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(1) Use mathematics as a shorthand language, rather than an engine of inquiry. (2) Keep to 

them till you have done. (3) Translate into English. (4) Then illustrate by examples that are 

important in real life. (5) Burn the mathematics.  

Alfred Marshall, 19062 

 

Too large a proportion of recent “mathematical” economics are merely concoctions, as 

imprecise as the initial assumptions they rest on, which allow the author to lose sight of the 

complexities and interdependencies of the real world in a maze of pretentious and unhelpful 

symbols. 

John Maynard Keynes, 19363 

 

Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better 

make it quantum mechanical. 

Richard Feynman, 19814 

 

1. Introduction 

 

This document gives a technical introduction to some of the mathematics used in quantum 

economics, and is intended as a supplement for the book Quantum Economics: The New 

Science of Money. As the quotes above point out, economics is not the same as a 

mathematical proof, and the key ideas of quantum economics, such as the quantum theory of 

money and value, do not rely on equations. However the quantum formalism is mathematical, 

so to fully exploit its ideas some mathematics is useful (even if it is burned afterwards). The 

aim here is to sketch out the way in which the economy can be represented mathematically 

using the quantum formalism, show the advantages over the classical approach, and clarify 

(at least for those with some knowledge of basic matrix algebra) what it means to say that the 

economy can be treated as a quantum system in its own right.  

 

The quantum approach to economics is inspired by the empirical fact that the monetary 

system shows quantum properties such as discreteness, indeterminacy, entanglement, and so 

on. To borrow Feynman’s expression, a simulation had therefore better be quantum 

 
2 “(6) If you can’t succeed in 4, burn 3. This last I do often.” Letter to A.L. Bowley, 27 February 1906. 
3 From The General Theory of Employment, Interest and Money. 
4 From a 1981 talk “Simulating Physics with Computers” on the idea of a quantum computer. 



3 

 

mechanical too, in the sense that it reflects these properties (even if it doesn’t directly use a 

quantum formalism). The point is therefore not that the quantum approach will be the best 

technique to model every aspect of the economy, but rather that the economy has quantum 

properties which may need to be taken into account (explicitly or implicitly) depending on 

the context.  

 

As an example from physics, weather forecasters do not base their models on quantum 

mechanics, but they do base them on the complex properties of water, which emerge from 

quantum mechanics. So in this case the main lesson is that the quantum properties of water 

molecules lead to highly complex emergent properties at the global level, which resist 

reduction to a lower level. In economics, one might therefore conclude that economic 

behaviour should be modelled at the appropriate level, so quantum properties are not directly 

relevant. On the other hand, in physics a technology such as an atom bomb scales quantum 

properties up to the macro level. Similarly, money is a designed technology, and its 

properties sometimes scale up to affect the economy as a whole, for example through 

phenomena such as money creation by private banks. 

 

Models are ultimately justified by their success at explaining and predicting data. While the 

focus here is on presenting the basic tools of the theory, and showing how they relate to the 

nature of economic transactions, rather than on specific results, it should be noted that the 

areas of quantum cognition and quantum finance are heavily empirical, basing their results on 

experimental data for the former, and market data for the latter. The broader area of quantum 

economics – dealing as it does with emergent properties of a complex system – incorporates 

in addition a variety of complexity-based techniques, from agent-based models to systems 

dynamics, which have also been empirically tested (an exception is quantum agent-based 

models, which to my knowledge have yet to be developed for economics). The most obvious 

empirical argument for the quantum approach, though, is simply the nature of money, which 

is designed to have quantum properties.5 For details, please see the book, and the references 

therein. 

 

An outline is as follows. Section 2 introduces the idea of the Hilbert space, and shows how 

quantum probability differs from its classical version using the example of human cognition. 

 
5 See: Orrell, D. (2018), ‘Quantum Economics’, Economic Thought, 7 (2). 
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Section 3 shows where classical approaches to cognition of the sort used in behavioural 

economics break down, and Section 4 illustrates the quantum approach using two examples. 

Section 5 discusses the quantization procedure for a dynamic system, and applies it to the 

paradigmatic example of the quantum harmonic oscillator. Section 6 uses the same ideas to 

develop a quantum model of a market, where shares and cash now take the place of bosons. 

Section 7 explores the quantum representation of supply and demand. Section 8 extends this 

dynamical analysis to production and consumption, and points towards how one could 

construct quantum models for more general applications. Section 9 discusses the concept of 

entanglement, and Section 10 summarises the main conclusions. 

 

2. Some basics 

 

Perhaps the most basic mathematical tool in quantum theory is the concept of the Hilbert 

space, which is named for the German mathematician David Hilbert (1862-1943). It was 

developed as an abstract mathematical object in the first decade of the twentieth century, and 

was later adopted by researchers in quantum physics. Social scientists are now following their 

lead by applying it to problems in areas such as decision-making and finance, as seen below.6 

 

A Hilbert space H is a type of vector space whose elements, denoted |𝑢〉, have coefficients 

that can be complex numbers. The dual state 〈𝑢| is the complex conjugate of the transpose of 

|𝑢〉. The inner product between two elements |𝑢〉 and |𝑣〉 is denoted ⟨𝑢|𝑣⟩, and is analogous 

to the dot product in a normal vector space, with the difference that the result can again be 

complex. The outer product is denoted |𝑢〉〈𝑣|, and is like multiplying a column vector by a 

row vector, which yields a matrix. The magnitude of an element |𝑢〉 is given by √⟨𝑢|𝑢⟩, and 

two elements are orthogonal if ⟨𝑢|𝑣⟩ = ⟨𝑢|𝑣⟩ = 0. The Hilbert space can therefore be viewed 

as a generalisation of Euclidean space, with the difference that there can be an infinite 

number of dimensions (though conditions apply), the basis need not be simple column 

vectors, and coefficients can be complex. 

 

 
6 Some researchers in cognitive science prefer to treat the Hilbert space as just a tool, and see the word 

“quantum” as a distraction. Irving Fisher, in his 1892 book Mathematical Investigations in the Theory of Value 

and Prices, had a similar problem with the word “utility” which he described as “the heritage of Bentham and 

his theory of pleasures and pains. For us his word is the more acceptable, the less it is entangled with his theory” 

(p. 23). Personally I think it would be a little forced to ignore the theory’s connections with physical reality.  
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An operator 𝐴̂ is a map which sends one element |𝑢〉 of H to another element 𝐴̂|𝑢〉 of H. For 

example, the projection operator is defined as 𝑄̂𝑢 = |𝑢〉〈𝑢|, and  𝑄̂𝑢|𝑣〉 =  |𝑢〉〈𝑢|𝑣〉 gives the 

projection of v onto u. Operators 𝐴̂ and 𝐵̂ do not generally commute, so 𝐴̂𝐵̂ ≠ 𝐵̂𝐴̂. A state 

|𝑢〉 is an eigenvector of 𝐴̂ if 𝐴̂|𝑢〉 = 𝜆|𝑢〉 where 𝜆 is the associated eigenvalue. For example 

𝑄̂𝑢|𝑢〉 =  |𝑢〉〈𝑢|𝑢〉 = 𝜆|𝑢〉, so |𝑢〉 is an eigenvector of 𝑄̂𝑢 with eigenvalue 𝜆 = 〈𝑢|𝑢〉. The 

expectation value of a linear operator 𝐴̂  in the state |𝑢〉 is given by ⟨𝑢|𝐴̂|𝑢⟩, i.e. the scalar 

product of 〈𝑢| with 𝐴̂|𝑢〉.  

 

The quantum state of the system is represented mathematically by a ray in a Hilbert space 

over the complex numbers. A key feature of quantum theory is that observables such as a 

particle’s position or momentum are represented by Hermitian operators 𝑂̂, which have real 

eigenvalues, and eigenvectors that form an orthonormal basis of the state space.7 Any 

quantum state |𝑆〉 can therefore be represented by a superposition of these eigenstates. A 

measurement procedure causes the state to collapse to one of the eigenstates, and returns the 

corresponding eigenvalue as the measurement.  

 

For example, the position operator 𝑋̂ has eigenvalue 𝑥 and corresponding eigenvector |𝑥〉. 

The eigenvalues correspond to the possible position vectors of the system. For a projection 

operator, the eigenvector is the vector being projected onto, and the eigenvalue is 1. If the 

operator has a differential in it, like the momentum operator, then as seen below the 

eigenvalue equation becomes a differential equation. 

 

For the 2-D case, suppose that the eigenvectors of the observable 𝑂̂ are 𝑢1 and 𝑢2, with 

eigenvalues 𝜆1 and 𝜆2. If the eigenvectors form an orthonormal basis, then the system state 

can be written as the superposition |𝑆〉 = 𝑐1𝑢1 + 𝑐2𝑢2. If the state is normalised, so that 

|𝑐1|2 + |𝑐2|2 = 1, then the Born rule states that the probability of a measurement returning 

the eigenvalue 𝜆1 is equal to |𝑐1|2, and the probability of 𝜆2 is |𝑐2|2.  

 

To see the difference between the classical and quantum approaches, in the context of human 

cognition, suppose that a person has a choice between a certain number of possible options. 

In classical probability theory, each choice u would be treated as a subset of the set U 

 
7 A Hermitian operator is one which equals its Hermitian conjugate, which for a matrix operator is defined as 

the complex conjugate of the transpose, so 𝐴 = 𝐴† ≡ (𝐴𝑇)∗. 
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consisting of all choices. A person’s cognitive state is represented by a function p with the 

probability of choosing X given by p(u). As a simple example, U could consist of two choices 

u and v, with respective probabilities p(u) and p(v), that satisfy p(u) + p(v)= 1. 

 

In quantum cognition, a choice in response to a particular question is treated instead as an 

element (e.g. vector) |𝑢〉 of a Hilbert space H, and a person’s cognitive state is represented by 

an element |𝑆〉, both of length 1. (The state |𝑆〉 is sometimes called a wave function, although 

here it is static rather than time-varying.) Here the associated operator 𝑄̂𝑢 is the one that 

projects vectors onto |𝑢〉, so |𝑢〉 is the eigenvector (as seen later, it is possible to work either 

with the vector |𝑢〉 or with the corresponding projection operator). The probability of the 

answer to the question being |𝑢〉 is then given by the magnitude of the projection squared, 

which is 𝑃(𝑢) = |⟨𝑢|𝑆⟩|2. 

 

As a simple example, the two axes in the figure below represent decisions of Yes or No to 

some question, while a person’s state is represented by the grey line at an angle 𝛼 to the No 

axis. The probability of deciding Yes is given by the square of the projection onto the Yes 

axis, which equals sin2 𝛼. 
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Figure 2.1. Axes show decision states which correspond to eigenvectors, grey line shows a 

person’s state |𝑆〉. The probability of deciding Yes is found by projecting onto the Yes axis 

and taking the square, which gives sin2 𝛼. 

 

This shift, from sets of elements to geometric projections, allows for more complicated 

probabilistic effects such as non-commutativity and interference, which as seen in the next 

section are characteristic of human cognition.  

 

3. Human cognition 

 

Neoclassical economics is based on the theory of expected utility, which was first codified by 

the Hungarian mathematician John Von Neumann and the economist Oskar Morgenstern in 

their 1944 book Theory of Games and Economic Behaviour. The aim was “to find the 

mathematically complete principles which define ‘rational behavior’ for the participants in a 

social economy, and to derive from them the general characteristics of that behavior.” They 

arrived at a list of four principles or axioms. 

 

Suppose an agent is faced with two games or lotteries A and B with different potential 

payoffs. The Completeness axiom then assumes that the agent has well-defined preferences 

and can always choose between the two alternatives. The Transitivity axiom assumes that if 

the agent prefers A over B, and B over C, then they prefer A over C. The Independence 

axiom assumes that, if the agent prefers A over B, then introducing an unrelated lottery C 

does not change that preference. Finally, the Continuity axiom assumes that if the agent 

prefers A over B, and B over C, then there should be some mix of the most-favoured A and 

the least-favoured C which is equally attractive as B. If the agent meets these four axioms, 

then their preferences can be modelled using a so-called utility function, and they are 

officially rational.  

 

The expected utility for each lottery is defined as the sum of utilities of the possible 

outcomes, weighted by the probability of each outcome. Suppose for example a lottery A has 

two possible payoffs: an amount 𝑎1 with probability 𝑝(𝑎1), and an amount 𝑎2 with 

probability 𝑝(𝑎2). The expected utility is then  

𝑈(𝐴) = 𝑝(𝑎1)𝑢(𝑎1) + 𝑝(𝑎2)𝑢(𝑎2) = 𝑝(𝑎1)𝑎1 + 𝑝(𝑎2)𝑎2 
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since the utility of a payout is here just the payout. A lottery B is preferred if its expected 

utility satisfies 𝑈(𝐵) > 𝑈(𝐴). 

 

While expected utility theory still forms the basis for most models in economics, since the 

1970s behavioural psychologists and economists have shown that the theory doesn’t capture a 

variety of cognitive phenomena. One of the first attempts to modify expected utility theory 

was the prospect theory of Kahneman and Tversky, published in their 1979 paper “Prospect 

Theory: An Analysis of Decision under Risk”. This modified expected utility theory in two 

ways. The first was to say that what counts is not final amounts, but wins or losses relative to 

some reference point. The second was to say that outcomes are weighted by a nonlinear 

uncertainty weighting function, rather than probability itself. These two main findings of 

prospect theory are illustrated in Figures 3.1 and 3.2.  

 
Figure 3.1. Plot of a value function, showing the psychological value of an event as a 

function of monetary gains or losses. The centre represents the reference level, according to 

which gains or losses are experienced. The function saturates for large gains or losses, and is 

also asymmetric around the origin because a loss of a certain amount is felt more keenly than 

a similar gain (dotted lines). 

 

gainslosses

value
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Figure 3.2. Plot of an uncertainty weighting function. In expected utility theory, the 

uncertainty weighting of an event equals its probability (dashed line). In prospect theory, the 

curve is concave near 0 and convex near 1 (solid line). The curve will be different for losses 

and gains, but similar in shape. 

 

Following (Tversky & Kahneman, 1992) the value function 𝑣(𝑥) and uncertainty weighting 

function 𝑤(𝑝) were generated using the following equations: 

𝑣(𝑥) = −2(−𝑥)0.5 for 𝑥 < 0 

𝑣(𝑥) = 𝑥0.5 for 𝑥 ≥ 0 

and  

𝑤(𝑝) =
𝑝𝛾

(𝑝𝛾 + (1 − 𝑝)𝛾)1 𝛾⁄  

where 𝛾 = 0.61. 

 

Together, these figures summarise many of the key cognitive phenomena which form the 

core of behavioural economics. For example, losses and gains are felt relative to some 

reference point, which will depend on the context. This point is represented by the zero of the 

horizontal axis for the value curve in Figure 3.1. Most people are loss averse, in the sense that 

a loss of a certain amount is roughly twice as painful as a gain of the same amount is 

pleasurable. This is why the value curve is asymmetrical around the origin, with a steeper 

slope for losses. The shape also reflects the finding, which goes back to the eighteenth 

century mathematician Daniel Bernoulli, that the effect of losses or gains tends to saturate at 

larger amounts. 
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Experiments also show that we don’t weight outcomes exactly by their probabilities. In 

particular, we are more sensitive to a change in probability from 0 to 0.1, or from 0.9 to 1, 

than we are to a change from 0.4 to 0.5, which is why the uncertainty function in Figure 3.2 is 

concave near 0 and convex near 1.This is why for example we give too much weight to 

reports of low-probability events like terrorist attacks or other unlikely disasters.  

 

To summarise, the difference between prospect theory and expected utility theory is that 

instead of writing  

𝑈(𝐴) = 𝑝(𝑎1)𝑎1 + 𝑝(𝑎2)𝑎2 

we write  

𝑈(𝐴) = 𝑤(𝑎1)𝑣(𝑎1) + 𝑤(𝑎2)𝑣(𝑎1) 

where 𝑣 is the value function and 𝑤 is the uncertainty weighting function. Prospect theory 

can therefore be viewed as a modified version of expected utility theory, where linear 

relationships are replaced by nonlinear curves. As an example of how it is applied, consider 

the following two games, which give an example of the Allais paradox first described by the 

French economist Maurice Allais in 1952. 

 

Game A: choose between 

a1:  $40 with probability 80% 

a2:  $30 with probability 100% 

 

Game B: choose between 

b1:  $40 with probability 20% 

b2:  $30 with probability 25% 

 

According to expected utility theory, we have 

𝑈(𝑎1) = 𝑝(𝑎1)𝑎1 = 0.80 ∗ 40 = 32 

𝑈(𝑎2) = 𝑝(𝑎2)𝑎2 = 1.00 ∗ 30 = 30 

for Game A, and 

𝑈(𝑏1) = 𝑝(𝑏1)𝑏1 = 0.20 ∗ 40 = 8 

𝑈(𝑏2) = 𝑝(𝑏2)𝑏2 = 0.25 ∗ 30 = 7.50 
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for Game B. In either game (or prospect, as it is called) the first option offers a slightly better 

expected utility. However in practice people usually choose the first option for Game B, but 

the second option for Game A. The reason is that Game A includes a “sure thing” option, 

which is more attractive. However this implied their utility theory was not consistent, which 

violated the axioms of expected utility theory.  

 

In prospect theory, using the above versions of the value and uncertainty weighting functions, 

these calculations become 

𝑈(𝑎1) = 𝑤(0.80)𝑣(40) = 0.61 ∗ 6.32 = 3.86 

𝑈(𝑎2) = 𝑤(1.00)𝑣(30) = 1.00 ∗ 5.48 = 5.48 

for Game A, and 

𝑈(𝑏1) = 𝑤(0.20)𝑣(40) = 0.26 ∗ 6.32 = 1.64 

𝑈(𝑏2) = 𝑤(0.25)𝑣(30) = 0.29 ∗ 5.48 = 1.59 

for Game B. The most attractive options are now 𝑎2 and 𝑏1, in agreement with experiments. 

The reason is that the sure-thing option is overweighted in terms of psychological value. 

 

While prospect theory does address many of our cognitive quirks, there are a number of 

others which require separate attention. An example is the Ellsberg paradox. This involves an 

urn containing 90 balls, of which 30 are red and 60 are either black or yellow. You are given 

the choice between two gambles. 

 

In Game A, you bet on either red or black. 

In Game B, you bet on red or yellow, or black or yellow. 

 

Which would you prefer? In each game the chances of drawing a red, black or yellow ball are 

one in 3. The only difference between the games is that in Game B, each side of the bet 

includes yellow. So if you prefer red in Game A, then you should prefer “red or yellow” in 

Game B. However most people see it differently – they don’t look at the colour of the ball, 

but at the uncertainty. In Game A, the number of red balls is known to be 30, but the number 

of black balls is uncertain. They therefore choose red in Game A. In Game B, the number of 

yellow balls is uncertain, however the sum of black and yellow balls is known to be 60. They 

therefore choose to bet on “black or yellow”, since again that is the option with less 

uncertainty.  
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This inconsistency contradicts expected utility theory, however it also eludes prospect theory, 

for the simple reason that the probabilities are unknown, so it is impossible to adjust them 

with the uncertainty weighting function. The paradox could only be explained by introducing 

a new and different kind of ad hoc weighting function, which accounted for uncertainty 

aversion.8 

 

In fact it turns out that there are many other cognitive phenomena which cannot be captured 

in a straightforward way using classical theory. These include the so-called conjunction and 

disjunction effects, the order effect, and preference reversal. The thing they have in common 

is that in all cases, the context and the measurement procedure affects the answer, as with a 

quantum measurement. In the Ellsberg paradox for example the two options are formally 

identical, with the only difference being the details of the scenario. The uncertainty about the 

number of black or yellow balls creates a kind of mental interference pattern that affects 

judgment. The next section shows how the quantum approach can be used to resolve such 

paradoxes. 

