a time step of 6 hours forthe �rst day and 24 hours for days 2 and 3.
The variation is probably related to the amount of data available to 
onstru
t theanalysis at ea
h time. The mean 
osine angle for 
onse
utive ve
tors is 0.084, whi
his little higher than for 24 hour ve
tors. In order to smooth out some of the variation,
onse
utive drift ve
tors were 
ombined to give 12 hour drift ve
tors, shown in theright hand panels. Both the magnitude and the 
osine angle are more tightly fo
ussed,with a mean 
osine angle of 0.125.We 
an use information about the mean magnitude and 
osine angle of driftve
tors to build a theoreti
al equation for model error. Suppose the drift over Thours has average magnitude dm, and the 
osine angle for 
onse
utive days has mean
m (we assume that 
orrelations be
ome negligible for periods of over one day). Thenthe drift is given by d(t) = dms tT (1 + 2
m)� 2
m (6.4)where t > T is the time in hours.This modi�ed square-root 
urve has negative 
urvature, as did the drift of theLorenz '96 models (see for example Figure 3.31). If the 
orrelation 
m equals zero,then the drift is a square-root 
urve. This would be the 
ase if the velo
ity error wasequivalent to white noise.
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Figure 6.10: Magnitude and 
osine angle of 
onse
utive 6 and 12 hour drift ve
torsover a 30 day period from 15 O
t 1999. In the upper left panel, 6 hour drift ve
torsfall to the left of the dashed line when initiated at times 0 or 12 hours GMT, andto the right for times 6 and 18 hours GMT. The 12 hour drift ve
tors for the lowerpanels are formed from two 
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Figure 6.11: Plot of TL319 fore
ast errors (solid lines) with respe
t to analysis at fourdi�erent starting dates, along with the theoreti
al approximation for model error from24 hour drifts (dashed) and 6 hour drifts (dotted). The dates used were 1999/10/15,1999/12/22, 2000/01/15, 2000/02/15, all at 12 GMT.
Figure 6.11 shows fore
ast errors for �ve starting dates, along with the model erroras estimated using equation 6.4 with parameters 
al
ulated from 24 hour and 6 hourfore
asts. The 24 hour 
urve has T = 24, dm = 315 and 
m = 0:081. For the 6 hour
urve, ve
tors were 
ombined as above to form 12 hour drifts, in order to �lter outsome of the short-term variability, and redu
e 
orrelations between non-
onse
utivedrift ve
tors. The values used were then T = 12, dm = 205 and 
m = 0:125. In either
ase the theoreti
al 
urves 
losely mat
h the fore
ast errors up to a time of threedays.It seems remarkable that fore
ast errors for �ve di�erent days in �ve di�erentmonths 
an be modelled using su
h a small amount of information, namely the meanmagnitude and 
osine angle of 
onse
utive drift ve
tors. The weather itself may be
haoti
, but our degree of ignoran
e of its future state is extremely reliable. Note thatthe te
hnique will work less well in low dimension spa
es, where 
orrelations betweenrandom ve
tors is higher.Although model error appears to dominate fore
ast error, displa
ement error willof 
ourse play a role, if only as a by-produ
t of model error, as soon as the modeldeparts from truth. The 
onvolution of model error and displa
ement error will be
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omplex, but a rough pi
ture 
an be obtained by assuming that, on top of the modelerror, an additional displa
ement error term, whi
h is initiated by the model error,is added to the theoreti
al 
urve. For example, the drift 
al
ulation is performedby summing a series of short fore
asts. We then suppose that ea
h of these errors
reates a displa
ement whi
h magni�es exponentially. Therefore the model error overthe �rst six hours leads to a displa
ement, whi
h then grows at an exponential ratefrom that time on. The next six hours brings another displa
ement whi
h also willmagnify at the same rate. Ea
h of these displa
ement error 
urves, initiated every 6hours, are shown at the bottom of Figure 6.12. We assume a doubling time of 2.5days, in a

ordan
e with the estimate given in [38℄. Ea
h displa
ement 
urve startswith magnitude zero, be
ause it represents the additional error after the originaldispla
ement. After 2.5 days the error has doubled, so ea
h 
urve has a magnitudeequal to that of the original displa
ement, whi
h is the same as the 6 hour drift.Summing ea
h of these separate 
urves, and assuming orthogonality, whi
h is justi�edgiven the dimension of the spa
e, gives the total displa
ement error 
urve shown asthe dot-dash line. When this displa