 

4. Quantum cognition 

 

To return to the example of the Allais effect, we first note that the problem can be expressed 

in matrix form by setting the payoff matrix for Game A to 

𝑈 = (
𝑢1 0 0
0 𝑢2 0
0 0 𝑢3

) = (
40 0 0
0 30 0
0 0 0

) 

and the probabilities as vectors 𝜓1 = (√0.8 0 √0.2) and 𝜓2 = (0 1 0), where the 

third component refers to the chance of winning nothing. The expected utility is then given 

by 

𝑂(𝜓) = 𝜓𝑈𝜓𝑇 

so  

𝑂(𝜓𝑎1) = (√0.8 0 √0.2) (
40 0 0
0 30 0
0 0 0

) (
√0.8

0

√0.2

) = 32 

 
8 This involves something known as “non-additive probabilities” or “capacities” (Halpern 2003). 
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𝑂(𝜓𝑎2) = (0 1 0) (
40 0 0
0 30 0
0 0 0

) (
0
1
0

) = 30 

𝑂(𝜓𝑏1) = (√0.2 0 √0.8) (
40 0 0
0 30 0
0 0 0

) (
√0.2

0

√0.8

) = 8 

𝑂(𝜓𝑏2) = (0 √0.25 √0.75) (
40 0 0
0 30 0
0 0 0

) (

0

√0.25

√0.75

) = 7.50 

as before. 

 

We can also use the spectral decomposition of 𝑈 to write 

𝑂(𝜓) = 𝜓𝑈𝜓𝑇 = 𝜓 (∑ 𝑢𝑖𝑉𝑖

𝑖

𝑉𝑖
𝑇) 𝜓𝑇 = ∑ 𝑢𝑖

𝑖

|𝜓𝑉𝑖|
2 

where 𝑉𝑖 is the column eigenvector of 𝑂 corresponding to the eigenvalue 𝑢𝑖, and 𝑉𝑖𝑉𝑖
𝑇 is the 

projection operator that projects onto that eigenvector. For the classical case, where 𝑂 is 

diagonal, the matrix 𝑉 of eigenvectors is the identity matrix, so the equation reduces to a 

weighted expected utility function, where the payoffs 𝑢𝑖 are weighted by the probabilities 

|𝜓𝑉𝑖|
2 = 𝜓𝑖

2. In this case for example we can write 

𝑂(𝜓) = 40𝜓 (
1 0 0
0 0 0
0 0 0

) 𝜓𝑇 + 30𝜓 (
0 0 0
0 1 0
0 0 0

) 𝜓𝑇 + 0𝜓 (
0 0 0
0 0 0
0 0 1

) 𝜓𝑇 . 

 

In the quantum framework, the matrix 𝑈 corresponds to an observable, which again is a 

Hermitian operator with real eigenvalues.9 The expected utility 𝑂(𝜓) is the expected value of 

this observable when the system is in the state  

|𝜓〉 = ∑⟨𝑉𝑖|𝜓⟩ ∙ |𝑉𝑖〉

𝑖

 

where the weights ⟨𝑉𝑖|𝜓⟩2 correspond to the terms |𝜓𝑉𝑖|2 in the matrix version, and represent 

the subjective weight assigned to the payoff 𝑢𝑖.
10 In other words, we decompose the state 𝜓 

of the decision-maker into the basis of eigenvectors 𝑉𝑖, each of which corresponds to a 

particular outcome, and use the result to obtain the observable 𝑂(𝜓). 

 

 
9 For an Hermitian matrix, all eigenvalues are real, and eigenvectors corresponding to distinct eigenvalues are 

orthogonal. 
10 Busemeyer and Bruza, 2012: 259. 
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In the classical case, the probabilities 𝜓 refer to the objective state of the game, and the 

weights combine these probabilities with the payoffs 𝑉𝑖. The problem is that there is no 

penalty given to reflect the fear of winning nothing, which is known to influence decisions. 

Following La Mura’s (2009) theory of “projected expected utility”, this can be done in the 

quantum framework by choosing the observable 𝑈 to be a Hermitian operator where the off-

diagonal terms are non-zero.11 If this is the case, then the weights ⟨𝑉𝑖|𝜓⟩2 will not just weight 

an outcome by its probability of occurring, but can include other factors, such as the fact that 

an outcome occurring means that another outcome did not occur. For example, a small degree 

of aversion to the risk of winning nothing (the third component) can be modelled by setting 

the observable to 

𝑈 = (
40 0 −5
0 30 −5

−5 −5 0
) 

which gives 

𝑂(𝜓𝑎1) = (√0.8 0 √0.2) (
40 0 −5
0 30 −5

−5 −5 0
) (

√0.8
0

√0.2

) = 28 

and similarly 𝑂(𝜓𝑎2) = 30, 𝑂(𝜓𝑏1) = 4, and 𝑂(𝜓𝑏2) = 3.17, so now options 𝑎2 and 𝑏1 are 

selected.  

 

The eigenvalues of 𝑈 are now 40.65, 30.75, and -1.40, which shows that the third outcome of 

winning nothing is being given a negative weight. The projection operators, which are 

orthogonal to each other, are also rotated by the matrix whose columns are the new 

eigenvectors. So instead of  

𝑉1𝑉1
𝑇 = (

1 0 0
0 0 0
0 0 0

) 

in the classical version, we now have 

𝑉1𝑉1
𝑇 = (

0.9796 0.0600 −0.1279
0.0600 0.0037 −0.0078

−0.1279 −0.0078 0.0167
). 

 

To summarise, a diagonal utility matrix means that prospects are being evaluated by 

projecting onto a basis consisting of objective outcomes with known utilities. In practice 

however a person will evaluate a prospect by projecting onto a subjective basis which will 

 
11 La Mura, Projective Expected Utility. https://arxiv.org/pdf/0802.3300.pdf 
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not align perfectly with the classical version, and will assign a negative weight to undesired 

outcomes.  

 

The same approach can be applied to the Ellsberg paradox.12 If we assume that the prize for 

winning the gamble is $100, then the utility matrix is 

𝑈 = (
100 0

0 0
). 

The risk vector 𝑐1 = (√1 3⁄ √2 3⁄ ) corresponds to the game of betting on red (which has a 

1/3 probability of success). The risk vector 𝑐2 = (√
𝑛

90
√

90−𝑛

90
), where n is the (unknown) 

number of black balls, corresponds to betting on black. It is easily checked that the expected 

utilities are 𝑈𝑐1
= 1 3⁄  and 𝑈𝑐2

= 𝑛 90⁄ . If we assume that 𝑛 is uniformly distributed between 

0 and 60 then the expected value of the latter is 1 3⁄  as in the classical case. 

 

Following the same procedure, we now assume that the utility matrix is of the form 

𝑈 = (
100 𝛼

𝛼 0
) 

which gives 𝑈𝑐1
= 1 3⁄ + 0.94𝛼 and 𝑈𝑐2

= 𝑛 90⁄ + 2𝛼√
𝑛(90−𝑛)

90
 which averages to 𝑈𝑐2

=

1 3⁄ + 0.83𝛼. As with the Allais case above, this means that the utility of an outcome is 

measured not just in terms of the expected payoff, but also reflects a subjective balance 

between the events of winning and losing. If 𝛼 = 0 then the two bets are equally attractive, 

but if 𝛼 > 0, which in this case reflects avoidance towards uncertainty, then the second 

option becomes more attractive. 

 

This method of introducing non-zero off-diagonal entries to the utility matrix 𝑈 has the 

benefit of simplicity, however a possible drawback is that 𝑈 combines two effects: the 

objective weights, and the subjective weights. Rather than starting with 𝑈, an alternative 

method would be to propose a subjective basis on which to first project the state 𝜓, and use 

the spectral decomposition together with normalization conditions to generate 𝑈.13 This 

would probably require using a numerical algorithm to find the right basis. 

 

 
12 Blutner & Graben, 2014. https://arxiv.org/ftp/arxiv/papers/1410/1410.3961.pdf 
13 Aerts, D., & Sozzo, S. (2016). From ambiguity aversion to a generalized expected utility. Modeling 

preferences in a quantum probabilistic framework. Journal of Mathematical Psychology 74, 117-127. 
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The conjunction effect 

 

The above examples show how the projective nature of quantum probability can be used to 

address some of the problems with the classical approach. Other classes of cognitive effects 

include the disjunction effects and conjunction effects. In logic, disjunction refers to the OR 

statement and conjunction to AND. An example of the disjunction effect is an experiment 

from Tversky and Shafir, who asked a group of students the following question:14 

 

Imagine that you have just taken a tough qualifying examination. It is the end of the 

fall quarter, you feel tired and run-down, and you are not sure that you passed the 

exam. In case you failed you have to take the exam again in a couple of months – 

after the Christmas holidays. You now have an opportunity to buy a very attractive 5-

day Christmas vacation package in Hawaii at an exceptionally low price. The special 

offer expires tomorrow, while the exam grade will not be available until the following 

day. Would you?:  

(a) buy the vacation package. 32%  

(b) not buy the vacation package. 7%  

(c) pay a $5 non-refundable fee in order to retain the rights to buy the vacation 

package at the same exceptional price the day after tomorrow – after you find out 

whether or not you passed the exam.  

 

In this experiment, 32 percent choose option (a), 7 percent option (b), and a majority of 61 

percent go for option (c). These results can be compared with a second version of the 

experiment which had exactly  the same wording, except that now the students were told 

whether they had passed the exam or not. In this case more than half the students chose to 

buy the vacation package if they knew the outcome, whether it was pass (54 percent chose to 

buy) or fail (57 percent). However only 32 percent chose to buy the package if they didn’t 

know the outcome. 

 

The approach here is based on (Agrawal & Sharda, 2010), which in turn was based on the 

quantum decision theory of Yukalov and Sornette, discussed below.15 Let 𝐵 represent the 

event of buying the vacation, 𝐴 the event of passing the exam, and 𝐴̅ the event of failing the 

 
14 Tversky & Shafir, 1992. 
15 Agrawal & Sharda, 2010, Quantum Mechanics and Human Decision Making 
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exam. The probability of buying the vacation if the test is passed is 𝑃(𝐵|𝐴) = 0.54, and if 

the test is failed it is 𝑃(𝐵|𝐴̅) = 0.57. However the probability of buying the vacation without 

knowing the test result is 𝑃(𝐵) = 0.32. The law of total probability states that 

𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴) + 𝑃(𝐵|𝐴̅)𝑃(𝐴̅). 

In other words, the probability of 𝐵 should be the same whether the result of the exam is 𝐴 or  

𝐴̅. Applying it here, since 𝑃(𝐵|𝐴) > 0.5 and 𝑃(𝐵|𝐴̅) > 0.5, we find that 

𝑃(𝐵) > 0.5(𝑃(𝐴) + 𝑃(𝐴̅)) = 0.5 

which contradicts the fact that 𝑃(𝐵) = 0.32. 

 

Tversky & Shafir (1992) explained the disjunction effect as being caused by “the loss of 

acuity induced by the presence of uncertainty.” In other words, people get confused. However 

Busemeyer and Bruza (2012, p. 267) noted the similarity with the quantum concept of 

interference: “If choice is based on reasons, then the unknown condition has two good 

reasons. Somehow these two good reasons cancel out to produce no reason at all! This is 

analogous to wave interference where two waves meet with one wave rising while the other 

wave is falling so they cancel out.” 

 

The disjunction effect differs from the Allais and Ellsberg paradoxes, because the question is 

no longer about choosing between risk/payoff balances. The payoff is not a choice between 

amounts of money, weighted by a probability, but between taking a vacation or staying at 

home. The question is therefore about the likelihood of choosing one option, given a 

particular context. In quantum terms, one can think of this as two projections: one which 

projects the context onto a particular subspace (pass or fail the test) and another which 

projects the vacation decision onto yes or no. The notation for this problem is summarised in 

Tables 1 and 2 below. 

 

Table 1. Summary of probabilities. Experimental values are shown in bold. There are similar 

expressions for the event 𝐴̅ of failing the test and the event 𝐵̅ of not buying the vacation. 

𝐴 Event of passing the test 

𝐵 Event of buying vacation 

𝑃(𝐴) Probability of passing test (0.5) 

𝑃(𝐵|𝐴) Probability of buying vacation after finding test passed (0.54) 

𝑃(𝐵𝐴) Joint probability of buying vacation and passing test 𝑃(𝐵𝐴) = 𝑃(𝐵|𝐴)𝑃(𝐴) (0.27) 
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𝑃(𝐵) Probability of buying vacation without knowing test result (0.32) 

 

Table 2. Summary of quantum notation. There are similar expressions for |𝐴̅〉 and |𝐵̅〉.  

|𝐴〉 State where the test is passed 

|𝐵〉 State where vacation is bought 

|𝐵𝐴〉 State where test is passed and vacation bought, |𝐵𝐴〉 = |𝐵〉|𝐴〉 

 

 

The state of the test result is the superposition 

|𝜑〉 = 𝛼1|𝐴〉 + 𝛼2|𝐴̅〉 

where the coefficients are complex numbers that satisfy the normalization condition |𝛼1|2 +

|𝛼2|2 = 1. We define 𝑂̂1 to be the operator for the probability of passing the test, with 

𝑂̂1|𝐴〉 = |𝐴〉 and 𝑂̂1|𝐴̅〉 = 0. Then 𝑂̂1|𝜑〉 = 𝛼1𝑂̂1|𝐴〉 + 𝛼2𝑂̂1|𝐴̅〉 = 𝛼1|𝐴〉. The probabilties 

are then 𝑃(𝐴) = ⟨𝜑|𝑂̂1|𝜑⟩ = |𝛼1|2, and 𝑃(𝐴̅) = 1 − |𝛼1|2 = |𝛼2|2. 

 

The person’s state of mind after learning they passed the test is  

|𝜓1〉 = 𝛾11|𝐵𝐴〉 + 𝛾12|𝐵̅𝐴〉 

with |𝛾11|2 + |𝛾12|2 = 1. We again define 𝑂̂2to be the operator for the probability of buying 

the vacation, with 𝑂̂2|𝐵〉 = |𝐵〉 and 𝑂̂2|𝐵̅〉 = 0. The probability of buying or not buying a 

vacation is 𝑃(𝐵|𝐴) = ⟨𝜓2|𝑂̂2|𝜓2⟩ = |𝛾11|2, and 𝑃(𝐵̅|𝐴) = |𝛾12|2.  

 

Similarly, the person’s state of mind after learning they failed the test is  

|𝜓2〉 = 𝛾21|𝐵𝐴̅〉 + 𝛾22|𝐵̅𝐴̅〉 

with |𝛾21|2 + |𝛾22|2 = 1. The probability of buying or not buying is  𝑃(𝐵|𝐴̅) =

⟨𝜓2|𝑂̂𝐵|𝜓2⟩ = |𝛾21|2, and 𝑃(𝐵̅|𝐴̅) = |𝛾22|2.  

 

Combining these, the state of mind towards the vacation before knowing the test result is  

|𝜓〉 = 𝛼1|𝜓1〉 + 𝛼2|𝜓2〉 = 𝛼1(𝛾11|𝐵𝐴〉 + 𝛾12|𝐵̅𝐴〉) + 𝛼2(𝛾21|𝐵𝐴̅〉 + 𝛾22|𝐵̅𝐴̅〉)

= 𝛽11|𝐵𝐴〉 + 𝛽12|𝐵̅𝐴〉 + 𝛽21|𝐵𝐴̅〉 + 𝛽22|𝐵̅𝐴̅〉 

where 𝛽𝑖𝑗 = 𝛼𝑖𝛾𝑖𝑗. Since this is a sum of orthogonal terms, |𝜓〉 exists in a 4-dimensional 

space. The joint probability of passing the test and buying the vacation is described by the 

product of 𝑂̂1 and 𝑂̂2, so 
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𝑃(𝐵𝐴) = ⟨𝜓|𝑂̂2𝑂̂1|𝜓⟩. 

Now  

𝑂̂1|𝜓〉 = 𝛽11𝑂̂1|𝐵𝐴〉 + 𝛽12𝑂̂1|𝐵̅𝐴〉 + 𝛽21𝑂̂1|𝐵𝐴̅〉 + 𝛽22𝑂̂1|𝐵̅𝐴̅〉 = 𝛽11|𝐵𝐴〉 + 𝛽12|𝐵̅𝐴〉 

and  

𝑂̂2𝑂̂1|𝜓〉 = 𝛽11𝑂̂2|𝐵𝐴〉 + 𝛽12𝑂̂2|𝐵̅𝐴〉 = 𝛽11𝑂̂2|𝐵𝐴〉 

so  

𝑃(𝐵𝐴) = |𝛽11|2. 

Note that 𝑃(𝐵𝐴) = |𝛽11|2 = |𝛼1|2|𝛾11|2 = 𝑃(𝐴)𝑃(𝐵|𝐴) as expected. Similarly 𝑃(𝐵̅𝐴) =

|𝛽12|2, 𝑃(𝐵𝐴̅) = |𝛽21|2, and 𝑃(𝐵̅𝐴̅) = |𝛽22|2. It is easily checked that because the terms are 

orthogonal, 

𝑃(𝐵) = ⟨𝜓′|𝑂̂2|𝜓′⟩ = |𝛽′11|2 + |𝛽′21|2 = 𝑃(𝐵𝐴) + 𝑃(𝐵𝐴̅). 

 

The corresponding state for the scenario where there is no knowledge of the test result is 

given by the same equation where the effect of 𝐴 and 𝐴̅ is ignored, so 

|𝜓′〉 = 𝛽′11|𝐵〉 + 𝛽′12|𝐵̅〉 + 𝛽′21|𝐵〉 + 𝛽′22|𝐵̅〉 = (𝛽′11 + 𝛽′21)|𝐵〉 + (𝛽′21 + 𝛽′22)|𝐵̅〉. 

The coefficients satisfy |𝛽′𝑖𝑗| = |𝛽𝑖𝑗| but may differ in phase factor. The probability is then 

𝑃(𝐵) = ⟨𝜓′|𝑂̂2|𝜓′⟩ = |𝛽′11 + 𝛽′21|2 = |𝛽′11|2 + |𝛽′21|2 + 𝛽′11
∗ 𝛽′21 + 𝛽′21

∗ 𝛽′11

= 𝑃(𝐵𝐴) + 𝑃(𝐵𝐴̅) + 𝑞(𝐵) 

where 𝑞(𝐵) = 𝛽′11
∗ 𝛽′21 + 𝛽′21

∗ 𝛽′11 is an interference term and * denotes complex conjugate. 

 

Writing the coefficients as 𝛽′11 = |𝛽′11| exp(𝑖𝜃11) and 𝛽′21 = |𝛽′21| exp(𝑖𝜃21) gives 

𝑞(𝐵) = 2|𝛽′11||𝛽′21| exp(𝑖𝜃11) exp(𝑖𝜃21) = 2|𝛽′11||𝛽′21| cos(𝜃21 − 𝜃11)

= 2√𝑃(𝐵𝐴)𝑃(𝐵𝐴̅) cos(𝜃21 − 𝜃11). 

A similar argument using the operator  𝐼 − 𝑂̂2, where 𝐼 is the identity operator, gives 

𝑃(𝐵̅) = 𝑃(𝐵̅𝐴) + 𝑃(𝐵̅𝐴̅) + 𝑞(𝐵̅) 

where 

𝑞(𝐵̅) = 2√𝑃(𝐵̅𝐴)𝑃(𝐵̅𝐴̅) cos(𝜃22 − 𝜃12). 

Note that 

𝑞(𝐵) + 𝑞(𝐵̅) = (𝑃(𝐵) − 𝑃(𝐵𝐴) − 𝑃(𝐵𝐴̅)) + (𝑃(𝐵̅) − 𝑃(𝐵̅𝐴) − 𝑃(𝐵̅𝐴̅))

= (𝑃(𝐵) + 𝑃(𝐵̅)) − (𝑃(𝐵𝐴) + 𝑃(𝐵𝐴̅) + 𝑃(𝐵̅𝐴) + 𝑃(𝐵̅𝐴̅)) = 0. 
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From the experimental results we have 𝑃(𝐴) = 𝑃(𝐴̅) = 0.5, 𝑃(𝐵|𝐴) = 0.54, 𝑃(𝐵|𝐴̅) =

0.57, and 𝑃(𝐵) = 0.32. We therefore deduce that 

𝑞(𝐵) = 𝑃(𝐵𝐴) + 𝑃(𝐵𝐴̅) − 𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴) + 𝑃(𝐵|𝐴̅)𝑃(𝐴̅) − 𝑃(𝐵) = 0.235 

and  

cos(𝜃21 − 𝜃11) =
𝑞(𝐵)

2√𝑃(𝐵𝐴)𝑃(𝐵𝐴̅)
=

0.235

2√0.5 ∗ 0.54 ∗ 0.5 ∗ 0.57
= 0.424 

so the phase difference is 

∆= 𝜃21 − 𝜃11 = acos(0.424) = 64.9°. 

 

To summarise, quantum probability differs from classical probability in a number of respects.  

In a classical model, we can get the probability of an event by summing the probability of 

alternative paths, so 𝑃(𝐵) = 𝑃(𝐵|𝐴) + 𝑃(𝐵|𝐴̅). In quantum probability, probability 

amplitudes are first summed, and then squared to give the actual probability. Furthermore the 

coefficients can be complex, which leads to interference effects which do not occur in 

classical theory. In quantum theory, this occurs when the two events are entangled.16 This is 

why the quantum approach can address problems such as the disjunction effect which elude a 

classical treatment. 

 

Density matrix 

 

So far we have assumed that decisions are taken independently, so the decision maker can be 

modeled as being in a pure quantum state, and described using a wave function. When 

decision makers are interacting with society, this is no longer possible, because in effect they 

will be just one part of a larger societal wave function. In quantum mechanics such “mixed 

states” are handled by using statistical operators. 

 

A first step is to define the density matrix or density operator , which is an alternate 

representation of the state of a quantum system.17 It can be calculated from a wavefunction by 

taking the outer product of the wavefunction and its conjugate: 𝜌 = |𝜓〉〈𝜓|. 

 

If |𝜓〉 = 𝛼1|𝜓1〉 + 𝛼2|𝜓2〉, then 

 
16 Yukalov & Sornette, Conditions for Quantum Interference in Cognitive Sciences 
17 https://ocw.mit.edu/courses/chemistry/5-74-introductory-quantum-mechanics-ii-spring-2009/lecture-

notes/MIT5_74s09_lec12.pdf 
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𝜌 = |𝜓〉〈𝜓|= 𝛼1𝛼1
∗|𝜓1〉〈𝜓1| + 𝛼1𝛼2

∗|𝜓1〉〈𝜓2|+𝛼2𝛼1
∗|𝜓2〉〈𝜓1| + 𝛼2𝛼2

∗|𝜓2〉〈𝜓2| 

and in general the elements of the density matrix are given by 𝜌𝑛,𝑚 = 𝛼𝑛𝛼𝑚
∗ .  

 

Suppose 𝑅̂ is an observable of the system. Then the expectation value of 𝑅̂ is given by 

〈𝑅̂〉 = ⟨𝜓|𝑅̂|𝜓⟩ = 𝛼1𝛼1
∗⟨𝜓1|𝑅̂|𝜓1⟩ + 𝛼1𝛼2

∗⟨𝜓1|𝑅̂|𝜓2⟩ + 𝛼2𝛼1
∗⟨𝜓2|𝑅̂|𝜓1⟩ + 𝛼2𝛼2

∗⟨𝜓2|𝑅̂|𝜓2⟩

= ∑ 𝑅𝑛,𝑚𝜌𝑛,𝑚

𝑛,𝑚

= Tr(𝑅𝜌) 

so the expectation value can be calculated by taking the trace of a matrix product. For the 

example of the conjunction effect, if  

𝜓 = (
√0.8

0

√0.2

) 

then the density matrix is 

𝜌 = (
√0.8

0

√0.2

) (√0.8 0 √0.2) = (
0.8 0 √0.16
0 0 0

√0.16 0 0.2

). 

The density matrix representation will be used below when we account for social effects. 

 

Projected expected utility 

 

The disjunction problem can also be expressed in a compact way using La Mura’s theory of 

projected expected utility. Following (Blutner & Graben, 2014) we first denote the operator 

associated with the test result as a projection matrix 𝑨, the operator associated with the 

vacation decision as 𝑩, and the operator which represents taking two sequential 

measurements 𝑨 then 𝑩 as (𝑨; 𝑩). Consider the state 𝑣 = 𝑨(𝑢). The probability of 𝑩(𝑣) is 

given by the squared amplitude 

𝑃𝑣(𝑩) = |𝑩(𝑣)|2
= 𝑩(𝑨(𝑢)) ∙ 𝑩(𝑨(𝑢)) = 𝑩𝑨(𝑢) ∙ 𝑩𝑨(𝑢) = 𝑨(𝑢) ∙ 𝑩𝑩𝑨(𝑢) 

Using the fact that 𝑨 and 𝑩 are self-adjoint projection operators, we have 𝑩𝑩 = 𝑩 and 

𝑨(𝑢) = 𝑢 ∙ 𝑨. Plugging these into the above gives |𝑩(𝑣)|2
= 𝑢 ∙ 𝑨𝑩𝑨(𝑢) from which it 

follows that the sequence operator is (𝑨; 𝑩) = 𝑨𝑩𝑨.18 It can be used to calculate conditional 

probabilities by noting that 𝑃(𝑨; 𝑩) = 𝑃(𝑩|𝑨)𝑃(𝑨). If 𝑨 and 𝑩 commute, then (𝑨; 𝑩) =

𝑨𝑩𝑨 = 𝑩𝑨𝑨 = 𝑩𝑨 which is the same as in the classical case.  

 

 
18 Niestegge (2008). See also Busemeyer & Bruza, 2012: 365. 
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This operator (𝑨; 𝑩) is known as the asymmetric conjunction operator. To see why, using the 

facts that 𝑨̅ = 𝑰 − 𝑨 where 𝑰 is the identity, and 𝑨̅𝑨 = 𝑨𝑨̅ = 𝟎, then another projection 

operator 𝑩 can be expressed as 

𝑩 = 𝑰𝑩𝑰 = (𝑨 + 𝑨̅)𝑩(𝑨 + 𝑨̅) = 𝑨𝑩𝑨 + 𝑨𝑩𝑨̅ + 𝑨̅𝑩𝑨 + 𝑨̅𝑩𝑨̅

= (𝑨; 𝑩) + (𝑨̅; 𝑩) + 𝜕(𝑨, 𝑩). 

This is similar to the law of total probability, except that there is now an additional term 

𝜕(𝑨, 𝑩) = 𝑨𝑩𝑨̅ + 𝑨̅𝑩𝑨 which is the interference term. Because the three terms are all 

mutually orthogonal, we therefore have 

𝑃𝑢(𝑩) = 𝑃𝑢(𝑨; 𝑩) + 𝑃𝑢(𝑨̅; 𝑩) + 𝑃𝑢(𝜕(𝑨, 𝑩)) 

and applying the definition of conditional probabilities gives 

𝑃𝑢(𝑩) = 𝑃𝑢(𝑩|𝑨)𝑃𝑢(𝑨) + 𝑃𝑢(𝑩|𝑨̅)𝑃𝑢(𝑨̅) + 𝑃𝑢(𝜕(𝑨, 𝑩)). 

If we assume that the system is in a pure state 𝑢, then it can be shown that the probability 

function for the interference term is given by 

𝑃𝑢(𝜕(𝑨, 𝑩)) = 2√𝑃𝑢(𝑩|𝑨)𝑃𝑢(𝑨; 𝑩) ∙ √𝑃𝑢(𝑩|𝑨̅)𝑃𝑢(𝑨̅) ∙ cos(∆) 

which is the same as the result for 𝑞(𝐵) found above.19 

 

The conjunction effect 

 

Similar to the disjunction effect is the conjunction effect. This was illustrated in a 1983 paper 

by Tversky and Kahneman, who described an experiment where they gave participants the 

following profile: “Linda is 31 years old, single, outspoken, and very bright. She majored in 

philosophy. As a student, she was deeply concerned with issues of discrimination and social 

justice, and also participated in anti-nuclear demonstrations.” They then asked for the odds 

that (A) Linda is active in the feminist movement, (B) Linda is a bank teller, and finally that 

(A&B) Linda is a bank teller AND is active in the feminist movement. The results were the 

probability P(A) = 0.61 for feminist, P(B) = 0.38 for bank teller, and P(A; B) = 0.51 for both. 

 

According to the rule of conjunction in probability theory, the probability of two events 

occurring together must be less than or equal to the probability of either one occurring alone. 

However here the probability of A and B occurring together is greater than the probability of 

B alone. It is inconsistent with classical logic, but again appears in the quantum model as an 

 
19 Blutner & Graben, 2014. 
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interference term. The prospect “feminist bank teller” can be written in projected utility 

theory as (𝑨; 𝑩), while the joint prospect “bank teller” is 𝑩 = 𝑩(𝑨 + 𝑨̅). The conjunction 

effect is defined as the term 𝑃(𝑨; 𝑩) − 𝑃(𝑩) = 0.13. A similar analysis to the above gives 

cos(∆) = −0.9, so ∆= 154°.20 

 

The order effect 

 

A very simple example of the role of interference in quantum probability is supplied by the 

so-called order effect. As discussed in the book, pollsters and survey writers have long known 

that the answers they receive depend on the exact wording of the questions, but also on their 

order. The response to the first question changes the context for the second question, where 

here the context includes the responder’s own state of mind. The phenomenon is so common 

that in psychology “non-commutivity should be the ubiquitous rule,” according to 

psychologists Harald Atmanspacher and Hartmann Römer. It makes no sense from the point 

of view of classical utility theory, but is similar to the one encountered in quantum physics, 

where a measurement of position affects a particle’s momentum and vice versa.  

 

In a 2014 paper, researchers analysed the results of 70 US surveys, and found that the way 

the answers changed showed an underlying symmetry.21 One example they used was a Gallup 

survey from 1997 which asked in consecutive questions whether respondents thought Bill 

Clinton and Al Gore were trustworthy. The number of people who described them both as 

trustworthy was 49 per cent if Clinton was named first, but rose to 56 per cent if Gore was 

named first, a difference of 7 per cent. Conversely, the number who described them both as 

untrustworthy was 28 per cent if Clinton was named first, but fell to 21 per cent if Gore was 

named first, again a difference of 7 per cent. So the increase in joint trustworthiness was 

balanced by a decrease in joint untrustworthiness.  

 

We can express the order effect through the interference term 

𝜕(𝑨, 𝑩) = 𝑩 − (𝑨; 𝑩) − (𝑨̅; 𝑩) 

 
20 Blutner & Graben, 2014. 
21 Wang, Z., Solloway, T., Shiffrin, R.S., and Busemeyer, J.R. (2014), ‘Context effects produced by question 

orders reveal quantum nature of human judgments’, Proceedings of the National Academy of Sciences, 111 (26), 

pp. 9431–6. 
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which in this case reflects the sensitivity of the response to a question 𝑩 where the context is 

set by a response to another question 𝑨.22 However the quantum model for this experiment is 

very simple and can be visualised without the use of equations.23 The screenshot below is 

from a web application which is available online.24 The grey line shows the person’s state 

when answering the Clinton question. It therefore represents a snapshot of a probabilistic 

wave function, which is in a superposition of two states, trust and mistrust. If the person was 

sure of their trust in Clinton, then this line would align closely with the horizontal YES axis; 

if they were very distrustful, it would align with the vertical NO axis. This person  is rather 

unsure so holds the two options in superposition with roughly equal strength, and the line is 

nearly diagonal. A decision to answer yes is equivalent to a collapse of the uncertain 

superposed state, and is represented mathematically by projecting onto the YES axis, to the 

point shown by the white circle. The probability of this choice, according to the quantum 

model, is then the square of the distance of that point from the centre. This collapsed state is 

then used as the initial condition for the answer to the next question. It is seen that changing 

the question order affects the response probability, in a way that respects the symmetry 

between joint trustworthiness and joint untrustworthiness. 

 

 

 
22 Blutner & Graben, 2014. 
23 For the 2-D case the coefficients can be assumed to be real rather than complex, see Moreira, C. & Wichert, 

A. (2017), ‘Are Quantum Models for Order Effects Quantum?’, International Journal of Theoretical Physics 

56(12): 4029–4046. 
24  See: https://david-systemsforecasting.shinyapps.io/ordereffect/ 
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Figure 3.3. Screenshot of the order effect demo, available as a web application. 

 

Preference reversal 

 

As seen with the examples above, the classical and quantum approaches to probability are 

very different. The former involves sets, while the latter involves subspaces that are defined 

by projection operators which need not commute. Classical probabilities are additive, but 

quantum probabilities are computed by taking squared amplitudes. These effects become 

particularly important when considering problems that involve decisions under uncertainty, 

of the same kind considered in prospect theory. An example is the phenomenon of preference 

reversal.  

 

Preference reversal is when we prefer a particular prospect in one context, but not under a 

different context. Since the choice of prospects is unchanged, this suggests that the subjective 

basis is context-dependent. It is therefore different from the disjunction effect, where the 

comparison is between projecting options onto a subjective basis after being given 

information (for the vacation example, about a test result) or evaluating them directly. 

 

To model preference reversal, we will focus on the quantum decision theory (QDT) approach 

of Yukalov and Sornette, which is convenient for analysing more complex prospects. The 

theory has been explained in a series of publications, and applied to various cases including 

those considered above, so we will just offer a brief summary here.25  

 

In QDT problems are written in terms of prospects of the form  𝜋1 = 𝐵𝐴, which corresponds 

to |𝜋1〉 = 𝑎11|𝐵𝐴〉 in Dirac notation.26 The operators which measure the system (e.g. 𝑂̂1and 

𝑂̂2 in the conjunction effect example test whether the exam was passed or the vacation 

bought) are replaced by “prospect operators” of the form 𝑅̂(𝜋1) = |𝑎11|2|𝐵𝐴〉〈𝐵𝐴|. However 

the results are exactly the same.27 For example if |𝜋2〉 = 𝑎21|𝐵𝐴〉 + 𝑎22|𝐵𝐴̅〉, Yukalov & 

Sornette show that  

 
25 Yukalov & Sornette, Mathematical Structure of Quantum Decision Theory, 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1263853 
26 Kovalenko & Sornette, The conjunction fallacy in quantum decision theory, p. 6. 
27 See Agrawal & Sharda, Quantum Mechanics and Human Decision Making. 
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𝑃(𝜋2) = 𝑃(𝐵𝐴) + 𝑃(𝐵𝐴̅) + 𝑄(𝐵𝐴) = 𝑃(𝐵|𝐴)𝑃(𝐴) + 𝑃(𝐵|𝐴̅̅̅)𝑃(𝐵𝐴̅) + 𝑞(𝐵𝐴) 

where 𝑞(𝐵𝐴) is the interference term, which is equivalent to the one obtained above using 

other methods. In the density matrix representation, the prospect probability is equal to the 

normalised expectation value of the prospect operator 𝑅̂(𝜋𝑛), so 𝑃(𝜋𝑛) = Tr 𝜌̂𝑅̂(𝜋𝑛). 

They write this as  

𝑃(𝜋2) = 𝑓(𝜋2) + 𝑔(𝜋2) 

where the first term is called a utility factor, and the second term an attraction factor which 

represents subjective biases. The former corresponds to the diagonal elements of the prospect, 

and the latter to the off-diagonal elements. As they note, “It is the appearance of interference 

terms that makes the structure of quantum expressions richer then the related classical ones 

and that allows one to explain those psychological phenomena that, otherwise, are 

inexplicable in classical decision making.”28  

 

As a simple example, consider the mental state of a person who is faced with two alternative 

prospects, denoted 𝐴1 and 𝐴2. The person’s attitude towards these prospects will be shaped 

by subjective desires which we call 𝐵1 and 𝐵2 (there can be any number). The two joint 

prospects can be expressed in a Hilbert space as the superposition states 

|𝜋1〉 = 𝛾11|𝐴1𝐵1〉 + 𝛾12|𝐴1𝐵2〉 

|𝜋2〉 = 𝛾21|𝐴2𝐵1〉 + 𝛾22|𝐴2𝐵2〉 

where the coefficients 𝛾𝑖𝑗 can again be complex. In the notation of projected utility, this is 

𝜋1 = (𝐵1; 𝐴1) + (𝐵2; 𝐴1) and 𝜋2 = (𝐵1; 𝐴2) + (𝐵2; 𝐴2). 

 

Since the context affects the subjective basis, we need to model the person’s state in the 

general form prior to being presented with the problem. This is the superposition 

|𝜓〉 = 𝛼11|𝐴1𝐵1〉 + 𝛼12|𝐴1𝐵2〉 + 𝛼21|𝐴2𝐵1〉 + 𝛼22|𝐴2𝐵2〉 

where the coefficients satisfy 

|⟨𝜓|𝜓⟩|2 = |𝛼11|2 + |𝛼12|2 + |𝛼21|2 + |𝛼22|2 = 1. 

The probability of the person choosing the prospect 𝜋𝑗 is therefore 

𝑝(𝜋𝑗) =
1

𝑃
|⟨𝜓|𝜋𝑗⟩|

2

=
1

𝑃
(𝛼𝑗1

∗ 𝛾𝑗1 + 𝛼𝑗2
∗ 𝛾𝑗2)(𝛼𝑗1𝛾𝑗1

∗ + 𝛼𝑗2𝛾𝑗2
∗ ) 

where 𝑃 = |⟨𝜓|𝜋1⟩|2+|⟨𝜓|𝜋2⟩|2 is a normalisation term to ensure that the probabilities add 

to 1.  