ement error is added to the drift, again assumingorthogonality, we arrive at the upper dashed line, whi
h is an ex
ellent �t to the RMSfore
ast errors.Of 
ourse, the plot isn't meant to be an a

urate representation of how modelerror and displa
ement error 
onvolute. Nor does it 
on�rm that error doublingtimes are 2.5 days; indeed, the displa
ement error is assumed to be orthogonal tothe original error, whi
h di�ers from the usual de�nition of doubling times. Thegraph's aim is merely to show that observed fore
ast errors are 
onsistent with a
ombination of a large model error term, and a se
ondary displa
ement error term.It also seems reasonable, though, that fore
ast error, being a mix of model error anddispla
ement error, 
ould be loosely viewed as the sum of square root and exponentialgrowth 
urves. The resulting 
urve has an initial negative 
urvature phase, followedby a nearly linear growth phase in the middle term, before eventually saturating.Interpolating Figure 6.12 forward, the model error and displa
ement error portionsbe
ome roughly 
omparable in magnitude after about �ve days, though saturatione�e
ts will also 
ome into play by that time.The displa
ement error 
urve, being a sum of lagged exponential terms, isn't quitean exponential itself. It 
an be 
al
ulated expli
itly by adding ea
h of the separateerror terms exa
tly as des
ribed above. If the e-folding time is 1=a (so the doublingtime, again assuming that error growth is orthogonal to the original displa
ement, is
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log(2)=a), and the individual drift ve
tors initiated ea
h tr time units have magnitudedr, then the total displa
ement error p(t) is seen to be
p(t) = drvuut eat � 1eatr � 1  eat + 1eatr + 1 � 2!+ ttr : (6.5)

In Figure 6.12, for example, tr is 6 hours and dr is the drift at 6 hours. Taking thelimit as tr goes to zero, we have
p(t) = ss 12a(eat � 1)(eat � 3) + t (6.6)

where s = limtr!0 drptr , whi
h 
an be estimated for example from the 6 hour drift (thelimit will exist if the drift varies with the square root of time).The displa
ement error p(t) 
reated by the drift 
orresponds to the term in Eq.4.12 whi
h was omitted from the linearised dynami
s. We see that for weather models,it is a relatively small e�e
t. At 24 hours, it is about 10 per
ent of the drift, and at12 hours it is only �ve per
ent.The e�e
t of the drift on shadow times 
an be estimated by using the shadowlaw to determine the likely drift for a 
ertain shadow radius. The mean 24 hourdrift over the days tested was 315, while the mean 6 hour drift for the days testedis 138. An upper estimate of shadow time from the 6 hour drift for a radius of 45units is then about three to four hours. This result is de�nitely on the low end ofwhat has been 
onsidered the likely range, and is a rather surprising result. It meansthat the dominant term in equation 4.13 is d rather than M; model error ratherthan displa
ement error, drift rather than 
haos. Weather models may be sensitiveto initial 
onditions, but a

ording to these results, they fail to shadow after just afew hours, and well before 
haoti
 nonlinear growth be
omes an issue.
6.7 Modelling the model errorWhile the 
on
lusion that model error is responsible for the majority of fore
ast errorover times of three days may seem less than en
ouraging, one positive note is that,be
ause the drift ve
tors show a degree of 
oheren
e with time, it might be possibleto develop te
hniques whi
h 
ompensate for it. For example, suppose we are makinga 24 hour fore
ast, and we know the drift dp from the pre
eding 24 hours. If the24 hour fore
ast gives d, and we assume that the 
osine angle with dp is 
m, thenve
tor algebra shows that using d� 
mdp as the 
orre
ted fore
ast yields a fra
tional
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Figure 6.12: Plot showing how fore
ast error is 
onsistent with a 
ombination ofmodel error and displa
ement error. The + signs shows TL319 RMS fore
ast errors,with respe
t to analysis, over �ve di�erent starting dates. Solid line is the theoreti
alapproximation for model error from equation 6.4. Dotted lines at bottom show seriesof displa
ement error 
urves initiated by the model error after ea
h 6 hour period.Dot-dash line is the sum of the displa
ement error 
urves, assuming orthogonality.The dashed line whi
h 
losely mat
hes the data is the sum of the model error anddispla
ement error 
urves, again assuming orthogonality. The dates used for thefore
ast error were 1999/10/15, 1999/11/15, 1999/12/22, 2000/01/15, 2000/02/15,all at 12 GMT.