 
28 Yukalov & Sornette, Preference reversal in quantum decision theory 



27 

 

 

This can be written in the form 

𝑝(𝜋𝑗) = 𝑓(𝜋𝑗) + 𝑞(𝜋𝑗) 

where 

𝑓(𝜋𝑗) =
1

𝑃
(|𝛼𝑗1|

2
|𝛾𝑗1|

2
+ |𝛼𝑗2|

2
|𝛾𝑗2|

2
) 

is called the utility function, and 

𝑞(𝜋𝑗) =
1

𝑃
(𝛼𝑗1

∗ 𝛾𝑗1𝛼𝑗2𝛾𝑗2
∗ + 𝛼𝑗2

∗ 𝛾𝑗2𝛼𝑗1𝛾𝑗1
∗ ) 

is called the attraction function. The utility function separates out the two terms 

corresponding to the outcomes 𝐴1 and 𝐴2 (in the lottery example it would correspond to the 

expected payout from the lottery), while the attraction function represents their entanglement 

through the different subjective contexts 𝐵1 and 𝐵2. Note that if there is no entanglement, 

then 𝑞(𝜋𝑗) = 0, the probabilities are the same as for the classical approach, and there is no 

need to evoke quantum methods. 

 

Since a classical utility term is in the form of a probability term, we need to have 𝑓(𝜋1) +

𝑓(𝜋2) = 1. But since 𝑝(𝜋1) + 𝑝(𝜋2) = 1 it follows that 𝑞(𝜋1) + 𝑞(𝜋2) = 0. It can then be 

shown that, in the absence of any information about the structure of the attraction function, 

we can expect the attraction function of the more attractive choice to be 
1

4
, and the less 

attractive choice to be −
1

4
. This result is known as the “quarter law” and has been tested 

empirically in a variety of situations using controlled experiments.29 

 

Now, according to classical utility theory, the person is expected to choose prospect 𝜋1 if 

𝑓(𝜋1) − 𝑓(𝜋2) > 0. In QDT however we have to take into account the interference terms, so 

the relevant test becomes 𝑓(𝜋1) + 𝑞(𝜋1) − 𝑓(𝜋2) − 𝑞(𝜋2) > 0, or equivalently 𝑓(𝜋1) −

𝑓(𝜋2) > 2|𝑞(𝜋1)|. In other words, the attraction function sets a threshold which needs to be 

exceeded in order for an option to be seen as preferable. Following the quarter law, a starting 

guess is that the utility (on a scale of 0 to 1) of an option has to exceed that of the other one 

by 0.5. Yukalov and Sornette call this the preference reversal criterion, for reasons discussed 

below. 

 

 
29 Yukalov & Sornette, 2015. 



28 

 

Put another way, suppose that the more attractive option has an associated cost 𝑥1 and the 

less attractive option has a cost 𝑥2. We can assign the relative utility functions 

𝑓(𝜋1) =
𝑥2

𝑥1 + 𝑥2
 

𝑓(𝜋2) =
𝑥1

𝑥1 + 𝑥2
 

which sum to 1. The preference reversal condition is then 

𝑓(𝜋2) − 𝑓(𝜋1) =
𝑥2 − 𝑥1

𝑥1 + 𝑥2
>

1

2
. 

Equality in the above expression is attained if 𝑥2 = 3𝑥1, and in general if the condition holds 

we might expect 
𝑥2

𝑥1
> 3. Again, this should only be viewed as a first approximation, but 

highlights the significant role that subjective effects play in decision making. 

 

Preference reversal with mortgage default 

 

Quantum decision theory has so far mostly been applied to experiments where participants 

are asked to choose between carefully crafted lotteries with different balances of risk and 

reward. As mentioned above, one example is preference reversal, where the choice is 

typically between two lotteries, the first offering a high probability of a low payout, the 

second a low probability of a high payout. If the expected utility of the second lottery is a 

little higher, then people still tend to choose the first lottery for themselves. But if the 

question is reframed so they are asked to price a ticket which can be sold to someone else, 

they value the second lottery more highly.  

 

Tversky and Thaler (1990) determined that the phenomenon is caused by the breaking of 

procedure invariance: subjects weight payoffs in pricing more heavily than in choice. They 

conclude: “First, people do not possess a set of pre-defined preferences for every 

contingency. Rather, preferences are constructed in the process of making a choice or 

judgment. Second, the context and procedures involved in making choices or judgments 

influence the preferences that are implied by the elicited responses. In practical terms, this 

implies that behavior is likely to vary across situations that economists consider identical.” 

 

It seems that we use one mental framework when making a choice, and another when 

assessing a price, in a manner that can be addressed in a classical model only by introducing 
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ad hoc weighting factors. The quantum approach however has this context sensitivity built in 

by default. A person’s mental state is modelled, not in terms of fixed preferences, but as a 

context-dependent wave function which collapses to a decision only when a question is 

asked.  

 

Yukalov and Sornette (2015) analysed experimental data sets for such lottery examples to 

show that the transition point between the two choices follows their preference reversal 

criterion. They also relate it to the so-called planning paradox, where we prefer one thing 

when we are talking about the future, and another when we are talking about the present. An 

example is the situation of a smoker who is deciding on whether to stop smoking now, or stop 

smoking later. In terms of expected utility they should be the same, but in practice the latter is 

much more attractive, which is why people find it hard to quit.  

 

A more economically relevant application is the case of default among mortgage holders.30 

Usually this occurs because factors such as unemployment or divorce mean that the 

homeowner can no longer afford the mortgage payments. However, if house prices have 

declined so that the home is worth less than the mortgage, then the homeowner may also 

decide to walk away, which is known as strategic default.  

 

Guiso et al. (2009) used data from a quarterly survey of a representative sample of U.S. 

households from December 2008 to September 2010 in order to determine the attitude of 

homeowners toward strategic default. The results showed that roughly 30% of respondents 

said they would default if the shortfall was more than $100K, and a 64% majority said they 

would default if it exceeded $200K. However the actual statistics for foreclosure paint a very 

different picture. By mid-2009 over 16% of U.S. homeowners had negative equity exceeding 

20% of their home’s value, and over 22% of homeowners had negative equity exceeding 10% 

of their home’s value.31 Given the high value of homes in the most-affected markets, many of 

these homeowners were underwater by well over $100K. If 30% of these had opted for 

strategic default, in accordance with the survey results, it would have represented in total 

around 5% of American homeowners. However, while by the third quarter of 2009 the 

combined foreclosure and thirty-plus-day delinquency rate for home mortgages did reach a 

 
30 See the discussion paper “Quantum Financial Entanglement: The Case of Strategic Default” at 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3394550, and references therein. 
31 White, 2010. 
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historic high of 14%, only a small fraction of these were strategic. Bradley et al. (2015) 

estimated the proportion to be in the range of 7.7% to 14.6%, which would put the overall 

strategic default rate at only 1% to 2%. According to one estimate from the Federal Reserve 

“the median borrower does not strategically default until equity falls to -62 percent of their 

home’s value.”32 

  

On the face of it, this behaviour seems irrational, since even given the various costs of 

foreclosure the best option from a narrow utilitarian point of view would often be default. 

Behavioural economists typically explain such effects by appealing to the idea that 

homeowners suffer from cognitive biases which lead them to make poor economic decisions, 

and behavioural models exist that fit the data by adjusting for things like present bias and 

discount rates. However this does not explain the fact that even when homeowners can see it 

makes economic sense to default – and say they would default in a survey – they usually 

decline to do so in practice. Instead it seems that the primary motivation for staying in the 

home is the desire to avoid shame and social stigma, and fear of the perceived (and often 

exaggerated) consequences of default (White, 2010). In other words, the response is driven 

not so much by cognitive deliberations but a powerful mix of emotions. And the fact that this 

combination of guilt and fear is felt far more keenly when actually making a decision to stay 

or move, as opposed to answering a survey question, is why observed default rates are far 

lower than one might expect from calculations based on either survey results or utility 

maximization. 

 

The situation is therefore similar to the case of preference reversal described above, where we 

evaluate an option differently depending on whether we are making an actual choice, or 

coming up with a hypothetical price. The homeowner tends to prefer the perceived security of 

staying in their own home, even if they know it is financially suboptimal. They are also 

affected by their sense of morality, and social norms about the importance of honouring your 

debts. (The bank of course takes a very different stance, since it operates according to market 

norms.) The result is that, just as most smokers who say they want to quit fail to do so, so 

most homeowners who tell a survey they would default don’t do so in practice. 

 

 
32 Bhutta, Dokko & Shan, 2010. 
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Instead of adjusting behavioural models, a simpler and more elegant explanation is to apply 

the methods of quantum decision theory, where the attraction function accounts for the 

context-dependent subjective factors including shame, guilt, and fear. This also has the 

advantage of being a consistent model which can be applied for a broad range of phenomena, 

as opposed to an ad hoc model that is tuned to fit a particular data set.  

 

Suppose that the cost of staying in the home for a certain period is 𝑥1 and the cost of 

defaulting, including renting for the same period, is 𝑥2. According to the preference reversal 

criterion, in order for strategic default to be selected we would expect the cost ratio 
𝑥2

𝑥1
 to be 

around 3. The Federal Reserve estimate for the critical threshold to initiate strategic default 

was a 62 percent fall in value, which corresponds to a fall in utility compared to the purchase 

price by a factor 2.63. Given that most people would presumably choose to have their house 

back rather than rent, this is consistent with the quantum estimate. 

 

Quantum decision theory, and in particular interference between objective calculations and 

subjective emotions, therefore helps to explain why so few people in similar situations 

actually chose to default, even if their behaviour seems to defy both classical utility theory, 

and the results of surveys: when it came to the crunch, entangled emotions such as guilt and 

fear interfered with and outweighed abstract considerations of utility. Perhaps the main 

message is that for the complex issue of strategic default, the discrepancy between utility-

maximizing and observed behaviour is so large that standard calculations of utility – despite 

the foundational role they play in mainstream economics – are of rather little relevance. 

 

5. The quantum harmonic oscillator 

 

As seen above, the key idea in the quantum approach is that point objects are replaced with 

quantum state or wave functions, and observables are replaced with the eigenvalues of 

operators. This “quantization” procedure is relatively straightforward for static models like 

the ones considered above, but becomes considerably more complicated for dynamic 

systems. 
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One clue on how to go about this quantization procedure is the fact (first discovered by the 

mathematician Oliver Heaviside in the late nineteenth century) that differential operators act 

in some respects like ordinary numbers. Consider for example the equation 

𝑦 +
𝑑𝑦

𝑑𝑥
= 𝑥2. 

Define D to be the differential operator 𝐷 =
𝑑

𝑑𝑥
, so 𝐷𝑦 =

𝑑𝑦

𝑑𝑥
. Powers of D are interpreted as 

higher derivatives, so  

𝐷2 =
𝑑2

𝑑𝑥2
 

and so on. Then the above equation can be written 

(1 + 𝐷)𝑦 = 𝑥2 

so  

𝑦 =
𝑥2

1 + 𝐷
. 

Rewriting 
1

1+𝐷
 as the infinite expansion  

1

1 + 𝐷
= 1 − 𝐷 + 𝐷2 − 𝐷3 … 

gives  

𝑦 = (1 − 𝐷 + 𝐷2 − 𝐷3 … )𝑥2 = 𝑥2 − 2𝑥 + 2 

after applying the derivative operators to x and noting that all derivatives higher than the 

second are zero. 

 

Because operators act on the object to the right of them, the two don’t usually commute. 

Suppose we have a function 𝜓(𝑥) and evaluate  

𝐷(𝑥𝜓) = 𝐷(𝑥)𝜓 + 𝑥𝐷(𝜓) = 𝜓 + 𝑥𝐷(𝜓) 

so 

𝐷(𝑥𝜓) − 𝑥𝐷(𝜓) = 𝐷(𝑥)𝜓 + 𝑥𝐷(𝜓) = 𝜓 

or in operator form 

𝐷𝑥 − 𝑥𝐷 = 1 

where 1 is the identity operator that does nothing. The commutator for two elements f and g is 

defined as [𝑓, 𝑔] = 𝑓𝑔 − 𝑔𝑓, so here we can write [𝐷, 𝑥] = 1. Such commutator relationships 

play an important role in quantum mechanics. One has to be careful about the order of 

operations, and in quantizing a system it may not be clear at first which is the correct order to 

use. 
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Now, we want to represent quantum states using wave functions. Many experiments suggest 

waves that have a periodicity which scales with momentum, in a manner which depends on 

the reduced Planck’s constant ℏ. Focussing on the spatial variation, a typical wave function 

might therefore be of the form  

𝜓(𝑥) = 𝑒−
𝑖𝑝𝑥

ℏ . 

In classical mechanics 𝑥 would refer to a spatial coordinate, and 𝑝 to a momentum. If we 

identify 𝑝̂ as the differential operator 

𝑝̂ = −𝑖ℏ
𝜕

𝜕𝑥
 

and apply it to 𝜓 we get 

𝑝̂𝜓 = −𝑖ℏ
𝜕𝜓

𝜕𝑥
= 𝑝̂𝑒−

𝑖𝑝𝑥
ℎ = 𝑝𝜓 

so the observable p is an eigenvalue of the operator. We can therefore identify 𝑝̂ as the 

momentum operator. The position operator 𝑥̂ returns the value of x. In “momentum space” it 

can be defined as 

𝑥̂ = 𝑖ℏ
𝜕

𝜕𝑝
 

which has the eigenvalue x. A similar relationship (related to the requirements of relativity) 

holds for total energy 𝐻̂ and time t: 

𝐻̂ = −𝑖ℏ
𝜕

𝜕𝑡
. 

 

Using the definition of the momentum operator, and the product rule of calculus, we have  

𝑥̂𝑝̂𝜓 − 𝑝̂𝑥̂𝜓 = 𝑥̂ (−𝑖ℏ
𝜕𝜓

𝜕𝑥
) + 𝑖ℏ

𝜕(𝑥̂𝜓)

𝜕𝑥
 

= −𝑥̂ (𝑖ℏ
𝜕𝜓

𝜕𝑥
) + 𝑖ℏ (𝑥̂

𝜕𝜓

𝜕𝑥
+

𝜕𝑥̂

𝜕𝑥
𝜓) = 𝑖ℏ

𝜕𝑥̂

𝜕𝑥
𝜓. 

But since 
𝜕𝑥

𝜕𝑥
= 1, it follows that 𝑥̂𝑝̂𝜓 − 𝑝̂𝑥̂𝜓 = 𝑖ℏ𝜓, and the commutator therefore satisfies 

the relationship [𝑥̂, 𝑝̂] = 𝑥̂𝑝̂ − 𝑝̂𝑥̂ = 𝑖ℏ. This is known as the canonical commutator 

relationship, which holds also for other pairs such as energy and time. 
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To get a better sense of how the quantization procedure works, we can apply the method to a 

simple physical example, which is the harmonic oscillator.33 We choose it because it plays a 

key role in quantum field theory, which underpins the methods used later to describe the 

quantum economy; it serves as a first-order approximation to many more complicated 

systems; and it is one of the few quantum systems that can be solved in closed form 

equations. 

 

A classical harmonic oscillator involves an object of mass m oscillating around a central point 

with a spring-like restoring force given by 𝐹 = −𝑘𝑥, where k is a constant and x is the 

displacement. The equation of motion can be written in terms of momentum p as 

𝑝 = 𝑚𝑥̇ 

𝑝̇ = 𝐹 = −𝑘𝑥 

or equivalently as 𝑚𝑥̈ = −𝑘𝑥. This has the oscillatory solution 

𝑥 = 𝐴 cos(𝜔𝑡 + 𝜑) 

where the phase 𝜑 depends on the starting point. The energy is given by 

𝐸 =
𝑝2

2𝑚
+

1

2
𝑚𝜔2𝑥2 

where 𝜔 = √𝑘 𝑚⁄  is the frequency of oscillation. The first term represents the kinetic energy, 

and the second term the potential energy.  

 

To quantize the system, we again need to replace the classical equations with quantum 

versions that act on wave functions but recover the required properties of observables.34 In 

quantum mechanics, the total energy is given by an equation known as the Hamiltonian, 

expressed now in terms of operators. We therefore try: 

𝐻̂ =
𝑝̂2

2𝑚
+

1

2
𝑚𝜔2𝑥̂2. 

This can be written more simply in the form 

𝐻̂ = ℏ𝜔 (𝑎̂†𝑎̂ +
1

2
) = ℏ𝜔 (𝑁 +

1

2
) 

where 

 
33 If the quantization procedure seems a little ad hoc and awkward, one reason is that we are trying to adapt 

classical mathematical tools to handle wave/particle duality. Another is that the approach was based on intuition 

and the equations were adopted, not because they can be proved to be true, but because they fit the data (which 

gives some latitude for social scientists to adapt them for other uses). 
34 I am drawing on: Barton Zwiebach. 8.05 Quantum Physics II. Fall 2013. Massachusetts Institute of 

Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA. 
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𝑎̂ = √
𝑚𝜔

2ℏ
(𝑥̂ +

𝑖𝑝̂

𝑚𝜔
), 

𝑎̂† = √
𝑚𝜔

2ℏ
(𝑥̂ −

𝑖𝑝̂

𝑚𝜔
), 

𝑁 = 𝑎̂†𝑎̂. 

For reasons that will become clear, 𝑎̂† is known as the creation operator, 𝑎̂ is the annihilation 

operator, and 𝑁̂ is the number operator. As seen by multiplying them out and using the 

commutator relationship between 𝑥̂ and 𝑝̂, the creation and the annihilation operators satisfy 

the canonical commutator relationship with this scaling, which is 

[𝑎̂, 𝑎̂†] = 𝑎̂𝑎̂† − 𝑎̂†𝑎̂ = 1. 

If 𝜓 is a wave function with norm 1, then 

⟨𝜓|𝐻̂|𝜓⟩ = ℎ𝜔 ⟨𝜓| (𝑎̂†𝑎̂ +
1
2) |𝜓⟩ = ℏ𝜔⟨𝑎̂𝜓|𝑎̂𝜓⟩ +

ℏ𝜔

2
≥

ℏ𝜔

2
 

since any norm cannot be less than zero. 

 

Now, suppose that |𝐸〉 is a normalised energy state of the system. Since observables 

correspond to eigenvalues, it follows that |𝐸〉 must be an eigenvector of the Hamiltonian 

operator, with associated eigenvalue E: 

𝐻̂|𝐸〉 = 𝐸|𝐸〉. 

From this and the above inequality, we have  

⟨𝐸|𝐻̂|𝐸⟩ = 𝐸⟨𝐸|𝐸⟩ = 𝐸 ≥
ℏ𝜔

2
. 

The system therefore has a minimum energy level given by 
ℏ𝜔

2
.  

 

Consider the two states defined as 

|𝐸+〉 = 𝑎̂†|𝐸〉, 

|𝐸−〉 = 𝑎̂|𝐸〉. 

We first note that 

[𝐻̂, 𝑎̂†] = 𝐻̂𝑎̂† − 𝑎̂†𝐻̂ = ℏ𝜔(𝑎̂†𝑎̂)𝑎̂† − 𝑎̂†ℏ𝜔(𝑎̂†𝑎̂) = ℏ𝜔(𝑎̂†𝑎̂𝑎̂† − 𝑎̂†𝑎̂†𝑎̂) 

since the contribution of the constant term in the Hamiltonian cancels out. Using the 

commutator relationship for creation and annihilation operators then gives 

[𝐻̂, 𝑎̂†] =  ℏ𝜔𝑎̂†[𝑎̂, 𝑎̂†] = ℏ𝜔𝑎̂†. 