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improvement of 1 � q1� 
2m. For 
m = 0:081 the 
orre
tion is 0.33 per
ent. The
orre
tion in
reases to 0.78 per
ent if the 12 hour drift ve
tors, with mean 
orrelation0.125, are used instead. These are small improvements, but don't 
ost anything, and
an probably be improved by 
onsidering more sophisti
ated s
hemes.Su
h te
hniques are similar to the statisti
al approa
h for 
orre
ting fore
ast errorsof [60℄ or [35℄, or the method proposed in [18℄. Model parameters 
ould also be tunedto redu
e the fore
ast error, as suggested in [72℄.An unexpe
ted result was that the 24 drifts taken at random days in Figure 6.9also shows a degree of 
oheren
e, with an average of 0.038. This implies that themodel drift will not tend to zero over at least seasonal time s
ales. A �rst step toimprove the model would therefore be to tune out this 
onstant drift.The square root shape is of 
ourse reminis
ent of the integrated errors 
aused by awhite noise spe
trum, as dis
ussed in Chapter 3. Perhaps a white or red noise modelsimiliar to that in [51℄ is appropriate as a des
ription of model error. It seems morelikely, though, that the model error is not entirely random, and probably exists ina subspa
e of smaller dimension than the full spa
e. What is 
ertain is that addingwhite noise to the model won't make it more realisti
, any more than sto
hasti
allyvarying the for
ing improved the Lorenz model's performan
e in Chapter 5.One topi
 that we haven't investigated is the spatial stru
ture, or pre
ise 
ause, ofthe model error, whi
h is a topi
 of future work. Nor have we attempted to determinewhat 
omponent of the model error is due to model formulation and what is due to theproje
tion. One method may be to examine data-ri
h and data-poor areas separately.The approa
h must be used with 
are, though, be
ause the mathemati
s behind thelinearised dynami
s assumes that the model is well des
ribed by the equations and bythe initial 
ondition. If the model is limited to a small region, this 
ondition will beviolated, sin
e the behaviour of the model in the spe
i�ed region will be in
uen
ed byevents in the other regions, and measurement of the drift ve
tor will to some extentbe a�e
ted.
6.8 Model error in the 500 hPa heightWe have used the total energy norm be
ause it provides a fairly 
omplete des
riptionof the atmospheri
 state. If the weather is viewed as a 
ow of energy, then the totalenergy gives the amount of that energy asso
iated with error. It also has the bene�tof des
ribing the sensible 
omponents of the atmospheri
 state, namely heat andwind. Meteorologists, though, often prefer to use the 500 hPa height to des
ribe the
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atmospheri
 state and re
ord errors. The reason appears to be more histori
al than
orresponding to any spe
ial property of this parti
ular height [35℄.As mentioned earlier, the 500 hPa height isn't an appropriate variable for ourinvestigations into model error, sin
e it is too in
omplete a des
ription of the atmo-sphere. However there is no reason why we shouldn't look at 500 hPa errors, and tryto interpret them using the tools developed so far.Figure 6.13 shows a plot of 500 hPa RMS height errors from ten separate fore
asts.The errors no longer follow a square root 
urve, but grow quite linearly. One mightthink that the drift ve
tors are highly 
orrelated, so that they add almost linearly asfor the lower dimension Lorenz system, but Figure 6.14 shows this is not the 
ase:the 
osine angles have mean 0.13, whi
h is higher than the total energy angles butstill small.Figure 6.13 also shows the approximate proportion of error due to displa
ementerror, 
al
ulated using equation 6.5. A doubling time of 1.8 days was used in orderto �t the data, whi
h is faster than the 2.5 days used for the total energy error. Thefaster time makes sense when we 
ompare the situation with the Lorenz system inFigures 4.29 and 4.30. When an in
omplete set of parameters is used as a metri
, theerrors will be sus
eptible to the e�e
t of rotations whi
h preserve error magnitude butrotate error from one 
omponent to the other. Therefore one reason for the di�eren
ebetween the total energy errors and the 500 hPa errors is that 500 hPa model erroris more sensitive to rotational displa
ement error, and therefore more likely to feedinto a rapidly growing mode.Another possible reason for the di�eren
e is that weather models may be better atpredi
ting 500 hPa heights than they are at predi
ting other variables su
h as wind ortemperature throughout the atmosphere, for example near the Earth's surfa
e. (Thefa
t, though, that the 500 hPa height was not a strong sour
e of model error wouldnot imply that it is una�e
ted by model error, whi
h 
an adve
t in from other lo
ales,or enter from other parameters through the primitive equations.)In general, model errors are best analysed using as global a measure as possible.Just as attempting to predi
t the future dire
tion of a highly 
omplex sto
k marketusing only a single index is a risky (but popular) endeavour, so it may be misleadingto interpret model error by its e�e
t on height level.