Similarly 

[𝐻̂, 𝑎̂] =  ℏ𝜔𝑎̂ 
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and also 

𝑁|𝐸〉 = (
𝐻̂

ℏ𝜔
−

1

2
) |𝐸〉 = 𝑁𝐸|𝐸〉 

where 𝑁𝐸 =
𝐻̂

ℏ𝜔
−

1

2
 is the number operator eigenvalue associated with this energy state. 

Then 

𝐻̂|𝐸+〉 = 𝐻̂𝑎̂†|𝐸〉 = ([𝐻̂, 𝑎̂†] + 𝑎̂†𝐻)|𝐸〉 = (ℏ𝜔 + 𝐸)𝑎̂†|𝐸〉 = (𝐸 + ℏ𝜔)|𝐸+〉, 

𝐻̂|𝐸−〉 = 𝐻̂𝑎̂|𝐸〉 = ([𝐻̂, 𝑎̂] + 𝑎̂𝐻)|𝐸〉 = (−ℏ𝜔 + 𝐸)𝑎̂|𝐸〉 = (𝐸 − ℏ𝜔)|𝐸−〉 

so the energy state with 𝐸+ = 𝐸 + ℏ𝜔 and 𝑁𝐸+
= 𝑁𝐸 + 1 has an increased energy level, 

while the energy state with 𝐸− = 𝐸 − ℏ𝜔 and 𝑁𝐸−
= 𝑁𝐸 − 1 has a decreased energy level. 

 

The reason 𝑎̂† is called the creation operator, and 𝑎̂ the annihilation operator, is that these 

operators raise or lower the energy by ℏ𝜔 and the number operator by one. The creation 

operator can always be applied to raise the energy, but the annihilation operator can only be 

applied to energy levels above the base level, since energy cannot be negative.  

 

The lowest base level can be found by assuming there is a non-trivial state |𝐸〉 that is 

annihilated by 𝑎̂, so 𝑎̂|𝐸〉 = 0. Thus 𝑎̂†𝑎̂|𝐸〉 =  𝑁|𝐸〉 = 0, which implies that this is the 

energy state with 𝐸 =
ℏ𝜔

2
 and 𝑁𝐸 = 0. We can derive the equation for this state by acting 

with position x: 

⟨𝑥|𝑎̂|𝐸⟩ = √
𝑚𝜔

2ℎ
⟨𝑥| (𝑥̂ +

𝑖𝑝̂
𝑚𝜔

) |𝐸⟩ = 0. 

If we define the wave function 𝜓𝐸(𝑥) = ⟨𝑥|𝐸⟩ and use the definition of 𝑝̂ as a differential 

operator, then this gives 

(𝑥 +
ℏ

𝑚𝜔

𝑑

𝑑𝑥
) 𝜓𝐸(𝑥) = 0 

or 

𝑑𝜓𝐸

𝑑𝑥
= −

𝑚𝜔

ℏ
𝑥𝜓𝐸 

with solution 

𝜓𝐸(𝑥) = (
𝑚𝜔

𝜋ℏ
)

1 4⁄

exp (−
𝑚𝜔

2ℏ
𝑥2) 

which is a Gaussian distribution centered at 0. The existence of this ground state reflects the 

uncertainty principle, in the sense that an oscillator with no energy can’t exist (because then 
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we would know the energy is zero), and has no classical analogue. Higher energy states are 

more complicated, and can be determined by successively applying the creation operator. 

 

Another way to express this is by using the number operator. Denote states as |𝑛〉 with 

associated eigenvalue n, so 𝑁|𝑛〉 = 𝑛|𝑛〉. The ground state is |0〉 (which is not the same as 

the zero vector). The next state |1〉 is obtained by using the creation operator on |0〉, 

|1〉 = 𝑎̂†|0〉 

and 

𝑁|1〉 = 𝑎̂†𝑎̂𝑎̂†|0〉 = (𝑎̂†[𝑎̂, 𝑎̂†] + 𝑎̂†𝑎̂†𝑎̂)|0〉 = 𝑎̂†|0〉 = 1 

where we have used [𝑎̂, 𝑎̂†] = 1 and 𝑎̂|0〉 = 0. The equations for higher energy states can be 

derived recursively to give 

|𝑛〉 =
1

√𝑛!
(𝑎̂†)𝑛|0〉. 

The states |𝑛〉 form an orthonormal basis, so any state can be described in terms of a linear 

combination of these states. 

 

One can also calculate the expected values of quantities for different energy levels. Some 

algebra using the creation and annihilation operators shows that 

⟨𝑛|𝑥̂|𝑛⟩ = √
ℏ

2𝑚𝜔
⟨𝑛|𝑎̂ + 𝑎̂†|𝑛⟩ = 0 

⟨𝑛|𝑝̂|𝑛⟩ = 𝑖√
𝑚𝜔ℏ

2
⟨𝑛|𝑎̂† − 𝑎̂|𝑛⟩ = 0 

⟨𝑛|𝑥̂2|𝑛⟩ =
ℏ

2𝑚𝜔
⟨𝑛|(𝑎̂ + 𝑎̂†)2|𝑛⟩ =

ℏ

𝑚𝜔
(𝑛 +

1

2
) 

⟨𝑛|𝑝̂2|𝑛⟩ = −
𝑚𝜔ℏ

2
⟨𝑛|(𝑎̂† − 𝑎̂)2|𝑛⟩ = 𝑚𝜔ℏ (𝑛 +

1

2
). 

The uncertainties in position and momentum therefore satisfy 

∆𝑥∆𝑝 = √⟨𝑛|𝑥̂2|𝑛⟩√⟨𝑛|𝑝̂2|𝑛⟩ =
ℏ

𝑚𝜔
(𝑛 +

1

2
) ≥

ℏ

2𝑚𝜔
 

which is Heisenberg’s uncertainty principle. 

 

Another operator which will prove useful is the translation operator defined as 

𝑇𝑥0
= 𝑒−

𝑖
ℏ

𝑝𝑥0 
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which acts on a state |𝜓〉 by moving it by an amount 𝑥0. To see this, the expectation value of 

𝑥̂ in the state |𝜓〉 is 

〈𝑥̂〉𝜓 = ⟨𝜓|𝑥̂|𝜓⟩ 

and the expectation of 𝑥̂ in the state 𝑇𝑥0
|𝜓〉 is 

〈𝑥̂〉𝑇𝑥0|𝜓 = ⟨𝜓|𝑇𝑥0

† 𝑥̂𝑇𝑥0
|𝜓⟩ = ⟨𝜓|𝑒−

𝑖
ℏ

𝑝𝑥0𝑥̂𝑒
𝑖
ℏ

𝑝𝑥0|𝜓⟩. 

The expression involving brackets can be solved to give 

〈𝑥̂〉𝑇𝑥0|𝜓 = ⟨𝜓|𝑥̂ +
𝑖
ℏ

[𝑝̂, 𝑥̂]𝑥0|𝜓⟩ = 𝑥̂ + 𝑥0 

as expected.35  

 

If the translation operator is applied to the ground state |0〉, then the new state is called a 

coherent state, and can be expressed in terms of creation and annihilation operators as 

follows: 

|𝑥̂0〉 = 𝑇𝑥0
|0〉 = exp (−

𝑖

ℎ
𝑝̂𝑥0) |0〉 = exp (

𝑥0

√2𝑑
(𝑎̂† − 𝑎̂)) |0〉, 

or alternatively 

|𝛼〉 = D(𝛼)|0〉 

where 𝑑 = √
ℏ

𝑚𝜔
 is a length scale, 𝛼 =

𝑥0

√2𝑑
, and  

D(𝛼)= exp(𝛼𝑎̂† − 𝛼∗𝑎̂) |0〉 

is known as the displacement operator. When 𝛼 is real, as here, the displacement is in 

position only, while imaginary values correspond to displacement in momentum. 

 

Calculation shows that the total energy of the translated system is increased relative to that of 

the ground state by an amount 
1

2
𝑚𝜔2𝑥0

2 which makes sense since it corresponds to the 

classical potential energy of a particle on a spring stretched an amount 𝑥0. However the 

system is not in a single energy state, but is of the form 

|𝑥̂0〉 = ∑ 𝑐𝑛|𝑛〉

∞

𝑛=0

. 

 
35 Using the Baker-Hausdorff identity 𝑒𝐴𝐵̂𝑒−𝐴 = 𝐵̂ + [𝐴̂, 𝐵̂] +

1

2!
[𝐴̂, [𝐴̂, 𝐵̂]] + … where here all but the first two 

terms vanish. 
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The probability of obtaining an energy equal to 𝐸𝑛 is 𝑐𝑛
2 =

𝜆𝑛

𝑛!
𝑒−𝜆 which is a Poisson 

distribution with mean 𝜆 =
𝑚𝜔𝑥0

2

2ℏ
. 

 

So far we have only viewed the system in a static sense. To study how the wave function |𝜓〉 

evolves with time, we write 

|𝜓〉𝑡 = 𝑈̂(𝑡, 𝑡0)|𝜓〉𝑡0
 

where 𝑈̂(𝑡, 𝑡0) is a unitary linear operator, that can be viewed as rotating the hyperspace of 

all possible states in the Hilbert space. Taking the derivative with respect to time gives 

𝜕

𝜕𝑡
|𝜓〉𝑡 =

𝜕𝑈̂(𝑡, 𝑡0)

𝜕𝑡
|𝜓〉𝑡0

. 

Using the fact (easily checked) that  

𝑈̂(𝑡0, 𝑡) = 𝑈̂−1(𝑡, 𝑡0) = 𝑈̂†(𝑡, 𝑡0) 

then gives 

𝜕

𝜕𝑡
|𝜓〉𝑡 =

𝜕𝑈(𝑡, 𝑡0)

𝜕𝑡
𝑈̂†(𝑡, 𝑡0)|𝜓〉𝑡. 

Recalling that  

𝐻̂ = −𝑖ℏ
𝜕

𝜕𝑡
 

gives the Schrödinger equation 

𝑖
𝜕

𝜕𝑡
|𝜓〉𝑡 = 𝐻̂(𝑡)|𝜓〉𝑡 

which can be solved in a similar manner as the classical version to show that operators satisfy 

the same oscillatory equations of motion. 

 

To summarise, the quantum model predicts that the observed energy levels of a harmonic 

oscillator are equally spaced with an interval of ℎ𝜔 and a minimum value of 
ℎ𝜔

2
. Prior to 

measurement, the system will be in a superposed state of the form |𝜓〉  =  ∑ 𝐴𝑛|𝑛〉𝑛 , where 

the 𝐴𝑛 are complex numbers, and 𝑤𝑛 = |𝐴𝑛|2 is the probability that the oscillator is in the 

state |𝑛〉. The evolution of the state can be solved using the Schrödinger equation.  

 

As a physical example of the harmonic oscillator, a diatomic molecule such as the hydrogen 

molecule H2 can be viewed as two atoms connected by a spring. Experimental observations 

show that such molecules absorb and emit photons whose frequencies are multiples of the 
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oscillator frequency, as expected. Many other physical systems, such as the vibration of 

molecules in a solid, can be similarly approximated as a system of quantum harmonic 

oscillators, since the assumption of a linear force can be viewed as a first-order estimate to 

the dynamics near the minima of a potential well. Most importantly, it turns out that the 

equations describing electromagnetic fields in quantum physics are like those of the harmonic 

oscillator, with the particles corresponding to photons, and the ground state corresponding to 

the energy of empty space. It is this energy that fuels the appearance of “virtual photons” 

which communicate the electromagnetic force. In economics, as seen below, a version of the 

oscillator can also be used to simulate the dynamics of supply and demand, and is a staple of 

quantum finance.  

 

What carries over in a more general sense is the idea of representing a quantum system as a 

collection of particles, that can be added, removed, or translated through the use of operators. 

Indeed, another interpretation of the quantum model – known as the Fock space 

representation – is to see the harmonic oscillator as representing, not a single particle, but a 

collection of n fictitious particles each with energy ℏ𝜔. In this picture, the creation and 

annihilation operators are seen as adding and removing these particles. The ground or 

vacuum state |0〉 has no particles, |1〉 has a single particle, |2〉 has two, and so on. This 

method, known as second quantization, underpins the quantum field theory of relativistic 

particles, used for example to represent systems of bosons. As seen in the next section it can 

also be applied to things like assets, where here n refers to the number of units held. 

 

The other thing which carries over to economics is the different nature of classical and 

quantum systems. While the classical harmonic oscillator is just a weight bouncing around on 

a spring, where quantities such as position, momentum, and energy can be precisely 

calculated, the quantum version is better described in terms of potentiality. We can only 

calculate the probability that a measurement will yield a particular result; and the complexity 

of quantum behaviour means that even this can only be easily done for relatively simple 

systems. In economics, this puts a strong limit on how much can be gained from using 

reductionist methods. 

 

6. The quantum market 
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In the examples above we have seen that a person’s cognitive state, or the state of a quantum 

harmonic oscillator, can be simulated as a member of a Hilbert space. Furthermore, single 

particles that are in superposed states can be viewed, in a dual sense, as a collection of 

fictitious particles in single states. We can do something similar for the economy as a whole, 

and model it as a collection of interacting particles in a Hilbert space. As a starting point, we 

will consider a simplified financial market. I will follow here the approach described by the 

late Rutgers theoretical physicist Martin Schaden in a 2002 paper on quantum finance, see 

that paper for details and applications.36 

 

Suppose that the market consists of a collection of agents (investors) j = 1, 2, ..., J who buy 

and sell assets of types i = 1, 2, ..., I. Each agent holds cash (or debt) 𝑥𝑗. The market can be 

represented as a Hilbert space H, with the basis 

𝐵 ∶= {|𝑥𝑗 , {𝑛𝑖
𝑗(𝑠) ≥ 0, 𝑖 = 1, . . , 𝐼}, 𝑗 = 1, . . , 𝐽〉}. 

Here 𝑛𝑖
𝑗(𝑠) is the number of assets i with a price of s dollars that are held by investor j.  

 

An individual basis state represents a market where the price of every security, and the cash 

position of each agent, is known precisely. The basis states are orthogonal in the sense that if 

the market is in the state |𝑚〉 then it cannot be in a different state |𝑛〉, so if 𝑚 ≠ 𝑛 then the 

inner product 〈𝑚|𝑛〉 = 0. In general the market state (wave function) M is never known this 

accurately and is instead represented by the linear superposition of basis states |𝑛〉 in B: 

|𝑀〉  =  ∑𝐴𝑛|𝑛〉

𝑛

 

where the 𝐴𝑛 are complex numbers, and 𝑤𝑛 = |𝐴𝑛|2 is the probability that the market is in 

the state |𝑛〉.  

 

The phases of the 𝐴𝑛 are left unspecified at this stage, but are key to understanding effects 

such as interference. As in quantum physics, these effects are seen more easily when 

considering individual transactions. The propensities of each agent to buy or sell an asset can 

themselves be modelled as quantum phenomena, which as already discussed experience 

interference effects, and these can interact to affect the market as a whole. We return to this 

below. 

 

 
36 Schaden, M. (2002), ‘Quantum finance’, Physica A 316(1), pp. 511-538. 
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If we define the ground state |0〉 to be a market where agents hold no assets including cash, 

then we can build up a real market by transferring cash and assets to agents. The approach is 

the same as that used in many-body quantum mechanics to simulate the behaviour of a 

collection of bosons, so shares are added or removed from an agent’s account by the use of 

the creation operator 𝑎̂𝑖
†𝒋(𝑠) and the annihilation operator 𝑎̂𝑖

𝑗(𝑠). Money creation is handled 

using a translation operator of the form  

𝑐̂†𝒋(𝑠) = exp (−𝑠
𝜕

𝜕𝑥𝑗
) 

which increases the amount of cash held by agent j by s currency units. Similarly the 

Hermitian conjugate operator 𝑐̂𝒋(𝑠) = 𝑐̂†𝒋(−𝑠) lowers the cash holding of agent j by the 

amount s. 

 

While it might not be obvious from these dry equations, and we haven’t considered factors 

such as the creation of money objects through the issuance of debt, money still has a very 

special (but usually understated) role in the quantum model. Unlike other assets, it has a 

stable defined price. Without money, it is impossible to assign a price to other assets in the 

first place. The fact that these assets have indeterminate value is what gives money its 

dualistic properties, combining as it does stable numbers and unstable values. While it isn’t 

possible for an asset to have a negative price, an agent can have a negative amount of money. 

Finally, money is often created in the first place through loans, which lead to entanglement as 

discussed below. 

 

The buying and selling of one unit of an asset by agent j at price s is represented by the 

creation and annihilation operators in combination with cash transfers which reflect the 

exchange of money: 

𝑏̂𝑖
†𝒋(𝑠) = 𝑎̂𝑖

†𝒋(𝑠)𝑐̂𝒋(𝑠), 

𝑏̂𝑖
𝒋(𝑠) = 𝑎̂𝑖

†𝒋(𝑠)𝑐̂†𝒋(𝑠). 

We can build up an arbitrary market state from the vacuum state by using these operators to 

successively transfer cash and securities to each agent. To study how the market wave 

function evolves with time, we write 

|𝑀〉𝑡 = 𝑈̂(𝑡, 𝑡0)|𝑀〉𝑡0
 

where 𝑈̂(𝑡, 𝑡0) is a unitary linear operator. The dynamical behaviour of the system is driven 

by a Hamiltonian 𝐻̂(𝑡), which again satisfies the Schrödinger equation 
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𝑖
𝜕

𝜕𝑡
|𝑀〉𝑡 = 𝐻̂(𝑡)|𝑀〉𝑡. 

It is then possible to develop Hamiltonians for things like cash flow, the trading of securities, 

and so on (although the mathematics is usually more complicated than for something like the 

harmonic oscillator). As shown by Schaden and other researchers, these in turn can be used to 

derive statistical properties of markets.  

 

The variables of the system can be loosely interpreted in terms of physical analogies. The 

price s of an asset (or more correctly its logarithm) is like position. As in physics, there is an 

uncertainty relation involving asset price, and the momentum of the price change. The 

creation of money or assets adds energy (as measured by the Hamiltonian) to the total energy 

of the system. The same techniques used to study many-body quantum systems can then be 

applied to make predictions about market behaviour, either in closed form or by explicitly 

modelling each agent. 

 

As a simple example of a Hamiltonian in finance, consider the case of a savings instrument 

containing an initial amount of cash 𝑥0 which accumulates at an interest rate r. The classical 

Hamiltonian for this system is 

𝐻 = 𝑟𝑥𝑞 

where (in classical notation) q is the conjugate variable of x.37 We then have 

𝑑𝑥

𝑑𝑡
=

𝜕𝐻

𝜕𝑞
= 𝑟𝑥 

𝑑𝑞

𝑑𝑡
= −

𝜕𝐻

𝜕𝑥
= −𝑟𝑞. 