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Figure 6.13: Plot of TL319 RMS 500 hPa height errors (solid line) with respe
t toanalysis over ten di�erent starting dates, along with the drift (dashed line) and thetheoreti
al approximation for 
ombined model and displa
ement error (dotted line).The ten fore
asts were laun
hed ea
h ten days from 12 GMT on 1999/10/15.
6.9 Summary and dis
ussion of resultsIn this 
hapter we have applied the methods for measuring model error to operationalfore
ast models. Inter-model 
omparisons show that the T42 and T63 models havesigni�
ant error relative to the TL159 
ontrol. Cal
ulations of drift are hampered byspin-up e�e
ts, but indi
ate that model error is signi�
ant. Estimates of minimumshadow radius using the shadow law are in a

ordan
e with shadow orbits obtainedusing a sensitivity algorithm, and ensemble behavior is also 
onsistent with highmodel error.When the te
hniques were applied to the TL319 model relative to the analysis,it was found, unsurprisingly, that model error was higher than for the inter-model
omparisons. The fore
ast error was found to be dominated by model error out tothree days, and 
ould be represented as a sum of a square-root model error 
urve,together with exponential displa
ement error 
urves. Estimated shadow times at theobservational toleran
e are in the region of only 3-4 hours.We did not attempt to lo
ate the 
ause of the model error, nor determine whatproportion of the error is due to model stru
ture and what to proje
tion error overdata-poor areas. We have 
on
erned ourselves only with the magnitude of the error.
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Figure 6.14: Magnitude and 
osine angle for 24 drift ve
tors at 
onse
utive days overa 100 day period from 15 O
t 1999 in the 500 hPa height norm.
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What is 
lear is that making small displa
ements around the initial 
ondition will noto�set the e�e
t of the error or, from the shadow law, produ
e a shadow orbit.The above results indi
ate that model error has serious reper
ussions for manyaspe
ts of fore
asting. For example, the te
hnique for generating an analysis is es-sentially an attempt to for
e a model solution into �tting a set of observations. Itappears, however, that the TL319 fore
ast is already generating errors of the samemagnitude as the observation error after just a few hours. This 
ompli
ates theanalysis pro
edure and makes 
onvergen
e unlikely.Ensemble te
hniques whi
h generate multiple initial 
onditions will also be af-fe
ted. The usefulness of an ensemble is dire
tly related to the model error: if modelerror is negligible, then the ensemble tells us everything we need to know about er-ror distribution; but if model error is mu
h larger than initial 
ondition error, thenthe ensemble te
hnique is just an expensive way of produ
ing many wrong fore
astsinstead of one. For weather fore
asts, we are in an intermediate position, so ensem-ble te
hniques 
ontain information about some fra
tion of the error, but negle
t animportant 
omponent.Ensemble te
hniques were designed to ta
kle the problem of sensitivity to initial
onditions; however their use as a method to similarly ta
kle model error appears tobe less justi�ed. Singular ve
tors give a pre
ise measure of initial 
ondition error, interms of the maximum error growth after a 
ertain time, whi
h 
an be used to generateinitial 
onditions for an ensemble. No su
h method exists to produ
e the modelperturbations whi
h give maximum growth. Taking a 
olle
tion of existing modelsand lumping them together in an ensemble may be an e�e
tive way of s
reening outparti
ularly dud fore
asts, but doesn't really address the problem of model error.Models whi
h in
orporate sto
hasti
 perturbations su�er from the same problem;there is no way to tell whi
h are the 
orre
t perturbations to make.Model error has usually been treated as some inherently unmeasurable quantity;but the fa
t is that model error, a zero order term, is easier to measure than initial
ondition error, a �rst order e�e
t that requires 
al
ulation of singular ve
tors orsimilar. Only when model error is so small that it is dwarfed by initial 
onditionerror will it be
ome diÆ
ult to measure. The assumption that atmospheri
 modelshave rea
hed that state appears to be optimisti
. Estimates of model error for T42 andT63 with respe
t to TL159, arrived at by drift, shadow and ensemble 
al
ulations, allindi
ate that error, even between these fore
ast models, is dominated by the modelrather than initial 
ondition. It is unsurprising, therefore, that drift 
al
ulations
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indi
ate an even greater error between the operational fore
ast and the analysedweather.Weather models are extremely 
ompli
ated entities whi
h have to in
orporate allkinds of intera
tions between air, water, the ground and so on. They are also look-ing for a fairly small signal - weather 
u
tuations - on a large ba
kground �eld -the 
limate. Any �nite element modeller or other person with experien
e of mod-elling physi
al systems must view the weather as one of the most 
omplex problemsimaginable, and regard with awe the progress that meteorologists have made. At thesame time, su
h a person would �nd the perfe
t or nearly-perfe
t model hypothesespuzzling. Models may have improved substantially in re
ent years, but, as analysisof fore
ast errors has shown, they are 
ertainly not perfe
t. The best way to pro
eedmust be to measure the error, optimise the model to redu
e it, and then do whateveris possible to predi
t and possibly o�set the residue error.