Solving then gives 

𝑥 = 𝑥0𝑒𝑟𝑡 

𝑞 = 𝑞0𝑒−𝑟𝑡 

which implies that the Hamiltonian is constant in time: 

𝐻 = 𝑟𝑥𝑞 = 𝑟𝑥0𝑒𝑟𝑡𝑞0𝑒−𝑟𝑡 = 𝑟𝑥0𝑞0. 

Note that changing 𝑞0 doesn’t affect the result for x, so we can set 𝑞0 = 1 which means that 

𝑞 = 𝑒−𝑟𝑡 is the value of one unit of currency discounted to time 𝑡 = 0.  

 

 
37 See e.g. Bensoussan, A., Chutani, A. & Sethi, S. (2009), ‘Optimal Cash Management under Uncertainty’, 

Operations Research Letters 37:425-429. 
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In analogy with a physical system, the amount of money x can be interpreted as having a 

dimension of length L. The momentum 𝑞 = 𝑚𝑥̇ has units MLT-1 (mass times length over 

time), a force acting on the momentum 𝑠 = 𝑞̇ = 𝑚𝑥̈ has units MLT-2, and the work 

performed by the force has units ML2T-2. Because the system is blowing up in size (so 

becoming less dense) with no inputs of energy, the inertial mass term is not constant but 

decreases exponentially, with solution 𝑚 = 𝑚0𝑒−2𝑟𝑡 where 𝑚0 =
𝑞0

𝑟𝑥0
. As in a nuclear 

reactor, the mass is being converted into another form of energy. 

 

To quantize the system, we again replace the Hamiltonian H and classical variables x and p 

with operators. Because the Hamiltonian must be Hermitian, we need to write it in a 

symmetric form as 

𝐻̂ =
𝑟

2
(𝑥̂𝑞̂ + 𝑞̂𝑥̂). 

Standard techniques can then be used to show that the probability distribution of the cash 

holdings matches that expected from the classical case (as Schaden notes, the quantum 

approach only comes into its own when future returns are uncertain). One can draw an 

analogy with the Hamiltonian of a multi-boson system 𝐻̂ = ℏ𝜔 (𝑁 +
1

2
). The interest rate r, 

which like 𝜔 has units of inverse time, plays the role of frequency (another way to see it is as 

frequency of a fixed payment), while the initial investment plays the role of the number 

operator 𝑁 (plus the 
1

2
 contribution of the ground state). In the case of a single cash transfer of 

a quantity s at time 𝑡 = 𝑡0, the Hamiltonian becomes 𝐻̂(𝑡) = 𝑠𝛿(𝑡 − 𝑡0)𝑞̂(𝑡) where the delta 

function 𝛿(𝑡 − 𝑡0) has the value 1 at 𝑡 = 𝑡0 and 0 at other times. 

 

The cash flow model treats the account as a black box which magically produces money at a 

fixed rate r. There are no inputs or outputs, which is why the Hamiltonian remains constant 

even as the nominal amount of money increases indefinitely. While such isolated systems do 

not exist in reality, the simple model – when coupled with the idea of quantum money 

creation – is instructive about how inflation occurs in something like a housing market. As 

emphasised in the book, money is created by private banks every time they issue a mortgage. 

If we assume mortgage lending continues at a steady rate, then the money supply will grow at 

some rate r (in Figure 3 of Quantum Economics the Canadian money supply grows at an 

annual rate of about 6.5 percent, so r = 0.065). If this money is then used to bid up the price 
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of houses, then house price growth will track money supply growth, even if the real value of 

homes remains unchanged.  

 

An important difference between cash and a security is that while money is a conserved 

quantity during transactions, a security once bought evolves into a superposition of states, 

each of different prices, with amplitudes specifying the probability of selling at that price. As 

an example, suppose that a particular investor initially has no shares in a particular company, 

and then acquires one share at time 0 for a price 𝑠0.38 By making a number of simplifying 

assumptions, and some rather involved computations, Schaden shows that the probability of 

selling the stock a time T later for price 𝑠 follows a lognormal distribution which depends on 

the expected return and volatility of the stock.39 This is a well-known empirical result, that 

can be derived from standard stochastic approaches, so serves primarily as a consistency 

check. However it only holds for intermediate time scales of a month or more, and again 

assumes that the market is near equilibrium. The quantum approach helps to explain how this 

model breaks down at shorter time scales, or for assets which are infrequently traded. 

 

To summarise this section, a market can be represented as a Hilbert space, in which the price 

of an asset is known precisely only at the time of a transaction. Ownership and context are 

important, so an asset purchased by one person at one price is distinct from the same asset 

purchased by another person at a different price. As in quantum cognition, the act of 

measuring an asset’s price – in this case by buying or selling – has an effect on the price. By 

constructing an appropriate Hamiltonian equation, we can study the dynamics of market 

evolution. As in physics, the complexity of the system means that macro-level behaviour is 

often characterised by emergent properties that cannot be reduced to some lower level. Again 

this differs from the classical approach which assumes assets have a certain inherent value 

independent of context; money does not play an important role, other than as a metric; and 

calculations can be based on micro-foundations of individual utility optimisation. 

 

 
38 The initial state |𝑀0〉 can be written |𝑀0〉 =  𝑏̂†(𝑠0)|𝑀̃0〉 where 𝑏̂(𝑠0)|𝑀̃0〉 = 0. Here the indices for other 

stocks and investors have been repressed for clarity, and 𝑀̃0 is a state where the investor has no shares in the 

company (which is why the annihilation operator yields 0). At time T, the state evolves to |𝑀𝑇〉 = 𝑈̂(𝑡, 𝑡0)|𝑀0〉. 

The probability that the investor can sell the single share at a price 𝑠 can be computed by looking at the product 

⟨𝑀̃𝑇|𝑏̂(𝑠)|𝑀𝑇⟩, where 𝑀̃𝑇 is again a state that is annihilated by 𝑏̂(𝑠). 

39 The formula is 𝑃𝑇(𝑠|𝑠0) =
1

𝑠𝜎√2𝜋𝑇
exp [−

(ln(
𝑠

𝑠0
)−𝜇𝑇)

2

2𝜎2𝑇
] where 𝜇 is expected return and 𝜎 is volatility. 
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Like quantum cognition, quantum finance has become a sizeable area of research, with many 

papers showing empirical results. If markets are assumed to be large and nearly efficient, then 

the results do generally approximate those produced by the classical approach. (Indeed, 

researchers have so far largely tended to respect classical assumptions such as efficiency, in 

an attempt to replicate known results.) However quantum effects become more important for 

markets that are thinly traded, and the quantum approach can also be used to describe markets 

driven by investor sentiment, where there is a significant degree of entanglement between 

market participants. 

 

While quantum finance concentrates on the specialised case of financial markets, and is used 

for studying the properties of assets such as stocks or bonds, the same methodology can in 

principle be extended to describe markets in general, and form the basis of a mathematical 

description of the quantum economy. Again, money has a special role as an asset with a fixed 

price, and the price of everything else is indeterminate until measured through monetary 

transactions.  

 

7. Supply and demand 

 

While the operator approach is useful for building up a quantum model of markets, we turn 

now to the more basic question of the relationship between supply and demand, which 

depends on cognitive decisions to buy or sell.40 The standard interpretation, known as the law 

of supply and demand, is traditionally illustrated using versions of a graph first published in 

an 1870 essay by Fleeming Jenkin. It has since become the most famous figure in economics, 

and is taught at every undergraduate economics class. The figure shows two intersecting 

curves or lines, which describe how supply and demand are related to price. When price is 

low, supply is low as well, because producers have little incentive to enter the market; but 

when price is high, supply also increases. Conversely, demand is lower at high prices because 

fewer consumers are willing to pay that much. The point where the two lines cross gives the 

unique price at which supply and demand are in perfect balance, and is therefore a pictorial 

representation of Adam Smith’s invisible hand. 

 

 
40 See the discussion paper “A Quantum Model of Supply and Demand” available at 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3376652 
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The law of supply and demand not only plays an important role in many economic models, 

but also justifies the widespread assumption in economics that prices are drawn to a stable 

equilibrium. However there are a number of basic problems with it. One is that it is generally 

impossible to measure supply or demand curves, because all we have is transactions which 

involve both quantities. The parameters are therefore underdetermined. Another problem is 

that the law is deterministic, while economic interactions are intrinsically probabilistic (or 

indeterminate). The law by itself also gives little sense of underlying dynamics (according to 

the efficient market hypothesis, equilibrium is achieved instantly). Finally, the law assumes 

continuity, but goods are sold in discrete amounts, and financial transactions are inherently 

discontinuous. 

 

These issues can be addressed via the adoption of a quantum formalism, which is explicitly 

designed to handle systems that are discrete, indeterminate, and dynamic. According to 

quantum finance, asset prices are indeterminate until measured through transactions, so can 

be modeled using wave functions that collapse to a certain price when measured. Quantum 

cognition, meanwhile, treats mental states as indeterminate until measured through decisions. 

These theories come together naturally in the question of supply and demand, which involves 

decisions about financial transactions. 

 

This section applies the quantum methodology to a simple but illustrative case of supply and 

demand, that can be extended to a variety of situations. The probabilistic approach is similar 

to that of (Kondratenko, 2015), who also argues for a quantum link, however the section 

derives dynamic equations that are interpreted in terms of entropic forces; uses these to 

generate equations for an oscillator model; draws an explicit connection with recent research 

in quantum finance, where a similar quantum oscillator model has been used to model asset 

price changes; and motivates the technique’s application in other areas of economics. 

 

Case with single buyer and seller 

 

As a starting point, first consider the case of a single buyer and seller, who are negotiating a 

transaction involving a certain good (say a stock, or a house). The buyer might have a certain 

bid price 𝜇𝑏 in mind, while the seller has an offer price 𝜇𝑜. Because price is a relative 

quantity, we will treat it as a logarithmic variable. Since it generally holds that 𝜇𝑏 < 𝜇𝑜 there 

will be no transaction unless at least one party shows some flexibility. It is therefore 
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necessary to broaden the constraints, so instead of having a central fixed price, each 

participant is willing to consider a range of prices, with the propensity to sell or purchase at 

each price described by a function. The use of the term “propensity” here is similar to that in 

stochastic chemical kinetics, where it refers to the probability of a molecular reaction 

occurring in a certain time (Lecca, 2013). The situation is shown graphically in Figure 1, 

where 𝑃𝑜(𝑥) is the offer propensity function, and 𝑃𝑏(𝑥) the bid propensity function. Both 

functions are assumed to be normal (Gaussian), with standard deviations 𝜎𝑜 and 𝜎𝑏. The case 

for the common scenario where the sales price is fixed over a trading period would be 

modeled by setting 𝜎𝑜 = 0 so 𝑃𝑜 is a delta function.  

 

This assumption of normally distributed prices may seem a little strange, since it implies that 

buyers will not purchase items that seem too cheap, and sellers will be reluctant to sell above 

a certain price. One way to think of these curves is as a kind of schedule, where the seller and 

buyer mentally partition their offers and bids, with a peak at a central price which they 

consider to be ideal but not too unrealistic, and in a manner that is constrained by the 

condition that the integral of the function equals 1. Viewed this way, it would not make sense 

for a buyer to commit to buy only at a very low price, since they would then have to decline 

any reasonable offer outside that range. Note also that transactions take place in the middle 

ground between the mean bid and offer prices, so what matters is the behavior of the 

propensity functions over this range. 

 

If we assume independence, then the joint propensity function, which describes the joint 

probability of a transaction actually occurring at a particular price, is the product 𝑃𝑡(𝑥) =

𝑃𝑜(𝑥)𝑃𝑏(𝑥), shown by the blue line in the figure. The area of this graph measures the 

propensity for trade. It is easily shown (Bromiley, 2018) that the product of two normal 

distribution curves is a scaled normal curve, with mean and standard deviation 

𝜇 =
𝜎𝑏

2𝜇𝑜 + 𝜎𝑜
2𝜇𝑏

𝜎𝑜
2 + 𝜎𝑏

2  

𝜎 =
𝜎𝑜𝜎𝑏

√𝜎𝑜
2 + 𝜎𝑏

2
. 

The scaling factor 𝛼 is itself a normal distribution of the form  

𝛼 =
1

√2𝜋𝜎𝑡
2

𝑒
−

𝜇𝑡
2

2𝜎𝑡
2
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where 𝜇𝑡 = 𝜇𝑜 − 𝜇𝑏 is the spread, and the standard deviation 𝜎𝑡 = √𝜎𝑜
2 + 𝜎𝑏

2 is a measure of 

price flexibility (Bromiley, 2018). The main parameters and equations are also summarized in 

the Appendix of the discussion paper.41 

 

 

Figure 7.1. Plot showing the buyer’s propensity function (green) and the seller’s propensity 

function (red). The joint propensity for a transaction occurring is the product of these 

functions, shown by the blue line. Price is treated as a logarithmic variable. 

 

For the case of a financial market, price quotes in the order book often come from market 

makers. The expected profit over a trading cycle for a market maker will depend on the 

operating spread, which represents the profit per transaction, multiplied by the amount traded. 

The propensity for trade scales with 𝛼 so if we assume the operating spread scales with 𝜇𝑡, 

then the profit scales with the product 𝜇𝑡𝛼 which has a maximum when the spread satisfies 

𝜇𝑡 = 𝜎𝑡. If we further assume that market makers adjust the spread in this way in order to 

maximize profit, then setting this value for 𝜇𝑡 in the expression for the propensity for trade 𝛼 

gives 𝛼 ∝ exp(−𝐻) where 𝐻 = log(2𝜋𝑒𝜎𝑡
2) 2⁄  is the differential entropy of the normal 

distribution (Norwich,1993). Market negotiations which align the expectations of the buyer 

and seller will also tend to reduce 𝜎𝑡 and therefore minimize the entropy, which in 

 
41 see https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3376652 
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information theoretic terms is equivalent to minimizing the missing information about the 

system (Williams, 1980). 

 

Multiple agents 

 

So far we have only considered the case of a single buyer and seller, who are negotiating the 

price of a single item, but the same methodology carries over easily to the case with multiple 

units and agents. The bid functions and offer functions are aggregated to give a total bid 

function over all buyers, and a total offer function over all sellers, measured in numbers of 

units. In an agent-based model this would be performed by summing the propensity functions 

directly. If for simplicity we assume that the bid propensity functions all share the same mean 

and standard deviation, and likewise for the offer functions, then the effect is to simply scale 

the propensity functions by the numbers of sellers and buyers respectively.  

 

The expected trading volume, expressed as a rate, is then given by 𝑉 = 𝑁𝑜𝑁𝑏𝑟𝛼. This is the 

same as mass action kinetics in chemisty, where a reaction between two chemical species in 

solution occurs at a rate which is proportional to the concentrations of the reactants, and their 

chemical affinity, but depends also on factors such as the temperature. Here the propensity 

for trade 𝛼 is adjusted by a rate parameter 𝑟 which accounts for the exact structure of the 

market and the degree and nature of the interactions between buyers and sellers. Note that as 

in chemistry (Brogioli, 2013), this equation serves as a useful first-order model but may need 

to be modified under certain conditions (or agents can be modeled individually). In a 

stochastic model the number of transactions over a trading cycle of duration 𝜏 follows a 

Poisson distribution with mean 𝜆 = 𝑉𝜏. 

 

This population model also gives a different perspective on the propensity functions. The red 

line in Figure 2 shows the cumulative number of units 𝐶𝑜(𝑥) sold to an individual buyer, 

assuming that the buyer starts with the lowest available offer price and works their way up to 

the price x. This curve is given by the seller cumulative propensity function multiplied by the 

number of sellers:  

𝐶𝑜(𝑥) = 𝑁𝑜 ∫ 𝑃𝑜(𝑥)𝑑𝑥
𝑥

−∞

. 
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The green line shows the number of units 𝐶𝑏(𝑥) sold by an individual seller, assuming that 

the seller starts with the highest available bid price and works their way down to the price x, 

which is given by 

𝐶𝑏(𝑥) = 𝑁𝑏 − 𝑁𝑏 ∫ 𝑃𝑏(𝑥)𝑑𝑥
𝑥

−∞

. 

These cumulative propensity curves are very unrealistic because they assume that single large 

buy and sell orders are broken into infinitesimal chunks and processed in order. In reality, 

transaction charges would mean that the orders would be handled in a small number of large 

transactions. The curves also remove any probabilistic uncertainty, because buyers and sellers 

are assumed to have perfect information. However they are interesting because they resemble 

the traditional plots of supply and demand, with the difference that the independent variable 

price is on the horizontal, rather than vertical, axis. If we consider cash as carrying 

momentum (Fischer & Braun, 2003), then a large purchase (or sale) can be viewed as a 

transfer of momentum which will perturb the price point. Far from being an inert medium of 

exchange, money is the basis of a measurement procedure which affects the system being 

measured (Orrell, 2017: 20).  

 

 

Figure 7.2. Cumulative bid/offer propensity curves, scaled by the number of participants,  for 

the case with 100 buyers and 200 sellers. The red line shows the total number of units sold 

𝐶𝑜(𝑥), assuming that an individual buyer starts with the lowest available price and works 
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their way up to the price 𝑥. The maximum for this curve is 200 which corresponds to the 

number of units available, assuming vendors sell a maximum of 1 unit each. The green line 

shows the number bought 𝐶𝑏(𝑥), assuming that an individual seller starts with the highest 

available price and works their way down to 𝑥. 

 

We here notice a clear difference between the deterministic and probabilistic interpretations. 

In the former, the equilibrium price is the intersection point at which supply and demand are 

equal, obtained with a probability 1, while in the latter, the expected price is normally 

distributed. What counts in the probabilistic picture is not just the number of buyers or 

sellers, but their flexibility in negotiating prices, as expressed by the inverse of the variance. 

As discussed further below, the model can be generalized to simulate group influences where 

suppliers collectively decide to change their price ranges.  

 

This simple model assumes that buyers and sellers in the population are homogeneous in the 

sense that they share the same offer and bid functions. Even without this assumption, it 

should often be possible to approximate the total offer function using a normal distribution. 

Also, while we have considered normal distributions here because of their mathematical 

convenience, one could consider different shapes for the propensity functions. The main thing 

is that the product of these functions, in the region around the price-point of interest, should 

be approximated by a normal curve, which is the case if the buyer and seller forces defined 

below are locally linear. In general, it seems reasonable to suppose that transactions will 

occur over a limited range and can be approximated by the kind of model described here.  

 

The entropic oscillator 

 

The bid and offer propensity functions in Figure 1 can be viewed as representing the mental 

state of the buyer/seller. As shown by cognitive psychology, decisions contain a random 

component, so should be modeled as probabilistic processes (Busemeyer & Bruza, 2012). 