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Chapter 7
Con
lusions
7.1 Summary of resultsIn this thesis we have studied model error over a range of systems, from the smallest3D to the largest operational weather model. Of parti
ular interest were the medium-dimension Lorenz '96 systems of Chapter 2: small enough to 
ompute rapidly, butlarge enough to produ
e behaviour qualitatively similar to atmospheri
 variables. Theintri
ate beauty of these systems, with their interplay of periodi
, quasi-periodi
 and
haoti
 orbits, was revealed, for the �rst time, with spe
tral bifur
ation diagrams.In Chapter 3, it was shown that a fundamental di�eren
e between model errorand initial 
ondition error is that model error has a non-zero initial slope. This slopewas termed the velo
ity error. The 
omplexity of the Lorenz system behaviour as thefor
ing parameter F was varied led one to suspe
t that velo
ity error would be equally
omplex; yet it was found that emergent properties of the systems made velo
ity errorsurprisingly smooth as a fun
tion of the for
ing. For the 
onstant model, the modelerror, both in terms of initial velo
ity error and shadowing times, simply varied withthe square root of F .The linear model, whi
h employed a simple linear parameterisation of the for
ingerror, gave dramati
ally improved shadowing behaviour, even though the redu
tionin initial velo
ity error was relatively modest. The reason was found to be that lowfrequen
y for
ing error was the primary determinant of shadow times, and sin
e thelinear model had a less `red' for
ing error power spe
trum than the 
onstant model,its performan
e was improved.This result led to the detailed investigation of the shadowing pro
ess in Chapter 4.By linearising around the true attra
tor, the displa
ement of a shadow traje
tory from
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truth was approximated by a linear equation, involving a zero order drift term and the�rst order propagator term. The linearised dynami
s were used to develop a shadowestimation te
hnique (SET), whi
h was seen to a

urately predi
t shadow behavioureven over predi
tion times when the system itself had 
eased to be linear. This wasbe
ause the linearised dynami
s applied only to shadow orbits, whi
h remained withinthe shadow radius of the true orbit.The linearised dynami
s, when applied to lo
ally dissipative models, led to thedis
overy of a shadow law, whi
h states that, in an RMS sense, minimum shadowradius is bounded below by half the drift. When model error is high, the minimumshadow radius approa
hes the bound, and drift is approximately equal to the shadowdiameter. Even with an estimate of shadow times, it is always desirable to 
omputea
tual shadow orbits for veri�
ation; therefore optimization s
hemes to �nd shadoworbits, even for large models with long 
omputation times, were proposed and tested.The usefulness of ensemble te
hniques, in terms for example of the a

ura
y of
omputed spread, was found to depend 
riti
ally on the model error. If the modelerror dominates displa
ement error, then it is natural that ensembles should give lessinformation about the likely 
orre
t fore
asts. It was noted that in high dimensionspa
es, model error and displa
ement error are expe
ted to be nearly orthogonal,making it unlikely that model error 
ould be o�set by sear
hing in the spa
e ofsingular ve
tors.Chapter 5 turned attention away from the short and medium range, and looked atthe question of predi
tability of the se
ond kind; long term 
limate. Analyti
 results
on
erning the mean and varian
e of the Lorenz '96 systems were derived, and it wasfound that the linear model, something of a 
hampion among simple models, was
apable of mat
hing both quantities over a large range of for
ings, and suggested alink between short term and long term predi
tability. Other models, whi
h invokedvarious sto
hasti
 s
hemes to simulate the properties of the true for
ing, were alsotested. For the models studied, the sto
hasti
 approa
h appeared to have no bene�tover the non-sto
hasti
 models.Finally, Chapter 6 applied the te
hniques developed for the lower dimensionalsystems to full weather models. First, the T42 and T63 models were 
ompared withTL159. An upper bound on shadow times was estimated using the drift, and 
om-pared with results using an optimisation program. The two methods gave 
ompatibleresults.The fa
t that model error outweighed displa
ement error was 
on�rmed when anensemble of T42 initial 
onditions was run. As expe
ted, no ensemble member redu
ed
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error, and the ensemble mean o�ered no improvement over the 
ontrol fore
ast. Any`return to skill' by an ensemble member would be due to 
han
e, sin
e, if it isn'tbetter after a day, there's no reason to expe
t that it should be better after a week.The initial 
ondition errors were also seen to be nearly orthogonal to the model error,in agreement with theory.The operational TL319 fore
ast was then 
ompared with the analysis to estimatehow long the fore
ast 
ould shadow the true weather. The drift 
al
ulations indi
atedthat model error was higher than for the inter-model 
omparisons, and shadow timeswere estimated to be in the region of 3 to 4 hours, whi
h would have severe impa
ton analysis and ensemble te
hniques. Another square root law emerged: model error,and indeed fore
ast error, varied with a simple square root formula up to about threedays. It meant that fore
ast error 
ould be predi
ted just from a knowledge of themean drift magnitude and 
osine angle between 
onse
utive drift ve
tors, both ofwhi
h are fairly stable quantities. Despite the immense 
omplexity of the weather,and of the model, the di�eren
e between the two after a 
ertain time is remarkably
onstant from day to day or month to month. To globally 
onserved quantities su
has momentum or mass, we may now add a new one: error.Knowing the size of the error is one thing; knowing its dire
tion is another. (Itmay be interesting that all fore
asts are wrong by the same amount, but it isn't veryuseful.) The fa
t that model error was so large and 
onsistent was at least seen to o�era potential solution. If the error had predi
table features, then it 
ould be possible toe�e
tively model the model error, and thus 
orre
t the fore
ast. Similar te
hniques,based on predi
tor methods, had been used to some e�e
t with the Lorenz systems.The model 
ould also be improved by tuning parameters to minimise drift. Withoutsu
h a measure of model error, though, it would be impossible to make mu
h progressin improving the model, sin
e to do so would be like working in the dark.
7.2 Does 
haos matter?As Bjerknes �rst said, fore
ast error is due to a 
ombination of model error and initial
ondition error. The former is mostly a question of physi
s or engineering; how well
an we model the 
ompli
ated physi
al laws governing the atmosphere with a set ofdi�erential equations trun
ated to a �nite grid? The latter e�e
t is related to 
haostheory; how sensitive is the atmosphere (or the model) to small perturbations in theinitial 
ondition?
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Whi
h of these sour
es of error is more important will depend on the parti
ularsystem and model. In the 
ase of the atmosphere, the answer to this question hasn'tbeen known. Good estimates of initial 
ondition error are available, from singularve
tor and other methods, but there hasn't been a 
orresponding measure of modelerror; at the same time, and 
ontradi
torily, it has been widely assumed to be small.In fa
t, 
onsidering the enormous number of arti
les written for meteorologi
aljournals, a sear
h reveals that relatively few refer to model error in the abstra
t (mostof those have been referen
ed in this thesis). It is slightly puzzling why more attentionhasn't been paid to the subje
t of model error. As mentioned earlier, it is easier tomeasure model error, a zero order e�e
t, than it is to measure initial 
ondition error,whi
h depends on 
ompli
ated �rst order derivative estimates based on a large numberof fore
asts and requiring the use of an adjoint model. Also, an examination of typi
alRMS fore
ast error plots reveals not the quasi-exponential growth 
hara
teristi
 ofdispla
ement error, but the square root 
urve that is 
hara
teristi
 of model error. Sowhy was it assumed that fore
ast error was primarily due to initial 
ondition error,and not the model? Why jump to the more 
ompli
ated �rst order explanation beforeeliminating the simple zero order 
ause?Some reasons suggest themselves. Initial 
ondition error shifts the blame for badfore
asts away from the fore
ast 
entres towards the inherent unpredi
tability of theweather. Model error, meanwhile, isn't as 
ulturally important in meteorology as itis in other �elds (say bridge design) whi
h also employ sophisti
ated and 
ompli
atedmodelling te
hniques. Any engineer is familiar with the sense of anxiety that mingleswith anti
ipation as a proje
t nears 
ompletion: the 
omputer models are repla
edby a physi
al obje
t whi
h will follow not quite the same rules, and at the same timeany mistake or omission in the 
al
ulation will be
ome very evident (
onsider theMillennium bridge). Meteorologists, in 
ontrast, aren't responsible for the weather,and therefore by impli
ation their responsibility is dimmed when, as in any 
asealways happens, it does something other than predi
ted. And meteorologists don'tget sued (though people have tried [32℄).Part of the reason, though, must also be due to the entity pi
tured in Figure 7.1.Butter
ies, it seems, 
an do more than stir up storms by 
apping their wings. They
an also de
e
t the 
ourse of entire bran
hes of s
ien
e. This parti
ular example wasspotted to his great 
redit by Ed Lorenz in 1963, but, like other revolutions of its type,took 30 years to fully develop. It was then that the te
hnique of ensemble fore
astingwas introdu
ed: a net in whi
h to 
at
h the unruly but attra
tive butter
y of 
haos.