However we can also think of these curves as describing a kind of force. To motivate the 

treatment, suppose that the current price 𝑥 is higher than the buyer’s central price 𝜇𝑏. The 

probability to purchase is then given by the propensity function 𝑃𝑏(𝑥). The resistance to 

changing to some nearby price 𝑥 + ∆𝑥 will depend on the change in propensity conditional 

on (or relative to) the current propensity. This is equal to the slope of the propensity, divided 
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by the current propensity, or 𝑃𝑏′(𝑥) 𝑃𝑏(𝑥)⁄ . We therefore define the supply and demand 

forces as 

𝐹𝑜(𝑥) = −𝛾
𝑃𝑜′(𝑥)

𝑃𝑜(𝑥)
=

𝛾(𝑥 − 𝜇𝑜)

𝜎𝑜
2

= 𝑘𝑜(𝑥 − 𝜇𝑜) 

𝐹𝑏(𝑥) = 𝛾
𝑃𝑏′(𝑥)

𝑃𝑏(𝑥)
=

−𝛾(𝑥 − 𝜇𝑏)

𝜎𝑏
2 = −𝑘𝑏(𝑥 − 𝜇𝑏) 

where 𝑘𝑜 = 𝛾 𝜎𝑜
2⁄  and 𝑘𝑏 = 𝛾 𝜎𝑏

2⁄  are force constants, and 𝛾 is a scaling parameter with units 

of energy.42 The demand force slopes downwards, because there is resistance to increasing 

price, while the supply force slopes upwards. The forces therefore represent the mental desire 

for the buyer or seller to adjust the price to their own preferred level. Note that, because the 

propensity functions are chosen to be normal curves, the corresponding forces are linear in 

price. They can therefore be viewed as a first-order approximation to the dynamics in the 

region of the central equilibrium point. As seen in the Appendix, these forces are the 

cognitive version of entropic forces which reflect the tendency of a thermodynamic system to 

maximize entropy by evolving to states that are statistically more probable (with the 

difference that they act in the opposite direction, so decrease the entropy).  

 

We can similarly define the transaction force as the entropic force generated by the joint 

probability, which is just the sum of the buyer and seller forces: 

𝐹𝑡(𝑥) = 𝛾
𝑃𝑡′(𝑥)

𝑃𝑡(𝑥)
= 𝛾

𝑃𝑜(𝑥)𝑃𝑏′(𝑥) + 𝑃𝑜′(𝑥)𝑃𝑏(𝑥)

𝑃𝑜(𝑥)𝑃𝑏(𝑥)
= 𝐹𝑜(𝑥) + 𝐹𝑏(𝑥). 

The point at which the probability of a transaction is highest can be found by setting the 

derivative of the joint propensity function to zero, so 

𝑃𝑡
′(𝑥) = 𝑃𝑜′(𝑥)𝑃𝑏(𝑥) + 𝑃𝑜(𝑥)𝑃𝑏′(𝑥) = 0 

or 

𝐹𝑜(𝑥) = −𝐹𝑏(𝑥) 

which occurs at the price 

𝜇 =
𝑘𝑜𝜇𝑜 + 𝑘𝑏𝜇𝑏

𝑘𝑜 + 𝑘𝑏
. 

The equilibrium price is therefore the point where the supply and demand forces are in 

balance and 𝐹𝑡(𝑥) = 0, as expected. 

 

 
42 (Kondratenko, 2015: 137-138) proposes similar force terms, without a corresponding expression for mass, on 

the basis that these terms cancel at equilibrium. 
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The existence of a restoring force is consistent with the idea that market sentiment tends to 

oscillate over time, alternating between periods of e.g. greed and fear. To picture the 

dynamics, we can imagine the force 𝐹𝑡(𝑥) acting on a mass 𝑚 = 𝑚𝑜 +  𝑚𝑏, where 𝑚𝑜 and 

 𝑚𝑏 represent the resistance to change of the seller and buyer respectively, and these masses 

are joined together as shown in Figure 3. The equation of motion for this coupled system 

(diagram C in the figure) is then 𝑚𝑥̈ = −𝑘(𝑥 − 𝜇) where 𝑘 = 𝑘𝑜 + 𝑘𝑏. This has the 

oscillatory solution 𝑥 = 𝜇 + 𝐴 cos(𝜔𝑡 + 𝜑) where 𝐴 is the amplitude, 𝜔 = √𝑘 𝑚⁄  is the 

frequency of oscillation, and the phase 𝜑 depends on the starting point. 

 

 

Figure 7.3. In diagram A the seller and buyer are represented by the masses 𝑚𝑜 and  𝑚𝑏 

which oscillate independently around their central points with spring constants 𝑘𝑜 and  𝑘𝑏. 

The arrows show the direction of force. Diagram B shows the coupled system where the two 

masses are attached, and are at their equilibrium point 𝜇. This is equivalent to the oscillator 

in diagram C with mass 𝑚 = 𝑚𝑜 +  𝑚𝑏 and spring constant 𝑘 = 𝑘𝑜 + 𝑘𝑏. 

 

While such a force would express the restoring tendency towards a central price, it again is 

deterministic rather than probabilistic. Also, unless additional damping terms are added, the 
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price would simply bounce back and forth between two extremes that would depend on the 

initial conditions. The probability distribution of prices is given by the equation  

𝑃(𝑥, 𝐴) =
1

𝜋√𝐴2 − (𝑥 − 𝜇)2
 

which as shown in Figure 4 below is highest at the extremes (where the rate of change is 

slowest) and lowest in the midpoint (where it is fastest), which is inconsistent with the 

probabilistic picture in Figure 1.  

 

A more realistic approach would therefore be to assume the oscillator is driven by random 

noise. This results in an Ornstein-Uhlenbeck process which is a mean-reverting random walk 

given by the stochastic differential equation 

𝑑𝑥 = −𝜃𝑘𝑥 𝑑𝑡 + √2𝐷 𝑑𝑊. 

Here 𝑑𝑊 is a Wiener process, 𝐷 is the diffusion coefficient, and 𝜃 is the mobility which 

measures the drift velocity induced by a given force (Titievsky, 2005). The probability 

density function 𝑃 then satisfies the Fokker-Planck equation 

𝜕𝑃

𝜕𝑡
= 𝜃𝑘

𝜕

𝜕𝑥
(𝑥𝑃) + 𝐷

𝜕2𝑃

𝜕𝑥2
. 

The steady state solution 𝑃(𝑥) is a Gaussian with standard deviation 𝜎 = √𝐷 𝑘⁄ . Excited 

states relax back to this steady state due to dissipation. In physics, if we assume that the 

system is perturbed by thermal noise, then according to the Einstein relation we have 𝐷 =

𝜃𝑘𝐵𝑇, where 𝑘𝐵 is the Boltzmann constant and T is temperature. In the quantum model 

developed below the force constant satisfies 𝑘 = 𝛾 𝜎2⁄  from which it follows that 𝛾 = 𝐷 =

𝜃𝑘𝐵𝑇. For 𝜃 = 1 this is the same relationship arrived at by interpreting the supply and 

demand forces as entropic forces, see Appendix of the paper.  

 

The quantum harmonic oscillator 

 

While it is certainly reasonable to model the system as a stochastic differential equation in 

this way, an alternative approach is to shift to a quantum framework, which offers a natural 

way to handle its indeterminate, dynamic properties. For example, while the stochastic 

approach assumes that price has a well-defined value at each time, the quantum model 

acknowledges that prices, and indeed the mental states of buyers and seller, are indeterminate 

until measured through a transaction, and this measurement process affects the price. As 
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mentioned in (Segal & Segal, 1998: 4072), an obvious feature of financial markets is that it is 

impossible to observe both an asset’s price, and its instantaneous rate of change: this “lack of 

simultaneous observability appears capable of precise mathematical formulation only in 

quantum terms.” More generally, as mentioned in the introduction, the information flows that 

make up economic transactions do not behave in a classical fashion and are often better 

suited to a quantum approach. 

 

In the quantum formalism, the price of an asset is represented by a wave function that 

collapses to a particular value when measured through a transaction, just as the wave function 

for a particle’s position collapses down to a single number when measured. We can move to 

the quantum framework by “quantizing” the classical equations. The quantum version of the 

spring equation is the quantum harmonic oscillator, which is restricted to a discrete set of 

energy levels. The ground state is described by the wave function  

𝜓𝐸(𝑥) = (
𝑚𝜔

𝜋ℏ
)

1 4⁄

exp (−
𝑚𝜔

2ℏ
(𝑥 − 𝜇)2). 

The corresponding probability distribution for x is a normal distribution with mean 𝜇 and 

standard deviation 

𝜎 = √
ℏ

2𝑚𝜔
. 

From the Schrödinger equation, the time evolution of an oscillator in the ground state is given 

by the complex wave function 

𝜓𝐸(𝑥, 𝑡) = exp (−
𝑖𝜔𝑡

2
) 𝜓𝐸(𝑥) 

which rotates around the imaginary axis with an angular frequency 𝜔 2⁄ . As the energy 

increases, the probability distribution peaks at the extremes, as with the classical case in 

Figure 4, in accordance with Bohr’s correspondence principle (Rae, 2008: 40). In practice 

only low energy states will be used here, as discussed in Section 6. 

 

To see how this applies to supply and demand, we identify the probability distributions as the 

ground states of quantum oscillators. For the buyer or seller, the oscillator can represent a 

kind of mental oscillation over prices, while for the transaction price it represents an 

oscillation between the buyer’s preferred price and that of the seller. As discussed below the 

parameter ℏ in this model will determine the transition between energy levels, while 𝜔 

represents a characteristic frequency. It is then easily shown (see Appendix) that the 
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equations for the mean and standard deviation of the quantum oscillator for the coupled 

supply/demand system are the same as the equations for the joint propensity function from 

Section 2. Mass terms for the buyer and seller scale inversely with the variance of the 

propensity functions, so are a measure of price flexibility. The corresponding price 

distribution is shown in Figure 4, where it is assumed that a transaction has taken place (so 

the total probability is 1). 

 

This equivalence between the models does not rely on the fitting of any parameters. The sole 

additional assumption is that demand and supply forces scale in a consistent way with 

variance of the propensity functions. A consequence is that the frequencies of the buyer and 

seller in the transaction process are the same. In the classical model (Figure 3) this was 

enforced by physically joining their corresponding masses, as is necessary if they are to 

represent a single price.  

 

 

Figure 7.4. Probability distributions for position for the classical harmonic oscillator (grey 

line) at high energy, and the quantum model in its ground state (blue line) and in the tenth 

excited eigenstate (dotted). In the classical oscillator model, the probability is highest at the 

extremes rather than at the center, and the range – which here equals the bid/offer spread – 

depends on the initial conditions. The quantum oscillator matches the probability distribution 

of price for transactions at low energy, and converges when smoothed to the classical 
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distribution as energy increases. The tenth eigenstate is shown for illustrative purposes, only 

the lower-energy states are typically used. 

 

As discussed in the final section, the parameters ℏ and 𝜔 serve as a parsimonious way to fit 

the higher energy level states that are characteristic of observed data. Comparison with the 

entropic version (see Appendix) shows that 𝛾 = ℏ𝜔 2⁄ = 𝜃𝑘𝐵𝑇 where the mobility factor 𝜃 

was set to 1. In physics, both ℏ and 𝑘𝐵 are well-defined constants, with one quantizing 

mechanical action and the other quantizing entropy (Fernández de Córdoba et al., 2016). In 

economics they have no such set value, however the presence of the mobility factor, which 

depends on the details of the system, is a reminder that in economics these parameters are 

context-dependent, and need to be fit for a particular model. Note also that quantizing the 

system changes the meaning of the parameters (instead of a scaled temperature, there is a 

scaled frequency) but does not increase their number, which is important from a modeling 

perspective.  

 

In the classical picture, with price modeled by a classical oscillator (which can be viewed as 

representing a kind of dynamic bargaining process), one would represent a price negotiation 

by adding energy to the system in order to induce an oscillation. In the quantum picture, we 

can similarly add an amount of energy 𝐸𝑑 using a displacement operator (for example, if the 

system is initially in the ground state, then a displacement of 2𝜎 raises the energy by 𝐸𝑑 =

ℏ𝜔). Again, this can be viewed as the result of a negotiation process, where the forces 

exerted by the buyer and seller shift and adjust in response to each other. Interactions 

between groups of buyers or sellers could have similar effects. The probability of observing 

the system in a particular state then follows a Poisson distribution with mean 𝜆 = 𝐸𝑑 (ℏ𝜔)⁄ . 

 

A number of authors have developed models of financial trading based on the operator 

approach, as in quantum field theory where creation and annihilation operators are used to 

model the behavior of particles (Schaden, 2002; Bagarello, 2006; Haven et al., 2017; 

Khrennikova & Patra, 2019). For example in the model of (Gonçalves & Gonçalves, 2008) 

the number of buyers and sellers is represented by a number operator which counts the 

participants. At the start of each trading cycle, the system is in a ground state which is then 

perturbed by a displacement operator. This puts the system into a so-called coherent state 

where the number of participants follows a Poisson distribution. While a discussion of the 
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operator approach is beyond the scope of this paper, it does suggest the following possible 

interpretation, which is to treat the supply/demand system at the start of a trading cycle as a 

quantum oscillator in its ground state. When a negotiation begins, the effect is to perturb the 

system with an increase in energy of 𝐸𝑑 = ℏ𝜔𝜆 units. In this picture, the bringing of money 

to the table therefore acts as a kind of financial kick to the system. The result is a coherent 

state, which can be viewed as a quantum version of a classical oscillating state. The 

probability density is Gaussian but oscillates around the mean, and the energy level when 

measured follows a Poisson distribution with mean 𝜆, so corresponds to the number of 

transactions in the probabilistic model.  

 

To summarize, the state of the system is being modeled as a quantum harmonic oscillator 

whose properties can all be derived from the probability distributions for the buyer and seller, 

as measured in a trading context. The energy of the oscillator, and therefore the probability of 

transactions occurring during a trading cycle, reflects both price spread and price flexibility. 

The quantum model can be seen as mediating between two classical models: the ground state 

corresponds to the normal-shaped static probabilistic model of supply and demand, while as 

energy increases (i.e. for excited states) the model converges to the dynamic spring model 

where prices oscillate around the mean, and have the highest probability of being observed at 

the extremes. The statistical behavior is essentially the same as that derived from a classical 

stochastic model, however there a number of key differences. The system state is modeled by 

a complex wave function, and variables such as prices or the mental states of the buyers and 

sellers are treated as indeterminate until measured through a transaction, which as discussed 

further below has implications for things like interference effects and entanglement. The 

quantum model has a non-trivial ground state which reflects uncertainty rather than random 

noise. Also, while excited states damp out in the stochastic model, in the quantum model they 

persist until the wave function is collapsed through measurement. The main operating 

assumption is that the buyer and seller forces 𝐹𝑏(𝑥) and 𝐹𝑜(𝑥) are linear in the region of the 

equilibrium price. The entropic nature of these forces makes clear the connection between 

information exchanges, quantum behavior, and economic transactions. 

 

Discussion 
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The probabilistic quantum model can be applied in a number of ways to model financial 

transactions. The most basic is to use it as a way to generate stochastic models of supply and 

demand. For example, Figure 5 shows two simulations for a simple system where the price of 

some good is adjusted by the seller so as to maintain a certain level of inventory (see 

Appendix for details). The dashed line shows the equilibrium demand level using a classical 

systems dynamic approach. The solid line shows a scenario where the price is set by the 

seller as before, but now the number of units purchased at that price follows a Poisson 

distribution as described in Section 3. The effect is to create stochastic noise in the price 

level, even when the system is unperturbed. In other words, random changes are here caused 

not by external events, as assumed in conventional theories such as the efficient market 

hypothesis (Fama, 1965), but are due to the innate uncertainty of the system. Again, this is 

because the quantum oscillator has a ground state with non-zero energy. 

 

 

Figure 7.5. Straight dashed line shows a simulation of demand in a systems dynamics model 

where price is set dynamically by the seller in order to maintain inventory at four times the 

level of demand. The system starts at equilibrium so demand is stable. Solid line shows a 

simulation where price is again set dynamically by the seller, but the demand at that price is 

stochastic. 
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Such stochastic models have been widely used in areas such as systems biology, where it has 

been shown that certain system properties such as negative feedback actively damp stochastic 

variations due to a small number of molecules (Orrell & Bolouri, 2004; Ramsey et al. 2006), 

but in economics their use is usually limited to assessing the effects of random external 

shocks rather than internal dynamics. A first step therefore would be to replace deterministic 

supply/demand equations in conventional models with dynamic probabilistic versions. Larger 

models could take advantage of the computational techniques developed for systems biology 

models (Ramsey et al. 2005). 

 

This type of application would only exploit the probabilistic aspect of the approach; however 

the most interesting features of the quantum oscillator are its quantized energy structure, and 

the possibility for phenomena such as interference and entanglement between multiple 

oscillators, which are very relevant for economics. As a simple illustrative example, Figure 6 

shows a prototype quantum agent-based model where 100 buyers and 200 sellers perform 

transactions. The mass term of the buyers has an oscillatory component which gives a 

seasonal variation. In terms of quantum decision theory (Yukalov & Sornette, 2014), this 

variation could be attributed to a subjective attraction factor which reflects seasonal attitudes 

and interferes with objective calculations of utility on the part of the buyer. Seasonal behavior 

can also of course be produced by classical models, but the advantage of the quantum 

approach is that it provides a general framework for handling such effects. 
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Figure 7.6. Simulations of the daily number of transactions for a model where the mass term 

for the buyer has a seasonal component. When buyers are less flexible (higher mass) there 

are fewer transactions. Price follows a similar pattern. 

 

As mentioned in the introduction, a number of authors have previously used the quantum 

oscillator to model asset price changes in financial markets as oscillations in a potential well 

(Piotrowski & Sładkowski 2001; Meng et al. 2015; Ahn et al. 2017), with the restoring force 

representing reversion to the mean (as opposed to the bottom-up interpretation here in terms 

of probabilistic interactions between buyer and seller). The quantum Hamiltonian can be 

viewed as an expression of a stock’s risk: the kinetic term captures the degree of price 

momentum, while the potential term reflects deviation from equilibrium. The mass m is seen 

as reflecting properties such as market capitalization that affect the rate of price adjustment, 

while 𝜔 is a characteristic oscillating frequency. Piotrowski et al. (2006) also derived a model 

of asset price changes, based on quantum game theory, that followed a Ornstein-Uhlenbeck 

process, and used it to obtain a formula for the price of a European call option. 

 

As seen above, energy levels in the oscillator are quantized, with a normal ground state and 

higher energy levels that show more complicated distributions. Ahn et al. (2017) showed that 

the quantum oscillator model outperformed traditional stochastic process models for fitting 
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historical price changes in the Financial Times Stock Exchange (FTSE) All Share Index. The 

system was found to be in the ground state nearly all (about 98 percent) of the time, with the 

next two levels contributing the skewness and kurtosis that characterized the data. Higher 

levels had negligible effect. The frequency 𝜔 was interpreted as a measure of the speed of 

mean reversion of stock returns. This number will of course depend on the particular market 

and asset; for example (Balvers, Wu & Gilliland, 2000) analyzed a number of stock markets 

and estimated a reversion half-life of three to three and a half years. 

 

The quantum approach is also compatible with Ising-type models from statistical mechanics 

which have been used to simulate stock market dynamics (Bouchaud, 2009). In physics, the 

Ising model was initially developed to simulate ferromagnetic materials, where the magnetic 

dipole moments of atomic spins can be in one of two states (+1 or −1). When an external 

magnetic field is applied, interactions between atoms lead to phase transitions between a 

random state and ones in which spins are aligned. The same idea can be applied to simulate 

contagion in the stock market, where market participants collectively change their stance 

towards asset valuation. For example Gusev et al. (2015) created an empirically-fitted model 

where prices oscillate in a potential well which is determined in part by the propagation of 

news and opinions. While they used a classical version of the Ising model, a quantum version 

would give similar results, though again with the feature of a ground state where fluctuations 

occur even in the absence of new information. 

 

Finally, financial markets are characterized by entanglement of two sorts. The first is through 

social factors such as culture or news, the second (and more direct) is through the use of 

financial instruments such as loans and derivatives. As discussed in (Orrell, 2018; 2018a) a 

loan agreement can be modeled as an entangled system, where the borrower’s mental state to 

pay or default is a quantum state which is entangled via the loan with that of the creditor (so 

default immediately affects the status of the loan even if the creditor doesn’t find out 

immediately). Entangled oscillators are a staple of quantum physics and some of the 

techniques could carry over into economics. The oscillator model of supply and demand 

could for example be incorporated in quantum agent-based models where decisions to buy or 

sell are viewed as the outcome of quantum dynamic processes, that are susceptible to 

entanglement through social influences but also through the financial system itself. The 

development of such a model is a project for future work. 
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To sum up, the quantum approach provides a natural framework for modeling supply and 

demand. The main parameters are measures of preferred prices and flexibility, which 

comprise a minimal description of buyer/seller behavior. To summarize, the main 

conclusions are: 

• The propensity for buyers and sellers to take part in a transaction can be modeled as a 

joint propensity curve that represents a probability distribution. 

• The entropic force corresponding to this curve describes an oscillator, whose mass is 

given by an inverse variance term that measures resistance to change. 

• The quantized version of this entropic oscillator has a complex wave function whose 

squared amplitude gives the probability distribution for price. 

• The ground state corresponds to the original propensity curve, which shows the 

connection between information flows and quantum dynamics. 

• The uncertainty of the quantum ground state represents the indeterminate nature of the 

system, so price changes may reflect not new information, as in the classical model, 

but rather the absence of information. 

• While the classical model assumes that market exchanges drive the system to a state 

of equilibrium, the quantum model suggests they drive it to a state of higher 

information (lower entropy). 

• Excited energy states of the oscillator contribute the skew and kurtosis that 

characterize financial statistics. 

• The model has a number of applications, including as a tool to perform stochastic 

simulations, or as the basis for a quantum agent-based model. 

 

While as shown above a somewhat similar model can be produced using stochastic 

differential equations, a distinguishing feature of the quantum version is that price is modeled 

by a wave function which only collapses to a set value when measured during a transaction. 

This correctly reflects the indeterminacy of financial systems; incorporates the fact that the 

measurement procedure affects the system being measured; and forms a natural interface to 

explore interference effects in cognition, entanglement through social and financial bonds, 

and the dynamics of excited energy states. 

 

8. Production and consumption 
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A similar quantum approach can be applied in principle to the production and consumption of 

goods.43 Suppose that we wish to model a firm which produces some good 𝑥(𝑡) at a rate 𝑥̇, 

where the time dependence is suppressed for brevity. Consider first the case of a firm which 

produces a single item, with a profit function 

𝑔 = 𝑝𝑥̇ − 𝑐(𝑥̇). 

This represents the money earned per unit time by selling units at a rate 𝑥̇ and price p, minus 

the cost of production c. The units of g and c are therefore ET-1 (currency over time). The 

value of 𝑥̇ which gives maximum profit can be found by setting 

𝜕𝑔

𝜕𝑥̇
= 𝑝 −

𝜕𝑐(𝑥̇)

𝜕𝑥̇
= 0. 

In neoclassical economics, companies are generally assumed to be operating at this point, 

which doesn’t allow for dynamics, or the fact that production won’t usually be at an optimal 

level. However we can interpret this term 𝑠 =
𝜕𝑔

𝜕𝑥̇
 as a correcting force which includes costs 

and is directed towards optimum profitability. We then write 𝑠 = 𝑚𝑠𝑥̈, where 𝑥̈ is the rate of 

change of production, and the mass term 𝑚𝑠 now represents the inertia of the firm towards 

that change. If we assume that the inertial mass remains constant (which it need not) then the 

work performed by the force is  

∆𝐸 = ∫ 𝑠𝑑𝑥
𝑡

0

= 𝑚𝑠 ∫ 𝑥̈𝑑𝑥
𝑡

0

= 𝑚𝑠 ∫ 𝑥̇𝑑𝑥̇
𝑥𝑡

𝑥0

=
𝑚𝑠

2
(𝑥𝑡̇

2 − 𝑥0̇
2) 

where 𝑥0̇ and 𝑥𝑡̇ represent the initial and final production rates. We can therefore identify the 

terms of the form  
1

2
𝑚𝑠𝑥̇2 as the economic equivalent of kinetic energy. The potential energy 

for a firm is the difference between this, and the maximum obtainable kinetic energy at the 

optimal level of productivity. 

 

For a consumer, we can similarly write the “profitability” w from the purchase of a stream of 

goods x as 

ℎ = −𝑝𝑥̇ + 𝑢(𝑥̇) 

and the corresponding force towards that purchase as 

𝜕ℎ

𝜕𝑥̇
= −𝑝 +

𝜕𝑢(𝑥̇)

𝜕𝑥̇
 

where u represents the utility (see discussion of the demand case in the preceding section). 

The complete production/consumption system can then be coupled by assuming that price is 

 
43 Dannenberg, A.A., Estola, M., and Dannenberg, A. (2017). A dynamic theory of economics: What are the 

market forces? 
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adjusted dynamically in order to match supply with demand. The dynamics are determined 

from the force equations for production, consumption, and supply and demand: 

𝑚𝑠𝑥̈𝑠 = 𝑝 −
𝜕𝑐(𝑥̇𝑠)

𝜕𝑥̇𝑠
 

𝑚𝑑𝑥̈𝑑 = −𝑝 +
𝜕𝑢(𝑥̇𝑑)

𝜕𝑥̇𝑑
 

𝑝̇ = 𝑘(𝑥𝑑̇ − 𝑥𝑠̇ ). 

 

The equations are easily generalised to represent an arbitrary number of firms producing 

multiple goods. The main difference between the resulting model and the neoclassical version 

is that the latter sets the mass terms to zero in the equations for production and consumption, 

and assumes that the third equation representing the imbalance between supply and demand 

is equal to zero. As Dannenberg et al. (2017) demonstrate, the act of changing from the static 

neoclassical framework to a dynamical framework is in itself sufficient to reproduce some 

aspects of phenomena such as economic crises (see their paper for simulations). The 

equations can also be quantized as before, with the difference that there are now extra force 

terms which account for costs and consumer desires. The quantum model could simulate 

entanglement through the introduction of coupling terms.44 The inclusion of money and debt 

would also allow one to model the effects of credit, which is what permits companies (e.g. 

Tesla) to operate for long periods on borrowed funds. The complexity of the resulting model 

would probably limits its application to anything but highly simplified situations; however as 

discussed further below targeted models could be useful for exploring a range of economic 

phenomena. 

 

As a final note, one can also write the equations in the form 

𝑣̇𝑠 =
1

𝑚𝑠
(𝑝 −

𝜕𝑐(𝑣𝑠)

𝜕𝑣𝑠
) 

𝑣̇𝑑 =
1

𝑚𝑑
(−𝑝 +

𝜕𝑢(𝑣𝑑)

𝜕𝑣𝑑
) 

𝑝̇ = 𝑘(𝑣𝑑 − 𝑣𝑠) 

where 𝑣𝑑 = 𝑥𝑑̇  and 𝑣𝑠 = 𝑥𝑠̇. These compare directly with the equations used in systems 

biology to describe the interactions of three chemical species. In biology, stochastic effects 

 
44 Kim, YS and Noz, ME (2005). Coupled oscillators, entangled oscillators, and Lorentz-covariant harmonic 

oscillators. Journal of Optics B: Quantum and Semiclassical Optics 7(12): S458. 
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occur because key reactions, such as the production of mRNA, often involve only a small 

number of molecules, so reactions are described using the same type of Poisson process.45 

Results for those models can therefore be carried over to economics. For example biological 

systems sometimes include feedback loops that limit stochastic fluctuations46 and it would be 

interesting to compare their function with human attempts to smooth economic fluctuations. 

 

9. Entanglement 

 

As discussed in the book, a key advantage of the quantum approach in economics – but one 

which to my knowledge has not previously been addressed by researchers in quantum finance 

– is that it provides a natural framework for thinking about financial entanglement through 

loans and derivatives.  

 

To first motivate the discussion, consider the physical example of a pair of entangled 

electrons, denoted 1 and 2, each of which has spin ½ when measured along a particular axis, 

but in opposite directions. The spin part of their wave function can be written as a 

superposition of two states: 

|𝑆〉 =
1

√2
 |1 ↑〉|2↓〉 −

1

√2
|1↓〉|2 ↑〉 

where the arrow indicates the direction of spin of each electron. 

 

The wave function tells us nothing about the direction of spin for either electron, only that 

they are opposite, so the total spin is zero. Now, suppose that we measure the spin for 

electron 1. We would expect an equal chance of getting a positive or negative result. If it is 

the former, then the system must have collapsed to an eigenstate with positive eigenvalue, so 

is of the form 

|𝑆〉 = |1 ↑〉|2↓〉 

A measurement of particle 2 can now yield only a negative result. The reason is that the wave 

function describes the system, including both particles, so a measurement on one is 

equivalent to a measurement on the system as a whole. 

 

 
45 Ramsey, S., Orrell, D., & Bolouri, H. (2005), ‘Dizzy: stochastic simulation of large-scale genetic regulatory 

networks’, Journal of bioinformatics and computational biology 3 (02), 415-436. 
46 Ramsey, S., et al. (2006), ‘Dual feedback loops in the GAL regulon suppress cellular heterogeneity in yeast’, 

Nature genetics 38(9): 1082. 
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The financial version of entanglement can be expressed using a similar formalism. Instead of 

two entangled electrons, consider two people entangled by a loan contract; and instead of 

spin direction, we will use loan status (i.e. “default” or “no default”). As in quantum 

cognition, the debtor is modelled as initially being in a superposition of two states, with a 

decision acting as a measurement event. The loan status can therefore be expressed by a wave 

function of the form:  

|𝑆〉 = 𝛼 |1 ↑〉|2↓〉 −𝛽|1↓〉|2 ↑〉 

Here 𝛼2 and 𝛽2 add to 1, and give the probability of default |1 ↑〉|2↓〉 and no default 

|1 ↓〉|2↑〉 respectively, so reflect the debtor’s propensity to default at a particular moment. If 

the debtor decides to default on the loan, that acts as a measurement on the system as a 

whole. At any time after that, if the creditor decides to assess the state of the loan, the result 

can only indicate default. The two parties are thus entangled. 

 

Of course, systems can be correlated without any need to invoke quantum effects.47 However 

the key point is that we are treating the debtor’s state regarding the loan as being in a 

superposition of the two states “default” and “no default”. The state of the loan is therefore 

indeterminate (we don’t know whether the debtor will default) yet still correlated, which is 

the essence of entanglement. 

 

Another possible objection is that, after one of a pair of entangled particles has been 

measured, the second doesn’t need to check with the first to find out what its state is; while 

with a loan the creditor does. However the wave function equation applies to the loan 

agreement, which is an abstract thing that encompasses both parties. So from the point of 

view of that wave function (which again is what we are modelling) the state does change 

instantaneously; it is only measurements that take time. The difference between the physics 

version, and the financial version, then reduces to a question of the nature and reality of such 

wave functions, which would depend on one’s interpretation of quantum theory, and is a 

topic of debate for both physicists and social scientists.48 But from a mathematical modelling 

perspective the two are the same. 

 

 
47 For example, suppose I have two beads, one red and one blue, and I give one to a friend without looking. 

Then if I check and find that I have the red one, I know that my friend has the blue one. 
48 A widely discussed example is whether Xantippe, the wife of Socrates, became a widow the instant her 

husband was forced to commit suicide, or only when she found out later. See: Wendt, A. (2015), Quantum Mind 

and Social Science: Unifying Physical and Social Ontology (Cambridge: Cambridge University Press), p. 194. 
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One feature of the system is that, unlike for electrons, there is now only one axis of 

measurement. This means that the behaviour of a loan agreement is much less subtle than the 

physical version (though some social scientists do argue for rich versions of mental 

entanglement based on physical principles); and also that it is not possible to reproduce Bell-

type experiments, where entanglement is tested by changing the orientation of the axis. 

However Bell’s experiments do not define entanglement, but were devised as a way to tease 

out entanglement for systems that cannot be queried more directly. For loans, the 

entanglement is encoded by the terms of the agreement. Again, the equation applies only to 

the loan agreement, so default may for example be followed by a complex negotiation, but 

the same is true in a physical system where other forces can also come into play. 

 

Since most money is produced through private bank lending, and the financial system is 

dominated by complex derivatives contracts, financial entanglement is a tremendously 

important part of the economy, yet one which has been largely neglected in mainstream 

models, precisely because they are based on a classical atomistic paradigm. A number of 

techniques are currently being developed to simulate collective decision-making using a 

quantum approach, and these could be used to model phenomena such as mass defaults, or 

the impact of collective behaviour on the generation of credit in an economy.49 

 

To illustrate this point, we can return to the case of strategic default. The quantum analysis of 

preference reversal was based on the idea that subjective attitudes are entangled within the 

mind of the decision-maker, and so resolve themselves in a manner that is context-dependent. 

However entanglement also operates at the social level, for example as a result of the 

exchange of information between the society members. 

 

To accommodate social effects, Yukalov and Sornette50 extend the decision space to be the 

tensor product 

ℋ = ℋ𝐴 ⊗ ℋ𝑆. 

Here ℋ𝐴 = Span{𝐴𝑖𝐵𝑗} is the decision space for the individual, and ℋ𝑆 represents the 

decision space for the rest of society, which can similarly be expressed as the tensor product 

 
49 One researcher investigating quantum models of collective decision making is Michael Schnabel: 

https://harris.uchicago.edu/directory/michael-schnabel 
50 Yukalov VI & Sornette D (2015), Role of Information in Decision Making of Social Agents, International 

Journal of Information Technology & Decision Making 14(05): 1129-1166. 
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of the individual spaces of the other society members. The state of the society is represented 

by the statistical operator 𝜌̂𝐴𝐵. This is normalised so that  

TrAB 𝜌̂𝐴𝐵 (𝜇) = 1 

where the trace operation is performed over ℋ, and 𝜇 represents an amount of information.  

 

By examining how the prospect probabilities evolve as a function of the information level 𝜇, 

Yukalov and Sornette then show formally that the net effect of interaction between the 

individual and society is to attenuate the individual’s attraction function, so that 

log𝜇→∞ 𝑝(𝜋𝑗 , 𝜇) = 𝑓(𝜋𝑗) 

In other words, as information increases, the probability converges to the classical utility 

factor. A similar approach was used by (Khrennikova & Haven, 2016) to model how voter 

preferences are shaped by the informational “bath” generated by mass media. 

 

Indeed, experimental evidence shows that cognitive biases tend to reduce when participants 

exchange information by consulting with others (Charness et al., 2010). For the case 

considered above of mortgage default, we would expect the strategic default rate to increase 

with information flow. This was again confirmed by the data, which showed that people who 

know someone who has strategically defaulted are 82% more likely to declare their intention 

to default: as (Guiso et al., 2013: 1514) write, “This effect does not seem to be due to 

clustering of people with similar attitudes, but rather to learning about the actual cost of 

default. We find a similar learning effect from exposure to the media, an effect that is reduced 

when the media start to cover the topic more extensively.” 

 

According to an estimate from First American, it would have cost some $745 billion, or 

slightly more than the size of the 2008 bank bailout, to restore the lost equity of all 

underwater borrowers (Streitfeld, 2010). These entanglements were further extended and 

amplified through the use of complex derivatives such as collateralized mortgage obligations, 

which were held internationally. Prior to the crisis, these were seen as having a stabilising 

effect on the economy. As the International Monetary Fund (2006: 51) noted: “The dispersion 

of credit risk by banks to a broader and more diverse group of investors, rather than 

warehousing such risks on their balance sheets, has helped to make the banking and overall 

financial system more resilient.” Bernanke (2006) echoed the IMF when he said that 

“because of the dispersion of financial risks to those more willing and able to bear them, the 
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economy and financial system are more resilient.” These conclusions were apparently not 

based on modelling, since the models used at the time didn’t even include a banking sector. 

Financial entanglement is therefore a dominant factor in the economy, but also one of the 

least understood. 

 

10. Summary 

 

The quantum approach has successfully been used to model the economy at both the level of 

individuals (in quantum cognition) and the level of markets (quantum finance). In either case, 

the state of the system is represented using a Hilbert space. Measurement procedures such as 

decisions and transactions take precedence over internal states such as known preferences or 

inherent values. The quantum approach therefore differs fundamentally from the classical 

one, and can be extended to offer an alternative model of the economy in general. 

 

While the aim of this document is only to give an idea of how quantum techniques can be 

applied to the economy, the literature in this area is quite large and different researchers take 

different approaches. As shown by empirical results in quantum cognition, the quantum 

approach appears to be a natural fit for modelling human decision-making. And while 

quantum finance has not been widely adopted by the quantitative finance community, some 

traders have adopted the quantum methodology to understand and predict for example the 

behaviour of illiquid assets. 

 

From the larger perspective of quantum economics, a main advantage of the quantum 

approach is that it naturally incorporates the dualistic properties of money. In classical 

economics, price is essentially equated with value (with allowances for “market failures”). In 

quantum mechanics, prices are seen as emerging from monetary transactions. One 

consequence is to sever the direct link between price and value. Another is to concentrate the 

modeller’s attention on the entangling properties of money.  

 

A natural extension of the market models considered above, and an interesting longer-term 

research project, would be a quantum agent-based model of something like a housing market. 

Following the approach used to model the propensity to buy or sell individual stocks (Section 

7), each house could be considered as a separate single-asset market. Buyers and sellers 

would be entangled to a degree with each other, and to the news flow which could be 
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modelled as a quantum variable, and to the financial markets through loans. Such a model 

could simulate the kind of market contagion seen in housing markets, such as “fear of 

missing out” when prices are rising. It could also include the process of money creation 

through private lending, which grows the money supply and leads to asset price inflation. 

 

To summarise, the quantum approach offers a natural framework for modelling key economic 

properties such as indeterminacy and entanglement. It also explicitly accounts for stochastic 

dynamic effects, of the sort that are regularly studied in areas such as systems biology, but 

have played a much smaller role in economics (apart from finance). While many people with 

a background in physics will be familiar with the quantum approach, and can easily apply 

methods from e.g. statistical mechanics to derive results, those trained in a classical approach 

may at first find it awkward or overly elaborate. However one of the main lessons of quantum 

economics is that, just because the economy emerges from quantum effects, this does not 

imply that quantum models are always obligatory. The complex behaviour of water, which 

ultimately arises from quantum properties, may drive the weather system but is not part of 

weather models; and similarly it is possible to simulate the flow of money in a way that 

respects its complex emergent properties without needing to go down to the quantum level. 

The quantum approach can also be used to rule out certain modelling approaches, including 

Dynamic Stochastic General Equilibrium models (the so-called workhorses of 

macroeconomics), which rely on classical assumptions such as equilibrium. 

 

 

For more background and further reading, see davidorrell.com/quantumresources.html 

Contact the author at: futureofeverything.wordpress.com/about/ 
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