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Figure 7.1: Butter
y. Spe
ies Lorenzus. First spotted 1963. In
ubation period 30years.
Chaos may well pla
e an upper limit on predi
tion times of a 
ouple of weeks. Itseems premature, though, to worry too mu
h about that if the models are alreadyintrodu
ing signi�
ant errors after just a few hours. The ensemble net has missed itstarget almost before it is thrown, and the butter
y es
apes.Weather fore
asting ranks as one of s
ien
e's greatest and most prodigous mod-elling endeavours; but, like most human pursuits, it has yet to banish the e�e
ts oferror, un
ertainty, or 
haos. Ensemble te
hniques have played their part in improv-ing our understanding of the latter. In seeking methods to further improve fore
asts,though, it would be preferable to devote additional resour
es to analysing model er-ror, and using the information thus gained to develop the model. For it is here, ratherthan in the e�e
ts of 
haos or the 
apping of an inse
t's wings, that the primary 
auseof near and medium range fore
ast error lies.
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Appendix A
Proof of the shadow law
Referring to equation 4.44, the proof of the shadow law rests on showing that, for adissipative model, the sum nXi=1 1(1 + �i)2 (A.1)has a minimum value of n4 . Suppose �rst that the model is volume preserving, sonYi=1�i = 1: (A.2)
Writing the minimisation problem as a Lagrangian, we seek minima ofnXi=1 1(1 + �i)2 + �( nYi=1�i � 1) (A.3)
where � is a 
onstant multiplier. Taking partial derivatives with respe
t to �j, andsetting to zero, gives �j = 2�(�j + 1)3 (A.4)whi
h has two solutions for � > 16, and a single solution when � = 16 and all �j = 1.Sin
e � is the same for all j, the multipliers �j 
an only take on one of a maximumtwo values apart from 1, and they must also satisfy equation A.2.We 
laim that the solution �j = 1 for all j, for whi
h the sum in equation A.1is equal to n4 , represents a global minimum. We do this by examining the other
riti
al points. Suppose that some other arrangement of �j's satis�es the 
riti
alityrequirement. For a parti
ular value of �, there are only three possibilities for ea
h�j: �1, �2, or 1, where �1 < 1 and �2 > 1 are roots of equation A.4. We set n1 equalto the number of o

uren
es of �1, n2 the number of �2's, n3 the number of 1's, andns = n1 + n2, so ns + n3 = n.
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Let � = 2� . Then from equation A.4,�1 = �(�1 + 1)3 (A.5)and �2 = �(�2 + 1)3: (A.6)From equation A.2, 1 = nYi=1�i = �n11 �n22 (A.7)so, taking the ns'th root of ea
h side, �a1�b2 = 1 (A.8)where a = n1ns and b = n2ns . Substituting the expressions from equations A.5 and A.6into A.8, we 
an solve for � as� = (1 + �1)�3a(1 + �2)�3b (A.9)so equation A.5 then be
omes�1 = �(�1 + 1)3 = (1 + �1)3�3a(1 + �2)�3b: (A.10)Solving for �2, we obtain �2 = �� 13b1 (1 + �1)� 1: (A.11)Substituting into equation A.8 gives g(�1; a) = 1, where the fun
tion g is de�ned as
g(�1; a) = �a1(�� 13(1�a)1 (1 + �1)� 1)1�a: (A.12)For a given value of �1, the requirement that g(�1; a) = 1 
an be used to solve fora = f(�1). It is easily seen that f is monotoni
ally de
reasing from 0 to 0.2364 andnegative for 0:2364 < �1 < 1 (�1 is less than 1 by assumption). Sin
e we requirea > 0, it follows that �1 is in the range 0 to 0.2364. The fun
tion f , for �1 in thatrange, is shown plotted in Figure A.1.We now show that the sum A.1, evaluated at su
h a 
riti
al point, has a valuegreater than n4 . We 
an writenXi=1 1(1 + �i)2 = n1(1 + �1)2 + n2(1 + �2)2 + n34 (A.13)

= ns( a(1 + �1)2 + b(1 + �2)2 ) + n34 (A.14)
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Figure A.1: Plot of f and h, whi
h are de�ned in the text, as a fun
tion of the singularvalue �1 over the range for whi
h f is non-negative.
= ns( a(1 + �1)2 + b�� 23b1 (1 + �1)2 ) + n34 (A.15)
= ns( f(�1)(1 + �1)2 + 1� f(�1)�� 23(1�f(�1))1 (1 + �1)2 ) + n34 (A.16)
= h(�1) + n34 (A.17)where h(�1) = f(�1)(1 + �1)2 + 1� f(�1)�� 23(1�f(�1))1 (1 + �1)2 : (A.18)

The fun
tion h(�1), shown in Figure A.1, is also monotoni
ally de
reasing over therange 0 to 0.2364, and has a minimum value of 14 at �1 = 0:2364, for whi
h a = 0. Inthe nontrivial 
ase that a > 0, we have h(�1) > 0:25, sonXi=1 1(1 + �i)2 = nsh(�1) + n34 > ns4 + n34 = n4 : (A.19)
It thus follows that the 
riti
al point with �i = 1 for all i represents a global minimum,as desired. The 
ase where the model is stri
tly dissipative, so thatQni=1 �i < 1, followseasily.
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Appendix B
Glossary

Analysis. Meteorologi
al term denoting the best approximation to the realweather, as expressed in terms of model variables. It is obtained by interpolatinga 
ombination of observed data and model predi
tions.Displa
ement error. Error due to model equations being evaluated at a pointother than the true point proje
ted into model spa
e.Drift. Magnitude of integrated velo
ity error, evaluated over the proje
tion intomodel spa
e of a segment of a true orbit. Used as a measure of model error, and toestimate shadow times, via the SET, or bound them via the shadow law.ECMWF. The European Centre for Medium-Range Weather Fore
asts, lo
atedin Reading, UK.For
ing. Refers to a term in a system or model ode, usually to represent someexternal input to a physi
al system, su
h as solar heat in the 
ase of the weather, orfor
ing of a pendulum.For
ing error. Velo
ity error due to error in for
ing term.Four-dimensional variational assimilation (4D-VAR). A te
hnique whi
hdetermines the analysis by 
ombining observed data with a model fore
ast initiatedusually 6-12 hours earlier.Initial 
ondition error. Displa
ement error at initial time, 
aused by in
or-re
t initial 
ondition. May be large for 
haoti
 systems due to sensitivity to initial
ondition.Initial velo
ity error. The velo
ity error measured at initial time.Integrated for
ing error. For
ing error integrated over the proje
tion intomodel spa
e of a segment of a true orbit.Integrated velo
ity error. The velo
ity error integrated over the proje
tioninto model spa
e of a segment of a true orbit. Has dimension distan
e. See drift.
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Model error. Refers to error due to the di�eren
e between model equations andtrue system, as measured on the proje
tion of a true orbit into model spa
e.Shadow estimation te
hnique. A pro
edure for estimating shadow times fora given initial 
ondition and shadow radius, without expli
itly produ
ing a shadoworbit. Referred to as SET.Shadow law. A law whi
h states that, for any dissipative model, and in an RMSsense, an approximate lower bound on shadow radius is given by half the drift.Shadow orbit. Given a spe
i�
 radius r and true orbit, a shadow orbit is amodel traje
tory whi
h stays within the radius r of the true orbit, as measured inmodel state spa
e.Shadow radius. The radius used in shadowing 
al
ulations.Shadow time. The time for whi
h a shadow orbit stays within the shadow radiusof the true orbit.Velo
ity. The rate of 
hange of a system or model variable. In the 
ase of modelvariables the velo
ity 
an be 
al
ulated using the ode.Velo
ity error. The di�eren
e between the system velo
ity at a parti
ular point,measured in model spa
e, and the model velo
ity at the proje
tion of that point intomodel state spa
e.
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